better way to find bullet holes in a target - python

Hi I'm making a project about detecting bullet holes in target circles. My original idea was to use Hough circle algorithms to detect both targets which works quite alright for photos that are straight in front of it and bullet holes that are not as good. Sooo I was wandering if anyone could tip me with some better solution on finding them or helping me improve this code.
import cv2 as cv
import numpy as np
import math
import sys
from PIL import Image
import matplotlib.pyplot as plt
MAX_POINTS = 10
def main(argv):
default_file = 'tarczamala.jpg'
default_size = 600, 600
im = Image.open(default_file)
im = im.resize(default_size, Image.ANTIALIAS)
im.save('600' + default_file)
filename = argv[0] if len(argv) > 0 else '600' + default_file
# Loads an image
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: hough_circle.py [image_name -- default ' + default_file + '] \n')
return -1
# skala szarości
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
cv.imshow('gray', gray)
# Bilateral
bilateral = cv.bilateralFilter(gray, 7, 15, 10)
cv.imshow('bilateral', bilateral)
blank = np.zeros(bilateral.shape[:2], dtype='uint8')
cv.imshow('blank', blank)
# mask = cv.circle(blank, (bilateral.shape[1] // 2, bilateral.shape[0] // 2), 320, 255, -1)
# cv.imshow('Mask', mask)
#
# masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
# cv.imshow('masked', masked)
# Edge Cascade
canny = cv.Canny(bilateral, 50, 175)
cv.imshow('canny1', canny)
# ret, tresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY)
# cv.imshow('tresch', tresh)
contours, hierarchies = cv.findContours(canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
print(f'{len(contours)} contour(s) found')
# cv.drawContours(blank, contours, -1, (255,0,0), 1)
# cv.imshow('contours drawn', blank)
rows = canny.shape[0]
# Target
circles = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 0.01,
param1=100, param2=50,
minRadius=7, maxRadius=300)
# print(f'{circles}"')
biggestCircle = findBiggestCircle(circles)
# print(f'{biggestCircle} biggest circle')
mask = cv.circle(blank, (math.floor(biggestCircle[0]), math.floor(biggestCircle[1])), math.floor(biggestCircle[2]), 255, -1)
cv.imshow('rysowanie granicy', mask)
masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
cv.imshow('granice', masked)
# Edge Cascade
canny = cv.Canny(masked, 50, 175)
cv.imshow('canny2', canny)
if biggestCircle is not None:
circles = np.uint16(np.around(circles))
# print(f'{biggestCircle} biggest circle')
delta_r = biggestCircle[2] / 10
biggest_circle_center = [biggestCircle[0], biggestCircle[1]]
center = (math.floor(biggestCircle[0]), math.floor(biggestCircle[1]))
# print(f'{center} center')
# circle center
cv.circle(src, center, 1, (255, 0, 0), 3)
# circle outline
radius = math.floor(biggestCircle[2])
cv.circle(src, center, radius, (0, 0, 255), 3)
# bullet holes
hits = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 10,
param1=300, param2=10,
minRadius=7, maxRadius=10)
# print(f'{hits}"')
score = countHitScore(hits.tolist(), delta_r, biggest_circle_center)
print(f'The score is: {score}"')
if hits is not None:
hits = np.uint16(np.around(hits))
for i in hits[0, :]:
# print(f'promien trafienia {i[2]}"')
center = (i[0], i[1])
# circle center
cv.circle(src, center, 1, (0, 100, 100), 3)
# circle outline
radius = i[2]
cv.circle(src, center, radius, (255, 0, 255), 3)
cv.imshow("detected circles", src)
cv.waitKey(0)
return 0
def findBiggestCircle(circles):
# print(f'{circles}')
listOfCircles = circles[0]
biggestCircle = listOfCircles[0]
for circle in listOfCircles:
# print(f'{circle} circle')
# print(f'2 {circle}')
# print(f'3 {biggestCircle}')
if circle[2] > biggestCircle[2]:
# print('4')
biggestCircle = circle
print(biggestCircle)
return biggestCircle.tolist()
def countHitScore(hits, delta_r, target_center):
score = 0
print(f'{hits} hits')
for hit in hits[0]:
# print(f'{hit} hit')
# print(f'{(target_center)} center')
x_dist = hit[0] - target_center[0] if hit[0] > target_center[0] else target_center[0] - hit[0]
y_dist = hit[1] - target_center[1] if hit[1] > target_center[1] else target_center[1] - hit[1]
total_dist = math.hypot(x_dist, y_dist) - hit[2]
punkty = math.ceil(total_dist / delta_r)
if punkty < 1:
punkty = 1
score += 11 - punkty
# print(f'{total_dist / delta_r} math')
# print(f'{total_dist / delta_r} total_dist / delta_r')
print(f'{11 - punkty} zdobyte punkty')
# print(f'{x_dist} x {y_dist} y')
return score
if __name__ == "__main__":
main(sys.argv[1:])

Related

How do I clock the user action?

I follow a simple head pose estimation tutorial in python, I try to make some modification in the code but I got stuck for days now, I just want to know how long the user been looking to the left or right, if the user is detected to be looking to the left or right for a long time let say 2-3 mins, then the program should give a warning or print a simple message saying how long his/her been looking to the left or right. How do I achieve this? any ideas how to do this?
sorry for my bad english
any help will be appreciated :)
here's my code:
import cv2
import mediapipe as mp
import numpy as np
import time
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture(0)
while cap.isOpened():
success, image = cap.read()
image = cv2.resize(image, (780, 350))
image = cv2.flip(image, 1)
#start = time.time()
# Flip the image horizontally for a later selfie-view display
# Also convert the color space from BGR to RGB
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance
image.flags.writeable = False
# Get the result
results = face_mesh.process(image)
# To improve performance
image.flags.writeable = True
# Convert the color space from RGB to BGR
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
img_h, img_w, img_c = image.shape
face_3d = []
face_2d = []
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
for idx, lm in enumerate(face_landmarks.landmark):
if idx == 33 or idx == 263 or idx == 1 or idx == 61 or idx == 291 or idx == 199:
if idx == 1:
nose_2d = (lm.x * img_w, lm.y * img_h)
nose_3d = (lm.x * img_w, lm.y * img_h, lm.z * 3000)
x, y = int(lm.x * img_w), int(lm.y * img_h)
# Get the 2D Coordinates
face_2d.append([x, y])
# Get the 3D Coordinates
face_3d.append([x, y, lm.z])
# Convert it to the NumPy array
face_2d = np.array(face_2d, dtype=np.float64)
# Convert it to the NumPy array
face_3d = np.array(face_3d, dtype=np.float64)
# The camera matrix
focal_length = 1 * img_w
cam_matrix = np.array([ [focal_length, 0, img_h / 2],
[0, focal_length, img_w / 2],
[0, 0, 1]])
# The distortion parameters
dist_matrix = np.zeros((4, 1), dtype=np.float64)
# Solve PnP
success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix)
# Get rotational matrix
rmat, jac = cv2.Rodrigues(rot_vec)
# Get angles
angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
# Get the y rotation degree
x = angles[0] * 360
y = angles[1] * 360
z = angles[2] * 360
# See where the user's head tilting
if y < -10:
# i want to know how long this guy been looking to his left or right or up or down
text = "Looking Left"
elif y > 10:
text = "Looking Right"
elif x < -10:
text = "Looking Down"
elif x > 10:
text = "Looking Up"
else:
text = "Forward"
# Display the nose direction
nose_3d_projection, jacobian = cv2.projectPoints(nose_3d, rot_vec, trans_vec, cam_matrix, dist_matrix)
p1 = (int(nose_2d[0]), int(nose_2d[1]))
p2 = (int(nose_2d[0] + y * 10) , int(nose_2d[1] - x * 10))
cv2.line(image, p1, p2, (255, 0, 0), 3)
# Add the text on the image
cv2.putText(image, text, (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)
cv2.putText(image, "x: " + str(np.round(x,2)), (500, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(image, "y: " + str(np.round(y,2)), (500, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(image, "z: " + str(np.round(z,2)), (500, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# need some fix here
# end = time.time()
# totalTime = end - start
# fps = 1 / totalTime
#print("FPS: ", fps)
#cv2.putText(image, f'FPS: {int(fps)}', (20,450), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,255,0), 2)
mp_drawing.draw_landmarks(
image=image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec)
cv2.imshow('Head Pose Estimation', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()

OpenCV python - detect and measure a gun shot on a target from a camera stream

I would like to realize a project for a gun club. The goal is to detect and measure shots on a target and count the points. My thoughts about this projects are as follows:
apply a region of interest to focus onto the target
apply filters on the camera stream to get a sharp boundary around the black center
define the diameter since it is known
get the center of the boundary and store it as a reference point
detect shots and get the radial and distance in reference to the diameter and reference point and hence the value of the shot
show the last shots with a circle and their values on the screen
What I got so far is this:
edge detection and center point
Explanation radial and distance:
get the radial and distance
Screen with circles and values:
goal
import cv2
import numpy as np
import imutils
# declare variables
framewidth = 1920
frameheight = 1080
RTSP_URL = 'rtsp://xxxxxx:xxxxxxxx#192.168.1.64:554/Streaming/channels/1'
cap = cv2.VideoCapture(RTSP_URL, cv2.CAP_FFMPEG)
cap.set(3, framewidth)
cap.set(4, frameheight)
if not cap.isOpened():
print('Cannot open RTSP stream')
exit(-1)
# pseudo function
def empty(a):
pass
# slider
cv2.namedWindow("Parameters")
cv2.resizeWindow("Parameters", 640,240)
cv2.createTrackbar("Threshold1","Parameters",16,255,empty)
cv2.createTrackbar("Threshold2","Parameters",192,255,empty)
cv2.createTrackbar("Threshold3","Parameters",243,255,empty)
cv2.createTrackbar("Threshold4","Parameters",255,255,empty)
# imagestack
def stackImages(scale,imgArray):
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
if rowsAvailable:
for x in range ( 0, rows):
for y in range(0, cols):
if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank]*rows
hor_con = [imageBlank]*rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor= np.hstack(imgArray)
ver = hor
return ver
def getContours(imgDil,imgContour):
contours, hierarchy = cv2.findContours(imgDil, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
area = cv2.contourArea(cnt)
# compute the center of the contour
M = cv2.moments(cnt)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# draw the contour and center of the shape on the image
if area > 5000:
cv2.drawContours(imgContour, cnt, -1, (255, 0 ,255),3)
cv2.circle(imgContour, (cX, cY), 7, (255, 0, 255), -1)
cv2.putText(imgContour, "center", (cX - 20, cY - 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 2)
while(True):
success, img = cap.read()
imgContour = img.copy()
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
threshold1 = cv2.getTrackbarPos("Threshold1", "Parameters")
threshold2 = cv2.getTrackbarPos("Threshold2", "Parameters")
threshold3 = cv2.getTrackbarPos("Threshold3", "Parameters")
threshold4 = cv2.getTrackbarPos("Threshold4", "Parameters")
ret, thresh = cv2.threshold(imgGray,threshold1,threshold2,1)
imgCanny = cv2.Canny(imgGray,threshold3,threshold4)
kernel = np.ones((3,3))
imgDil = cv2.dilate(thresh, kernel, iterations=1)
getContours(imgDil,imgContour)
imgStack = stackImages(0.4,([img,imgGray,thresh],[imgCanny,img,imgContour]))
cv2.imshow('Result',imgStack)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
I really appreciate any suggestions on best practices and of course any help. Shall I better go for a stereo camera with depth recognition like the Oak-D, since I think the detection of a shot in the black target area could be challenging.

draw 3d objects like cubes and pyramides or cilinders on a aruco marker

I'm failing miserably trying to draw 3d objects on a aruco marker
as of now I've done camera calibration and I'm capable of placing images on the designated aruco markers but I'm having trouble with 3d objects I think it might come from image points I think I'm missing something there.
Also, I'm doing this in real-time and is there a a way to use already existing 3d objects
bellow is my code
import cv2.aruco as aruco
import cv2
import time
import sys
import argparse
import numpy as np
#import imutils
def load_coefficients(path):
'''Loads camera matrix and distortion coefficients.'''
# FILE_STORAGE_READ
cv_file = cv2.FileStorage(path, cv2.FILE_STORAGE_READ)
# note we also have to specify the type to retrieve other wise we only get a
# FileNode object back instead of a matrix
camera_matrix = cv_file.getNode('K').mat()
dist_matrix = cv_file.getNode('D').mat()
cv_file.release()
return [camera_matrix, dist_matrix]
def drawQ(img, corners, imgpts):
imgpts = np.int32(imgpts).reshape(-1,2)
# draw ground floor in green
img = cv2.drawContours(img, [imgpts[:4]],-1,(0,255,0),-3)
# draw pillars in blue color
for i,j in zip(range(4),range(4,8)):
img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
# draw top layer in red color
img = cv2.drawContours(img, [imgpts[4:]],-1,(0,0,255),3)
return img
mtx, dist = load_coefficients('camera_parameters.txt')
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--type", type=str,
default="DICT_ARUCO_ORIGINAL",
help="type of ArUCo tag to detect")
args = vars(ap.parse_args())
source0 = cv2.imread('00000019.jpg')
source1 = cv2.imread('00000042.jpg')
source2 = cv2.imread('00000054.jpg')
source3 = cv2.imread('00000111.png')
source4 = cv2.imread('00000156.jpg')
source5 = cv2.imread('00000000.png')
source6 = cv2.imread('00000041.jpg')
#source = cv2.imread('Kratos_Pose.usdz')
#source = '/toothless/source/toothless.obj'
Aruco_Dict = {
"DICT_4X4_50": aruco.DICT_4X4_50,
"DICT_4X4_100": aruco.DICT_4X4_100,
"DICT_4X4_250": aruco.DICT_4X4_250,
"DICT_4X4_1000": aruco.DICT_4X4_1000,
"DICT_5X5_50": aruco.DICT_5X5_50,
"DICT_5X5_100": aruco.DICT_5X5_100,
"DICT_5X5_250": aruco.DICT_5X5_250,
"DICT_5X5_1000": aruco.DICT_5X5_1000,
"DICT_6X6_50": aruco.DICT_6X6_50,
"DICT_6X6_100": aruco.DICT_6X6_100,
"DICT_6X6_250": aruco.DICT_6X6_250,
"DICT_6X6_1000": aruco.DICT_6X6_1000,
"DICT_7X7_50": aruco.DICT_7X7_50,
"DICT_7X7_100": aruco.DICT_7X7_100,
"DICT_7X7_250": aruco.DICT_7X7_250,
"DICT_7X7_1000": aruco.DICT_7X7_1000,
"DICT_ARUCO_ORIGINAL": aruco.DICT_ARUCO_ORIGINAL,
"DICT_APRILTAG_16h5": aruco.DICT_APRILTAG_16h5,
"DICT_APRILTAG_25h9": aruco.DICT_APRILTAG_25h9,
"DICT_APRILTAG_36h10": aruco.DICT_APRILTAG_36h10,
"DICT_APRILTAG_36h11": aruco.DICT_APRILTAG_36h11
}
image_dict = {
"0": source0,
"1": source1,
"2": source2,
"3": source3,
"4": source4,
"5": source5,
"6": source6
}
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)
# verify that the supplied ArUCo tag exists and is supported by
# OpenCV
if Aruco_Dict.get(args["type"], None) is None:
print("[INFO] ArUCo tag of '{}' is not supported".format(
args["type"]))
sys.exit(0)
# load the ArUCo dictionary and grab the ArUCo parameters
#print("[INFO] detecting '{}' tags...".format(args["type"]))
#arucoDict = cv2.aruco.Dictionary_get(Aruco_Dict[args["type"]])
arucoDict = cv2.aruco.Dictionary_get(Aruco_Dict["DICT_4X4_50"])
arucoParams = cv2.aruco.DetectorParameters_create()
# initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
cap = cv2.VideoCapture(0)
#time.sleep(1.0)
if not cap.isOpened():
raise IOError("Cannot open webcam")
while True:
ret, frame = cap.read()
#frame = cv2.resize(frame, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA)
undistorted = cv2.undistort(frame, mtx, dist, None, None)
undistortedG = cv2.cvtColor(undistorted,cv2.COLOR_BGR2GRAY)
(imgH, imgW) = undistorted.shape[:2]
#cv2.imshow('Input', frame)
cv2.imshow('undistorted image', undistorted)
# detect ArUco markers in the input frame
(corners, ids, rejected) = cv2.aruco.detectMarkers(undistorted,
arucoDict, parameters=arucoParams)
MarkerLength = 0.04
# verify *at least* one ArUco marker was detected
if len(corners) > 0:
print('corners lenght: ', len(corners))
# flatten the ArUco IDs list
ids = ids.flatten()
refpoints = []
# loop over the detected ArUCo corners
for (markerCorner, markerID) in zip(corners, ids):
# extract the marker corners (which are always returned
# in top-left, top-right, bottom-right, and bottom-left
# order)
rvec, tvec, markerPoints = aruco.estimatePoseSingleMarkers(markerCorner, MarkerLength, mtx, dist)
(rvec - tvec).any()
corners = markerCorner.reshape((4, 2))
(topLeft, topRight, bottomRight, bottomLeft) = corners
# convert each of the (x, y)-coordinate pairs to integers
topRight = (int(topRight[0]), int(topRight[1]))
bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
topLeft = (int(topLeft[0]), int(topLeft[1]))
# upper cordnates
a = (3,3)
topRight2 = topRight[0] - 20, topRight[1] - 20
bottomRight2 = bottomRight[0] -20, bottomRight[1] -20
bottomLeft2 = bottomLeft[0] -20, bottomLeft[1] -20
topLeft2 = topLeft[0] -20, topLeft[1] -20
# testing
#corners2 = cv2.cornerSubPix(undistortedG,corners,(11,11),(-1,-1),criteria)
imgpoints, jac = cv2.projectPoints(objp, rvec, tvec, mtx, dist)
#imgpoints = np.float32(imgpoints)
srcrvec, srctvec, srcinliners = cv2.solvePnP(markerPoints, corners, mtx, dist)
undistortedQ = drawC(undistorted, corners, imgpoints)
# testing
# testing
dstMat = [topLeft, topRight, bottomRight, bottomLeft]
dstMat = np.array(dstMat)
#(srcH, srcW) = source.shape[:2]
source = image_dict[f'{markerID}']
(srcH, srcW) = source.shape[:2]
srcMat = np.array([[0, 0], [srcW, 0], [srcW, srcH], [0, srcH]])
(H, _) = cv2.findHomography(srcMat, dstMat)
warped = cv2.warpPerspective(source, H, (imgW, imgH))
cv2.imshow('warped image', warped)
mask = np.zeros((imgH, imgW), dtype="uint8")
cv2.fillConvexPoly(mask, dstMat.astype("int32"), (255, 255, 255),
cv2.LINE_AA)
rect = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
mask = cv2.dilate(mask, rect, iterations=2)
maskScaled = mask.copy() / 255.0
maskScaled = np.dstack([maskScaled] * 3)
warpedMultiplied = cv2.multiply(warped.astype("float"), maskScaled)
imageMultiplied = cv2.multiply(undistorted.astype(float), 1.0 - maskScaled)
undistorted = cv2.add(warpedMultiplied, imageMultiplied)
undistorted = undistorted.astype("uint8")
#cv2.imshow("Input", undistorted)
#cv2.imshow("Source", source)
#cv2.imshow("OpenCV AR Output", output)
cv2.imshow('draw 3d cube ', undistortedQ)
#cv2.waitKey(0)
# testing
# draw the bounding box of the ArUCo detection
cv2.line(undistorted, topLeft, topRight, (0, 255, 0), 2)
cv2.line(undistorted, topRight, bottomRight, (0, 255, 0), 2)
cv2.line(undistorted, bottomRight, bottomLeft, (0, 255, 0), 2)
cv2.line(undistorted, bottomLeft, topLeft, (0, 255, 0), 2)
# draw rest of cube
cv2.line(undistorted, topLeft2, topRight2, (0, 255, 0), 2)
cv2.line(undistorted, topRight2, bottomRight2, (0, 255, 0), 2)
cv2.line(undistorted, bottomRight2, bottomLeft2, (0, 255, 0), 2)
cv2.line(undistorted, bottomLeft2, topLeft2, (0, 255, 0), 2)
# draw the the axis from estimated pose
aruco.drawAxis(undistorted, mtx, dist, rvec, tvec, 0.01)
# compute and draw the center (x, y)-coordinates of the
# ArUco marker
cX = int((topLeft[0] + bottomRight[0]) / 2.0)
cY = int((topLeft[1] + bottomRight[1]) / 2.0)
cv2.circle(undistorted, (cX, cY), 4, (0, 0, 255), -1)
# draw the ArUco marker ID on the frame
cv2.putText(undistorted, str(markerID),
(topLeft[0], topLeft[1] - 15),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 255, 0), 2)
# show the output frame
cv2.imshow("ArUco Markers Detector", undistorted)
key = cv2.waitKey(1) & 0xFF
c = cv2.waitKey(1)
if c == 27:
break
cap.release()
cv2.destroyAllWindows()
here is an image of what is happnening

OpenCV Memory and CPU Usage

I'm making a USV (Unmanned Surface Vehicle) for my bachelor project. The track it needs to keep is made by having coloured buoys on the left/right side of the track and for obstacles.
So I need to track the depth of these objects and give all that information on to my navigation program.
And I have made a Python code using ROS and OpenCV to track these buoys with a ZED2 camera. But I'm having CPU and memory issues. Where the ubuntu desktop starts to lag.
Using a Nvidia Jetson Xavier NX and I’m using 85% of the CPU and 5,5+/7.59Gb Memory.
Anyone interested in looking over my code and see if I'm doing something stupid. That would explain my issues.
from __future__ import print_function
import roslib
import sys
import rospy
import cv2
from main.msg import VarRed, VarGreen, VarYellow, RedHSV, GreenHSV, YellowHSV, MidPoint
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import numpy as np
import imutils
import time
from collections import deque
import math
class image_converter:
def __init__(self):
self.image_subd = rospy.Subscriber("/zed2/zed_node/depth/depth_registered",Image,self.callbackDepth)
self.image_sub = rospy.Subscriber("/zed2/zed_node/rgb_raw/image_raw_color",Image,self.callbackVideo)
self.image_pub = rospy.Publisher("/Tracking/RG_image", Image, queue_size = 1)
self.RedHSV_sub = rospy.Subscriber("/Tracking/Red_HSV", RedHSV, self.redHSV)
self.GreenHSV_sub = rospy.Subscriber("/Tracking/Green_HSV", GreenHSV, self.greenHSV)
self.YellowHSV_sub = rospy.Subscriber("/Tracking/Yellow_HSV", YellowHSV, self.yellowHSV)
self.MidPoint_pub = rospy.Publisher("/Tracking/MidPoint", MidPoint, queue_size = 1)
self.red_bridge = CvBridge()
self.red_publisher = rospy.Publisher("/Tracking/red", VarRed, queue_size = 1)
self.green_bridge = CvBridge()
self.green_publisher = rospy.Publisher("/Tracking/green", VarGreen, queue_size = 1)
self.yellow_bridge = CvBridge()
self.yellow_publisher = rospy.Publisher("/Tracking/yellow", VarYellow, queue_size = 1)
self.RedLower = (0, 101, 68) # Declaring the red-specter
self.RedUpper = (15, 255, 255)
self.GreenLower = (75, 145, 48) # Declaring the green-specter
self.GreenUpper = (96, 255, 75)
self.YellowLower = (28, 56, 91) # Declaring the yellow-specter
self.YellowUpper = (51, 152, 150)
self.red_pts = deque(maxlen=14)
self.currentDepthImg=0
self.red_counter = 0
self.red_x = 0
self.red_y = 0
self.red_radius = 30
self.green_pts = deque(maxlen=14)
self.green_currentDepthImg=0
self.green_counter = 0
self.green_x = 0
self.green_y = 0
self.green_radius = 30
self.yellow_pts = deque(maxlen=14)
self.yellow_currentDepthImg=0
self.yellow_counter = 0
self.yellow_x = 0
self.yellow_y = 0
self.yellow_radius = 30
def redHSV(self,msg):
self.RedLower = (msg.r_h_low-10, msg.r_s_low-10, msg.r_v_low-10)
self.RedUpper = (msg.r_h_high+10, msg.r_s_high+10, msg.r_v_high+10)
def greenHSV(self,msg):
self.GreenLower = (msg.g_h_low-10, msg.g_s_low-10, msg.g_v_low-10)
self.GreenUpper = (msg.g_h_high+10, msg.g_s_high+10, msg.g_v_high+10)
def yellowHSV(self,msg):
self.YellowLower = (msg.y_h_low-10, msg.y_s_low-10, msg.y_v_low-10)
self.YellowUpper = (msg.y_h_high+10, msg.y_s_high+10, msg.y_v_high+10)
def callbackDepth(self,msg_depth):
try:
cv_image_depth = self.red_bridge.imgmsg_to_cv2(msg_depth, "32FC1") # CV_Bridge Depth
except CvBridgeError as e:
print(e)
return
self.currentDepthImg=cv_image_depth
try:
a=1
except CvBridgeError as e:
print(e)
return
def callbackVideo(self,data):
try:
cv_image = self.red_bridge.imgmsg_to_cv2(data, "bgr8") # CV_Bridge Video
except CvBridgeError as e:
print(e)
return
(rows,cols,channels) = cv_image.shape
frame = cv_image
blurred = cv2.GaussianBlur(frame, (21, 21), 0) # resize the frame, blur it, and convert it to the HSV (11,11), 0
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) # color space.
red_mask = cv2.inRange(hsv, self.RedLower, self.RedUpper) # Construct a mask for the color "red", then perform
red_mask = cv2.erode(red_mask, None, iterations=2) # a series of dilations and erosions to remove any small
red_mask = cv2.dilate(red_mask, None, iterations=2) # blobs thats left in the mask.
green_mask = cv2.inRange(hsv, self.GreenLower, self.GreenUpper) # construct a mask for the color "green", then perform
green_mask = cv2.erode(green_mask, None, iterations=2) # a series of dilations and erosions to remove any small
green_mask = cv2.dilate(green_mask, None, iterations=2) # blobs thats left in the mask.
yellow_mask = cv2.inRange(hsv, self.YellowLower, self.YellowUpper) # construct a mask for the color "yellow", then perform
yellow_mask = cv2.erode(yellow_mask, None, iterations=2) # a series of dilations and erosions to remove any small
yellow_mask = cv2.dilate(yellow_mask, None, iterations=2) # blobs thats left in the mask.
red_cnts = cv2.findContours(red_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # find contours in the mask and initialize the current
red_cnts = imutils.grab_contours(red_cnts)
red_center = None
self.red_radius = 0
green_cnts = cv2.findContours(green_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # find contours in the mask and initialize the current
green_cnts = imutils.grab_contours(green_cnts)
green_center = None
self.green_radius = 0
yellow_cnts = cv2.findContours(yellow_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # find contours in the mask and initialize the current
yellow_cnts = imutils.grab_contours(yellow_cnts)
yellow_center = None
self.yellow_radius = 0
cv_imaged=self.currentDepthImg
#-----------------------------------------RED_START------------------------------------------------------
if len(red_cnts) > 0: # only proceed if at least one contour was found
red_c = max(red_cnts, key=cv2.contourArea) # find the largest contour in the red_mask, then use
((self.red_x, self.red_y), self.red_radius) = cv2.minEnclosingCircle(red_c) # it to compute the minimum enclosing circle and
red_M = cv2.moments(red_c) # centroid
red_center = (int(red_M["m10"] / red_M["m00"]), int(red_M["m01"] / red_M["m00"]))
if self.red_radius > 5: # only proceed if the radius meets a minimum size
cv2.circle(frame, (int(self.red_x), int(self.red_y)), int(self.red_radius), (0, 255, 255), 2) # draw the circle and centroid on the red_frame,
cv2.circle(frame, red_center, 5, (0, 255, 255), -1) # then update the list of tracked points
msg = VarRed()
msg.r_visible = True
#if self.red_y == self.red_y and self.red_x == self.red_x:
r_length = cv_imaged[int(self.red_y),int(self.red_x)] # length to object
msg.r_x = self.red_x
msg.r_y = self.red_y
msg.r_rad = self.red_radius
ToRad = 2*np.pi/360 # = 0.01745329252
ToDeg = 360/(2*np.pi) # = 57.29577951308
# Printing pixel values
cv2.rectangle(frame, (0, 0), (200, 190), (0,0,0), -1)
cv2.putText(frame, str("L: %.3f" %r_length), ((int(self.red_x)),int(self.red_y)), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,255), 2)
cv2.putText(frame, str("RX: %.1f" %msg.r_x +" px"), (10,30), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
cv2.putText(frame, str("RY: %.1f" %msg.r_y + " px"), (10,60), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
# For X-direction
red_l_cm = (r_length*100) # Converting to Centimeters
start_x_r = 960/(math.tan((55*ToRad))) # finding start x-length in px
ang_x_r = (math.atan((self.red_x-960)/start_x_r))*ToDeg # finding horizontal angle
red_x_cm = (red_l_cm*math.sin((ang_x_r)*ToRad))
cv2.putText(frame, str("RXC: %.1f" %red_x_cm + " cm"), (10,90), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
cv2.putText(frame, str("X Ang: %.1f" %ang_x_r), (10,150), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
# For Y-direction
start_y_r = 540/(math.tan((35*ToRad))) # finding start y-length in px
ang_y_r = ((math.atan((self.red_y-540)/start_y_r))*ToDeg)*-1 # finding vertical angle
red_y_cm = (red_l_cm/math.tan((ang_y_r*ToRad)+(math.pi/2)))*-1 # finding the y-length
cv2.putText(frame, str("RYC: %.1f" %red_y_cm + " cm"), (10,120), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
cv2.putText(frame, str("Y Ang: %.1f" %ang_y_r), (10,180), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
red_z = (math.cos(abs(ang_x_r)*ToRad))*red_l_cm
self.red_pts.appendleft(red_center)
msg.r_length = red_l_cm
msg.r_xc = red_x_cm
msg.r_yc = red_y_cm
msg.r_angle = ang_x_r # update the points queue
msg.r_z = red_z
self.red_publisher.publish(msg)
for i in range(1, len(self.red_pts)): # loop over the set of points
if self.red_pts[i - 1] is None or self.red_pts[i] is None: # if either of the tracked points
continue # are None, ignore them.
thickness = int(np.sqrt(64 / float(i + 1)) * 2.5) # otherwise, compute the thickness of the line and
cv2.line(frame, self.red_pts[i - 1], self.red_pts[i], (0, 255, 255), thickness) # draw the connecting lines
if self.red_radius < 5:
msg = VarRed()
msg.r_visible = False
self.red_publisher.publish(msg)
#-----------------------------------------RED_END------------------------------------------------------
#-----------------------------------------GREEN_START------------------------------------------------------
if len(green_cnts) > 0: # same as in red, but for green
green_c = max(green_cnts, key=cv2.contourArea)
((self.green_x, self.green_y), self.green_radius) = cv2.minEnclosingCircle(green_c)
green_M = cv2.moments(green_c)
green_center = (int(green_M["m10"] / green_M["m00"]), int(green_M["m01"] / green_M["m00"]))
if self.green_radius > 5:
cv2.circle(frame, (int(self.green_x), int(self.green_y)), int(self.green_radius), (0, 255, 255), 2)
cv2.circle(frame, green_center, 5, (0, 255, 255), -1)
ToRad = 2*np.pi/360 # = 0.01745329252
ToDeg = 360/(2*np.pi) # = 57.29577951308
msg1 = VarGreen()
msg1.g_visible = True
g_length = cv_imaged[int(self.green_y),int(self.green_x)]
msg1.g_x = self.green_x
msg1.g_y = self.green_y
msg1.g_rad = self.green_radius
# Printing pixel values
cv2.rectangle(frame, (1740, 0), (1920, 200), (0,0,0), -1)
cv2.putText(frame, str("L: %.3f" %g_length), ((int(self.green_x)),int(self.green_y)), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,255), 2)
cv2.putText(frame, str("GX: %.1f" %msg1.g_x +"px"), (1740,30), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
cv2.putText(frame, str("GY: %.1f" %msg1.g_y + "px"), (1740,60), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
# For X-direction
green_l_cm = (g_length*100)
start_x_g = 960/(math.tan((55*2*np.pi/360)))
ang_x_g = (math.atan((self.green_x-960)/start_x_g))*57.295779513
green_x_cm = (green_l_cm*math.sin((ang_x_g)*ToRad))
# For Y-direction
start_y_g = 540/(math.tan((35*2*np.pi/360)))
ang_y_g = ((math.atan((self.green_y-540)/start_y_g))*57.295779513)*-1
green_y_cm = green_l_cm/math.tan(ang_y_g*ToRad+(math.pi/2))*-1
cv2.putText(frame, str("GXC: %.1f" %green_x_cm + "cm"), (1740,90), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
cv2.putText(frame, str("X Ang: %.1f" %ang_x_g), (1740,150), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
cv2.putText(frame, str("GYC: %.1f" %green_y_cm + "cm"), (1740,120), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
cv2.putText(frame, str("Y Ang: %.1f" %ang_y_g), (1740,180), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
green_z = (math.cos(abs(ang_x_g)*ToRad))*green_l_cm
self.green_pts.appendleft(green_center)
msg1.g_length = green_l_cm
msg1.g_xc = green_x_cm
msg1.g_yc = green_y_cm
msg1.g_angle = ang_x_g
msg1.g_z = green_z
self.green_publisher.publish(msg1)
for i in range(1, len(self.green_pts)):
if self.green_pts[i - 1] is None or self.green_pts[i] is None:
continue
thickness = int(np.sqrt(64 / float(i + 1)) * 2.5)
cv2.line(frame, self.green_pts[i - 1], self.green_pts[i], (0, 255, 255), thickness)
if self.green_radius < 5:
msg1 = VarGreen()
msg1.g_visible = False
self.green_publisher.publish(msg1)
#-----------------------------------------GREEN_END------------------------------------------------------
#-----------------------------------------YELLOW_START------------------------------------------------------
if len(yellow_cnts) > 0: # only proceed if at least one contour was found
yellow_c = max(yellow_cnts, key=cv2.contourArea) # find the largest contour in the yellow_mask, then use
((self.yellow_x, self.yellow_y), self.yellow_radius) = cv2.minEnclosingCircle(yellow_c) # it to compute the minimum enclosing circle and
yellow_M = cv2.moments(yellow_c) # centroid
yellow_center = (int(yellow_M["m10"] / yellow_M["m00"]), int(yellow_M["m01"] / yellow_M["m00"]))
if self.yellow_radius > 5: # only proceed if the radius meets a minimum size
cv2.circle(frame, (int(self.yellow_x), int(self.yellow_y)), int(self.yellow_radius), (0, 0, 200), 2) # draw the circle and centroid on the yellow_frame,
cv2.circle(frame, yellow_center, 5, (0, 0, 200), -1) # then update the list of tracked points
ToRad = 2*np.pi/360 # = 0.01745329252
ToDeg = 360/(2*np.pi) # = 57.29577951308
msg2 = VarYellow()
msg2.y_visible = True
y_length = cv_imaged[int(self.yellow_y),int(self.yellow_x)] # length to object
msg2.y_x = self.yellow_x
msg2.y_y = self.yellow_y
msg2.y_rad = self.yellow_radius
cv2.putText(frame, str("L: %.3f" %y_length), ((int(self.yellow_x)),int(self.yellow_y)), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,200), 2)
# For X-direction
yellow_l_cm = y_length*100 # Converting to Centimeters
start_x_y = 960/(math.tan((55*2*np.pi/360))) # finding start x-length in px
ang_x_y = (math.atan((self.yellow_x-960)/start_x_y))*57.295779513 # finding horizontal angle
#yellow_x = yellow_l_cm/math.tan((ang_x_y/57.295779513)) # finding the x-length
yellow_x_cm = (yellow_l_cm*math.sin((ang_x_y)*ToRad))
# For Y-direction
start_y_y = 540/(math.tan((35*2*np.pi/360))) # finding start y-length in px
ang_y_y = ((math.atan((self.yellow_y-540)/start_y_y))*57.295779513)*-1 # finding vertical angle
#yellow_y = yellow_l_cm/math.tan((ang_y_y/57.295779513)) # finding the y-length
yellow_y_cm = yellow_l_cm/math.tan(ang_y_y*ToRad+(math.pi/2))*-1
yellow_z = (math.cos(abs(ang_x_y)*ToRad))*yellow_l_cm
self.yellow_pts.appendleft(yellow_center)
msg2.y_length = yellow_l_cm
msg2.y_xc = yellow_x_cm
msg2.y_yc = yellow_y_cm
msg2.y_angle = ang_x_y # update the points queue
msg2.y_z = yellow_z
self.yellow_publisher.publish(msg2)
for i in range(1, len(self.yellow_pts)): # loop over the set of points
if self.yellow_pts[i - 1] is None or self.yellow_pts[i] is None: # if either of the tracked points
continue # are None, ignore them.
thickness = int(np.sqrt(64 / float(i + 1)) * 2.5) # otherwise, compute the thickness of the line and
cv2.line(frame, self.yellow_pts[i - 1], self.yellow_pts[i], (0, 0, 255), thickness) # draw the connecting lines
if self.yellow_radius < 5:
msg2 = VarYellow()
msg2.y_visible = False
self.yellow_publisher.publish(msg2)
#-----------------------------------------YELLOW_END------------------------------------------------------
try:
if (self.green_radius > 5) & (self.red_radius > 5): # if you can see both colors, proceed
ToRad = 2*np.pi/360 # = 0.01745329252
ToDeg = 360/(2*np.pi) # = 57.29577951308
red_z = (math.cos(abs(ang_x_r)*ToRad))*red_l_cm
green_z = (math.cos(abs(ang_x_g)*ToRad))*green_l_cm
Delta_z = abs(red_z-green_z)
Tot_x = abs(green_x_cm) + abs(red_x_cm)
if Delta_z == Delta_z and Tot_x == Tot_x:
red_green_angle = (math.atan(Delta_z/Tot_x))*ToDeg
normal_angle = red_green_angle
if green_l_cm >= red_l_cm:
normal_angle = red_green_angle*-1
if green_l_cm < red_l_cm:
normal_angle = red_green_angle
MidPoint_data = MidPoint()
MidPoint_data.angle = normal_angle
self.MidPoint_pub.publish(MidPoint_data)
length_between_x = math.sqrt((Tot_x*Tot_x)+(Delta_z*Delta_z))
Delta_y = abs(red_y_cm-green_y_cm)
length_between = math.sqrt((length_between_x*length_between_x)+(Delta_y*Delta_y))
#dx = green_x_cm - red_x_cm # Finding the space between the colors in x-direction
#dy = green_y_cm - red_y_cm # Finding the space between the colors in y-direction
# Calculating the direct length between the colors in cm
#cv2.rectangle(frame, (500, 0), (680, 160), (0,0,0), -1)
#cv2.putText(frame, str("Dist: %.1f" %length_between + " cm"), (500,30), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
#Middle_x = dx
#Middle_y = dy
MP_X = (msg1.g_x + msg.r_x)/2
MP_Y = (msg1.g_y + msg.r_y)/2
#Middle_Point_Angle = (math.atan((MP_X-960)/start_x_g))*57.295779513
#Middle_Point_Angle = ang_x_g - ang_x_r
#Middle_Point_Length =(red_x_cm-abs(Middle_x))/(math.sin((math.pi/2)-(Middle_Point_Angle*((2*math.pi)/720))))
#Middle_Point_Length =((red_x_cm-abs(Middle_x))/(math.cos(Middle_Point_Angle*((2*math.pi)/720))))
#cv2.putText(frame, str("MX: %.1f" %Middle_x + " cm"), (500,60), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
#cv2.putText(frame, str("MY: %.1f" %Middle_y + " cm"), (500,90), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
if MP_X == MP_X and MP_Y == MP_Y:
cv2.circle(frame, (int(MP_X), int(MP_Y)), 8, (0, 0, 255), -1)
#cv2.putText(frame, str("M_L: %.1f" %Middle_Point_Length + " cm"), (500,120), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
#cv2.putText(frame, str("M_ang: %.1f" %Middle_Point_Angle), (500,150), cv2.FONT_HERSHEY_COMPLEX, 0.8, (255,255,255), 1)
cv2.line(frame, (int(self.red_x),int(self.red_y)), (int(self.green_x),int(self.green_y)), (0, 0, 0), 2)
#MidPoint_data = MidPoint()
#MidPoint_data.z = Middle_Point_Length
#self.MidPoint_pub.publish(MidPoint_data)
cv2.line(frame, (960, 1280), (960, 0), (0, 255, 0), 1)
cv2.line(frame, (0, 540), (1920, 540), (0, 255, 0), 1)
self.image_pub.publish(self.red_bridge.cv2_to_imgmsg(frame, "bgr8"))
except CvBridgeError as e:
print(e)
return
def main(args):
ic = image_converter()
rospy.init_node('Color_Tracker', anonymous=True)
try:
rospy.spin()
except KeyboardInterrupt:
print("Shutting down")
cv2.destroyAllWindows()
if __name__ == '__main__':
main(sys.argv)

How To Draw a Triangle-Arrow With The Positions of Detected Objects

I am making a object detection project.
I have my code. And I have written it by following a tutorial. In the tutorial, the guy drew a rectangle in opencv for every single object which is detected.
But I want to change the rectangle to triangle or Arrow.
let me explain with code===>
In my function, I detect objects.
And here I draw rectangle for detected objects==>
cv2.rectangle(img, (x, y), (x+w,y+h), (255, 0 , 255), 2)
But I want to change this rectangle to a triangle.(And I want to set position of triangle to above of object.
Just like in these images:::
This is the object detection with triangle
[![enter image description here][1]][1]
This is the thing that what I want to make instead of rectangle:::
[![enter image description here][2]][2]
How Can I make a triangle/arrow with positions of my detected objects?
All of my code is here==>
from os.path import sep
import cv2 as cv2
import numpy as np
import json
# Camera feed
cap_cam = cv2.VideoCapture(0)
ret, frame_cam = cap_cam.read()
hey = 0
print(cv2. __version__)
whT = 320
confThreshold =0.5
nmsThreshold= 0.2
classesFile = "coco.names"
classNames = []
with open(classesFile, 'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
print(classNames)
## Model Files
modelConfiguration = "custom-yolov4-tiny-detector.cfg"
modelWeights = "custom-yolov4-tiny-detector_last.weights"
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
def findObjects(outputs,img):
global hey
global previousHey
hT, wT, cT = img.shape
bbox = []
classIds = []
confs = []
for output in outputs:
for det in output:
scores = det[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
w,h = int(det[2]*wT) , int(det[3]*hT)
x,y = int((det[0]*wT)-w/2) , int((det[1]*hT)-h/2)
bbox.append([x,y,w,h])
classIds.append(classId)
confs.append(float(confidence))
global indicates
indices = cv2.dnn.NMSBoxes(bbox, confs, confThreshold, nmsThreshold)
hey = 0
for i in indices:
i = i[0]
box = bbox[i]
x, y, w, h = box[0], box[1], box[2], box[3]
# print(x,y,w,h)
cv2.rectangle(img, (x, y), (x+w,y+h), (255, 0 , 255), 2)
#cv2.line(img, (350,400), (x, y), (255,0,0), 4)
#cv2.line(img, (400,400), (x + 50 , y), (255,0,0), 4)
#cv.putText(img,f'{classNames[classIds[i]].upper()} {int(confs[i]*100)}%',
#(x, y-10), cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 255), 2)
print('success')
hey = 1
video_frame_counter = 0
while cap_cam.isOpened():
img = cv2.imread('photos' + sep + 'lutfen.jpg')
#BURADA OK VİDEOSU OYNATILACAK
#if not decetiona diye dene yarın.
blob = cv2.dnn.blobFromImage(img, 1 / 255, (whT, whT), [0, 0, 0], 1, crop=False)
net.setInput(blob)
layersNames = net.getLayerNames()
outputNames = [(layersNames[i[0] - 1]) for i in net.getUnconnectedOutLayers()]
outputs = net.forward(outputNames)
findObjects(outputs,img)
cv2.imshow('Image', img)
# Video feed
if hey == 1:
filename = 'photos' + sep + 'Baslksz-3.mp4'
cap_vid = cv2.VideoCapture(filename)
if hey == 0:
filename = 'photos' + sep + 'vid2.mp4'
cap_vid = cv2.VideoCapture(filename)
print(hey)
ret, frame_vid = cap_vid.read()
#cap_cam.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
#cap_cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
# Resize the camera frame to the size of the video
height = int(cap_vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap_vid.get(cv2.CAP_PROP_FRAME_WIDTH))
# Capture the next frame from camera
ret, frame_cam = cap_cam.read()
video_frame_counter += 1
if video_frame_counter == cap_vid.get(cv2.CAP_PROP_FRAME_COUNT):
video_frame_counter = 0
cap_vid.set(cv2.CAP_PROP_POS_FRAMES, 0)
frame_cam = cv2.resize(frame_cam, (width, height), interpolation = cv2.INTER_AREA)
#ret = cap_vid.set(cv2.CAP_PROP_POS_MSEC, time_passed)
ret, frame_vid = cap_vid.read()
if not ret:
print('Cannot read from video stream')
break
# Blend the two images and show the result
tr = 0.4 # transparency between 0-1, show camera if 0
frame = ((1-tr) * frame_cam.astype(np.float) + tr * frame_vid.astype(np.float)).astype(np.uint8)
cv2.imshow('Transparent result', frame)
if cv2.waitKey(1) == 27: # ESC is pressed
break
cap_cam.release()
cap_vid.release()
cv2.destroyAllWindows()
The easy way
You can use the cv.arrowedLine() function that will draw something similar to what you want. For example, to draw a red arrow above your rectangle:
center_x = x + w//2
cv2.arrowedLine(img, (center_x, y-50), (center_x, y-5), (0,0,255), 2, 8, 0, 0.5)
which should give a result similar to the image below. Take a look at the OpenCV documentation for the description of the parameters of the function. You can change its size, thickness, color, etc.
Custom arrow shape
If you want more control over the shape of your arrow, you can define a contour (vertex by vertex) and use cv.drawContours() to render it. For example:
# define the arrow shape
shape = np.array([[[0,0],[-25,-25],[-10,-25],[-10,-50],
[10,-50],[10,-25],[25,-25]]])
# move it to the desired position
cx = x + w // 2
cy = y - 5
shape[:,:,0] += cx
shape[:,:,1] += cy
# draw it
cv2.drawContours(img, shape, -1, (0, 255, 0), -1)
This snippet will give you the image below. You can adjust the shape by altering the vertices in the shape array, or look at the documentation to change the way OpenCV draws it.

Categories

Resources