I am trying to replace Nan with a list of numbers generated by a random seed. This means each Nan value needs to be replaced by a unique integer. Items in the columns are unique, but the rows just seem to be replicating themselves? Any suggestions would be welcome
np.random.seed(56)
rs=np.random.randint(1,100, size=total)
df=pd.DataFrame(index=np.arange(rows), columns=np.arange(columns))
for i in rs:
df=df.fillna(value=i, limit=1)
the df.fillna() will replace all the values that contains NA. So your code is actually changing the NA values just at the first iteration of the forloop because than, no other values to fill remains.
You can use the applymap function to iterates through all the rows and fill the NANs with a randomly generated values in this way:
df.applymap(lambda l: l if not np.isnan(l) else np.random.randint(1,100, size=total)))
You can try stack
s = df.stack(dropna=False)
s = s[s.isna()]
s[:] = rs
df.update(s.unstack())
Or we can create from original
df = pd.DataFrame(data = rs.reshape(row, col),
index=np.arange(row),
columns=np.arange(col))
Related
I have a data set something like this:
import pandas as pd
# initialize data of lists.
data = {'name':['x', 'y', 'z'],
'value':['fb', 'nan', 'ti']}
# Create DataFrame
df = pd.DataFrame(data)
I now want to check the column of value and count the number of rows if value does not have 'fb' and 'nan' (null values).
How can I do this?
df[~df.value.isin(['fb','nan'])].shape[0]
In this case, we are checking when the value is not in this list and selecting those rows only. From there we can get the shape using shape of that dataframe.
Output
1
This would be the result dataframe
name value
2 z ti
If in future you want to also ignore the rows where the value column is NA (NA values, such as None or numpy.NaN),then you can use this
df[(~df.value.isin(['fb','nan'])) & (~df.value.isnull())].shape[0]
To count values that are not fb and nan:
(~df.value.str.contains('fb|nan')).sum()
Omit the tilde if you want to count the fb and nan values.
Just make a condition checking for "fb" or NaN, and use sum to get the count of True's:
>>> (df['value'].eq('fb') | df['value'].isna()).sum()
3
I have the following dataframe:
df = pd.DataFrame( columns = ['Name'])
df['Name'] = ['Aadam','adam','AdAm','adammm','Adam.','Bethh','beth.','beht','Beeth','Beth']
I want to clean the column in order to achieve the following:
df['Name Corrected'] = ['adam','adam','adam','adam','adam','beth','beth','beth','beth','beth']
df
Cleaned names are based on the following reference table:
ref = pd.DataFrame( columns = ['Cleaned Names'])
ref['Cleaned Names'] = ['adam','beth']
I am aware of fuzzy matching but I'm not sure if that's the most efficient way of solving the problem.
You can try:
lst=['adam','beth']
out=pd.concat([df['Name'].str.contains(x,case=False).map({True:x}) for x in lst],axis=1)
df['Name corrected']=out.bfill(axis=1).iloc[:,0]
#Finally:
df['Name corrected']=df['Name corrected'].ffill()
#but In certain condition ffill() gives you wrong values
Explaination:
lst=['adam','beth']
#created a list of words
out=pd.concat([df['Name'].str.contains(x,case=False).map({True:x}) for x in lst],axis=1)
#checking If the 'Name' column contain the word one at a time that are inside the list and that will give a boolean series of True and False and then we are mapping The value of that particular element that is inside list so True becomes that value and False become NaN and then we are concatinating both list of Series on axis=1 so that It becomes a Dataframe
df['Name corrected']=out.bfill(axis=1).iloc[:,0]
#Backword filling values on axis=1 and getting the 1st column
#Finally:
df['Name corrected']=df['Name corrected'].ffill()
#Forward filling the missing values
The code below will generate only one value of a normal distribution, and fill in all the missing values with this same value:
helper_df = df.dropna()
df = df.fillna(numpy.random.normal(loc=helper_df.mean(), scale=numpy.std(helper_df)))
What can we do to generate a value for each missing value?
You can create a series with normal values. You should extract the index of the Nan values in the column you are working on.
df: your dataframe
col: the col containing Nan values
index = df[df.col.isna()].index
value = np.random.normal(loc=data.col.mean(), scale=data.col.std(), size=data.Age.isna().sum())
data.Age.fillna(pd.Series(value, index=index), inplace=True)
You can create a series of random variables with the same length as your dataframe, then apply fillna:
df.fillna(pd.Series([np.random.normal() for x in range(len(df))]))
If a value in a row is not missing, fillna just ignores it.
city state neighborhoods categories
Dravosburg PA [asas,dfd] ['Nightlife']
Dravosburg PA [adad] ['Auto_Repair','Automotive']
I have above dataframe I want to convert each element of a list into column for eg:
city state asas dfd adad Nightlife Auto_Repair Automotive
Dravosburg PA 1 1 0 1 1 0
I am using following code to do this :
def list2columns(df):
"""
to convert list in the columns
of a dataframe
"""
columns=['categories','neighborhoods']
for col in columns:
for i in range(len(df)):
for element in eval(df.loc[i,"categories"]):
if len(element)!=0:
if element not in df.columns:
df.loc[:,element]=0
else:
df.loc[i,element]=1
How to do this in more efficient way?
Why still there is below warning when I am using df.loc already
SettingWithCopyWarning: A value is trying to be set on a copy of a slice
from a DataFrame.Try using .loc[row_indexer,col_indexer] = value instead
Since you're using eval(), I assume each column has a string representation of a list, rather than a list itself. Also, unlike your example above, I'm assuming there are quotes around the items in the lists in your neighborhoods column (df.iloc[0, 'neighborhoods'] == "['asas','dfd']"), because otherwise your eval() would fail.
If this is all correct, you could try something like this:
def list2columns(df):
"""
to convert list in the columns of a dataframe
"""
columns = ['categories','neighborhoods']
new_cols = set() # list of all new columns added
for col in columns:
for i in range(len(df[col])):
# get the list of columns to set
set_cols = eval(df.iloc[i, col])
# set the values of these columns to 1 in the current row
# (if this causes new columns to be added, other rows will get nans)
df.iloc[i, set_cols] = 1
# remember which new columns have been added
new_cols.update(set_cols)
# convert any un-set values in the new columns to 0
df[list(new_cols)].fillna(value=0, inplace=True)
# if that doesn't work, this may:
# df.update(df[list(new_cols)].fillna(value=0))
I can only speculate on an answer to your second question, about the SettingWithCopy warning.
It's possible (but unlikely) that using df.iloc instead of df.loc will help, since that is intended to select by row number (in your case, df.loc[i, col] only works because you haven't set an index, so pandas uses the default index, which matches the row number).
Another possibility is that the df that is passed in to your function is already a slice from a larger dataframe, and that is causing the SettingWithCopy warning.
I've also found that using df.loc with mixed indexing modes (logical selectors for rows and column names for columns) produces the SettingWithCopy warning; it's possible that your slice selectors are causing similar problems.
Hopefully the simpler and more direct indexing in the code above will solve any of these problems. But please report back (and provide code to generate df) if you are still seeing that warning.
Use this instead
def list2columns(df):
"""
to convert list in the columns
of a dataframe
"""
df = df.copy()
columns=['categories','neighborhoods']
for col in columns:
for i in range(len(df)):
for element in eval(df.loc[i,"categories"]):
if len(element)!=0:
if element not in df.columns:
df.loc[:,element]=0
else:
df.loc[i,element]=1
return df
I have this code using Pandas in Python:
all_data = {}
for ticker in ['FIUIX', 'FSAIX', 'FSAVX', 'FSTMX']:
all_data[ticker] = web.get_data_yahoo(ticker, '1/1/2010', '1/1/2015')
prices = DataFrame({tic: data['Adj Close'] for tic, data in all_data.iteritems()})
returns = prices.pct_change()
I know I can run a regression like this:
regs = sm.OLS(returns.FIUIX,returns.FSTMX).fit()
but how can I do this for each column in the dataframe? Specifically, how can I iterate over columns, in order to run the regression on each?
Specifically, I want to regress each other ticker symbol (FIUIX, FSAIX and FSAVX) on FSTMX, and store the residuals for each regression.
I've tried various versions of the following, but nothing I've tried gives the desired result:
resids = {}
for k in returns.keys():
reg = sm.OLS(returns[k],returns.FSTMX).fit()
resids[k] = reg.resid
Is there something wrong with the returns[k] part of the code? How can I use the k value to access a column? Or else is there a simpler approach?
for column in df:
print(df[column])
You can use iteritems():
for name, values in df.iteritems():
print('{name}: {value}'.format(name=name, value=values[0]))
This answer is to iterate over selected columns as well as all columns in a DF.
df.columns gives a list containing all the columns' names in the DF. Now that isn't very helpful if you want to iterate over all the columns. But it comes in handy when you want to iterate over columns of your choosing only.
We can use Python's list slicing easily to slice df.columns according to our needs. For eg, to iterate over all columns but the first one, we can do:
for column in df.columns[1:]:
print(df[column])
Similarly to iterate over all the columns in reversed order, we can do:
for column in df.columns[::-1]:
print(df[column])
We can iterate over all the columns in a lot of cool ways using this technique. Also remember that you can get the indices of all columns easily using:
for ind, column in enumerate(df.columns):
print(ind, column)
You can index dataframe columns by the position using ix.
df1.ix[:,1]
This returns the first column for example. (0 would be the index)
df1.ix[0,]
This returns the first row.
df1.ix[:,1]
This would be the value at the intersection of row 0 and column 1:
df1.ix[0,1]
and so on. So you can enumerate() returns.keys(): and use the number to index the dataframe.
A workaround is to transpose the DataFrame and iterate over the rows.
for column_name, column in df.transpose().iterrows():
print column_name
Using list comprehension, you can get all the columns names (header):
[column for column in df]
Based on the accepted answer, if an index corresponding to each column is also desired:
for i, column in enumerate(df):
print i, df[column]
The above df[column] type is Series, which can simply be converted into numpy ndarrays:
for i, column in enumerate(df):
print i, np.asarray(df[column])
I'm a bit late but here's how I did this. The steps:
Create a list of all columns
Use itertools to take x combinations
Append each result R squared value to a result dataframe along with excluded column list
Sort the result DF in descending order of R squared to see which is the best fit.
This is the code I used on DataFrame called aft_tmt. Feel free to extrapolate to your use case..
import pandas as pd
# setting options to print without truncating output
pd.set_option('display.max_columns', None)
pd.set_option('display.max_colwidth', None)
import statsmodels.formula.api as smf
import itertools
# This section gets the column names of the DF and removes some columns which I don't want to use as predictors.
itercols = aft_tmt.columns.tolist()
itercols.remove("sc97")
itercols.remove("sc")
itercols.remove("grc")
itercols.remove("grc97")
print itercols
len(itercols)
# results DF
regression_res = pd.DataFrame(columns = ["Rsq", "predictors", "excluded"])
# excluded cols
exc = []
# change 9 to the number of columns you want to combine from N columns.
#Possibly run an outer loop from 0 to N/2?
for x in itertools.combinations(itercols, 9):
lmstr = "+".join(x)
m = smf.ols(formula = "sc ~ " + lmstr, data = aft_tmt)
f = m.fit()
exc = [item for item in x if item not in itercols]
regression_res = regression_res.append(pd.DataFrame([[f.rsquared, lmstr, "+".join([y for y in itercols if y not in list(x)])]], columns = ["Rsq", "predictors", "excluded"]))
regression_res.sort_values(by="Rsq", ascending = False)
I landed on this question as I was looking for a clean iterator of columns only (Series, no names).
Unless I am mistaken, there is no such thing, which, if true, is a bit annoying. In particular, one would sometimes like to assign a few individual columns (Series) to variables, e.g.:
x, y = df[['x', 'y']] # does not work
There is df.items() that gets close, but it gives an iterator of tuples (column_name, column_series). Interestingly, there is a corresponding df.keys() which returns df.columns, i.e. the column names as an Index, so a, b = df[['x', 'y']].keys() assigns properly a='x' and b='y'. But there is no corresponding df.values(), and for good reason, as df.values is a property and returns the underlying numpy array.
One (inelegant) way is to do:
x, y = (v for _, v in df[['x', 'y']].items())
but it's less pythonic than I'd like.
Most of these answers are going via the column name, rather than iterating the columns directly. They will also have issues if there are multiple columns with the same name. If you want to iterate the columns, I'd suggest:
for series in (df.iloc[:,i] for i in range(df.shape[1])):
...
assuming X-factor, y-label (multicolumn):
columns = [c for c in _df.columns if c in ['col1', 'col2','col3']] #or '..c not in..'
_df.set_index(columns, inplace=True)
print( _df.index)
X, y = _df.iloc[:,:4].values, _df.index.values