How would I write a function in Python to determine if a list of filenames matches a given pattern and which files are missing from that pattern? For example:
Input ->
KUMAR.3.txt
KUMAR.4.txt
KUMAR.6.txt
KUMAR.7.txt
KUMAR.9.txt
KUMAR.10.txt
KUMAR.11.txt
KUMAR.13.txt
KUMAR.15.txt
KUMAR.16.txt
Desired Output-->
KUMAR.5.txt
KUMAR.8.txt
KUMAR.12.txt
KUMAR.14.txt
Input -->
KUMAR3.txt
KUMAR4.txt
KUMAR6.txt
KUMAR7.txt
KUMAR9.txt
KUMAR10.txt
KUMAR11.txt
KUMAR13.txt
KUMAR15.txt
KUMAR16.txt
Desired Output -->
KUMAR5.txt
KUMAR8.txt
KUMAR12.txt
KUMAR14.txt
You can approach this as:
Convert the filenames to appropriate integers.
Find the missing numbers.
Combine the missing numbers with the filename template as output.
For (1), if the file structure is predictable, then this is easy.
def to_num(s, start=6):
return int(s[start:s.index('.txt')])
Given:
lst = ['KUMAR.3.txt', 'KUMAR.4.txt', 'KUMAR.6.txt', 'KUMAR.7.txt',
'KUMAR.9.txt', 'KUMAR.10.txt', 'KUMAR.11.txt', 'KUMAR.13.txt',
'KUMAR.15.txt', 'KUMAR.16.txt']
you can get a list of known numbers by: map(to_num, lst). Of course, to look for gaps, you only really need the minimum and maximum. Combine that with the range function and you get all the numbers that you should see, and then remove the numbers you've got. Sets are helpful here.
def find_gaps(int_list):
return sorted(set(range(min(int_list), max(int_list))) - set(int_list))
Putting it all together:
missing = find_gaps(map(to_num, lst))
for i in missing:
print 'KUMAR.%d.txt' % i
Assuming the patterns are relatively static, this is easy enough with a regex:
import re
inlist = "KUMAR.3.txt KUMAR.4.txt KUMAR.6.txt KUMAR.7.txt KUMAR.9.txt KUMAR.10.txt KUMAR.11.txt KUMAR.13.txt KUMAR.15.txt KUMAR.16.txt".split()
def get_count(s):
return int(re.match('.*\.(\d+)\..*', s).groups()[0])
mincount = get_count(inlist[0])
maxcount = get_count(inlist[-1])
values = set(map(get_count, inlist))
for ii in range (mincount, maxcount):
if ii not in values:
print 'KUMAR.%d.txt' % ii
Related
I often work with groups of materials and my file/materials are named as alphanumeric strings. Is there a library to turn a string like r"Mxene - Ti3C2" to latex styled r"Mxene - Ti$_\mathrm{3}$C$_\mathrm{2}$"?
I usually use a dictionary but going through every name is a hassle and prone to error because materials can always be added or removed from the study.
I know that I can use str.maketrans() to generate subscripts but I haven't had very consistent results using the output with matplotlib so I'd much rather use latex.
I've ultimately created this solution in case anyone else needs it. Since my problem is mostly to create subscripts, the following code will look for numbers and replace them with a latex equivalent to create one.
def latexify(s):
import re
nums = re.findall(r'\d+', s)
pos = [[m.start(0), m.end(0)] for m in re.finditer(r'\d+', s)]
numpos = list(zip(nums, pos))
for num, pos in numpos:
string = f"$_\mathrm{{{num}}}$"
s = s[:pos[0]] + string + s[pos[1]:]
for ind, (n, [p_st, p_end]) in enumerate(numpos):
if p_st > pos[1]:
numpos[ind][1][0] += len(string)-len(num)
numpos[ind][1][1] += len(string)-len(num)
pass
return s
latexify("Ti32C2")
Returns:
'Ti$_\\mathrm{32}$C$_\\mathrm{2}$'
I am looking to get the closest match between two columns of string data type in two separate tables. I don't think the content matters too much. There are words that I can match by pre-processing the data (lower all letters, replace spaces and stop words, etc...) and doing a join. However I get around 80 matches out of over 350. It is important to know that the length of each table is different.
I did try to use some code I found online but it isn't working:
def Races_chien(df1,df2):
myList = []
total = len(df1)
possibilities = list(df2['Rasse'])
s = SequenceMatcher(isjunk=None, autojunk=False)
for idx1, df1_str in enumerate(df1['Race']):
my_str = ('Progress : ' + str(round((idx1 / total) * 100, 3)) + '%')
sys.stdout.write('\r' + str(my_str))
sys.stdout.flush()
# get 1 best match that has a ratio of at least 0.7
best_match = get_close_matches(df1_str, possibilities, 1, 0.7)
s.set_seq2(df1_str, best_match)
myList.append([df1_str, best_match, s.ratio()])
return myList
It says: TypeError: set_seq2() takes 2 positional arguments but 3 were given
How can I make this work?
I think you need s.set_seqs(df1_str, best_match) function instead of s.set_seq2(df1_str, best_match) (docs)
You can use jellyfish library that has useful tools for comparing how similar two strings are if that is what you are looking for.
Try changing:
s = SequenceMatcher(isjunk=None, autojunk=False)
To:
s = SequenceMatcher(None, isjunk=None, autojunk=False)
Here is an answer I finally got:
from fuzzywuzzy import process, fuzz
value = []
similarity = []
for i in df1.col:
ratio = process.extract(i, df2.col, limit= 1)
value.append(ratio[0][0])
similarity.append(ratio[0][1])
df1['value'] = pd.Series(value)
df1['similarity'] = pd.Series(similarity)
This will add the value with the closest match from df2 in df1 together with the similarity %
Background
I have a function called get_player_path that takes in a list of strings player_file_list and a int value total_players. For the sake of example i have reduced the list of strings and also set the int value to a very small number.
Each string in the player_file_list either has a year-date/player_id/some_random_file.file_extension or
year-date/player_id/IDATs/some_random_number/some_random_file.file_extension
Issue
What i am essentially trying to achieve here is go through this list and store all unique year-date/player_id path in a set until it's length reaches the value of total_players
My current approach does not seem the most efficient to me and i am wondering if i can speed up my function get_player_path in anyway??
Code
def get_player_path(player_file_list, total_players):
player_files_to_process = set()
for player_file in player_file_list:
player_file = player_file.split("/")
file_path = f"{player_file[0]}/{player_file[1]}/"
player_files_to_process.add(file_path)
if len(player_files_to_process) == total_players:
break
return sorted(player_files_to_process)
player_file_list = [
"2020-10-27/31001804320549/31001804320549.json",
"2020-10-27/31001804320549/IDATs/204825150047/foo_bar_Red.idat",
"2020-10-28/31001804320548/31001804320549.json",
"2020-10-28/31001804320548/IDATs/204825150123/foo_bar_Red.idat",
"2020-10-29/31001804320547/31001804320549.json",
"2020-10-29/31001804320547/IDATs/204825150227/foo_bar_Red.idat",
"2020-10-30/31001804320546/31001804320549.json",
"2020-10-30/31001804320546/IDATs/123455150047/foo_bar_Red.idat",
"2020-10-31/31001804320545/31001804320549.json",
"2020-10-31/31001804320545/IDATs/597625150047/foo_bar_Red.idat",
]
print(get_player_path(player_file_list, 2))
Output
['2020-10-27/31001804320549/', '2020-10-28/31001804320548/']
Let's analyze your function first:
your loop should take linear time (O(n)) in the length of the input list, assuming the path lengths are bounded by a relatively "small" number;
the sorting takes O(n log(n)) comparisons.
Thus the sorting has the dominant cost when the list becomes big. You can micro-optimize your loop as much as you want, but as long as you keep that sorting at the end, your effort won't make much of a difference with big lists.
Your approach is fine if you're just writing a Python script. If you really needed perfomances with huge lists, you would probably be using some other language. Nonetheless, if you really care about performances (or just to learn new stuff), you could try one of the following approaches:
replace the generic sorting algorithm with something specific for strings; see here for example
use a trie, removing the need for sorting; this could be theoretically better but probably worse in practice.
Just for completeness, as a micro-optimization, assuming the date has a fixed length of 10 characters:
def get_player_path(player_file_list, total_players):
player_files_to_process = set()
for player_file in player_file_list:
end = player_file.find('/', 12) # <--- len(date) + len('/') + 1
file_path = player_file[:end] # <---
player_files_to_process.add(file_path)
if len(player_files_to_process) == total_players:
break
return sorted(player_files_to_process)
If the IDs have fixed length too, as in your example list, then you don't need any split or find, just:
LENGTH = DATE_LENGTH + ID_LENGTH + 1 # 1 is for the slash between date and id
...
for player_file in player_file_list:
file_path = player_file[:LENGTH]
...
EDIT: fixed the LENGTH initialization, I had forgotten to add 1
I'll leave this solution here which can be further improved, hope it helps.
player_file_list = (
"2020-10-27/31001804320549/31001804320549.json",
"2020-10-27/31001804320549/IDATs/204825150047/foo_bar_Red.idat",
"2020-10-28/31001804320548/31001804320549.json",
"2020-10-28/31001804320548/IDATs/204825150123/foo_bar_Red.idat",
"2020-10-29/31001804320547/31001804320549.json",
"2020-10-29/31001804320547/IDATs/204825150227/foo_bar_Red.idat",
"2020-10-30/31001804320546/31001804320549.json",
"2020-10-30/31001804320546/IDATs/123455150047/foo_bar_Red.idat",
"2020-10-31/31001804320545/31001804320549.json",
"2020-10-31/31001804320545/IDATs/597625150047/foo_bar_Red.idat",
)
def get_player_path(l, n):
pfl = set()
for i in l:
i = "/".join(i.split("/")[0:2])
if i not in pfl:
pfl.add(i)
if len(pfl) == n:
return pfl
if n > len(pfl):
print("not enough matches")
return
print(get_player_path(player_file_list, 2))
# {'2020-10-27/31001804320549', '2020-10-28/31001804320548'}
Python Demo
Use dict so that you don't have to sort it since your list is already sorted. If you still need to sort you can always use sorted in the return statement. Add import re and replace your function as follows:
def get_player_path(player_file_list, total_players):
dct = {re.search('^\w+-\w+-\w+/\w+',pf).group(): 1 for pf in player_file_list}
return [k for i,k in enumerate(dct.keys()) if i < total_players]
I would like to go through a gene and get a list of 10bp long sequences containing the exon/intron borders from each feature.type =='mRNA'. It seems like I need to use compoundLocation, and the locations used in 'join' but I can not figure out how to do it, or find a tutorial.
Could anyone please give me an example or point me to a tutorial?
Assuming all the info in the exact format you show in the comment, and that you're looking for 20 bp on either side of each intro/exon boundary, something like this might be a start:
Edit: If you're actually starting from a GenBank record, then it's not much harder. Assuming that the full junction string you're looking for is in the CDS feature info, then:
for f in record.features:
if f.type == 'CDS':
jct_info = str(f.location)
converts the "location" information into a string and you can continue as below.
(There are ways to work directly with the location information without converting to a string - in particular you can use "extract" to pull the spliced sequence directly out of the parent sequence -- but the steps involved in what you want to do are faster and more easily done by converting to str and then int.)
import re
jct_info = "join{[0:229](+), [11680:11768](+), [11871:12135](+), [15277:15339](+), [16136:16416](+), [17220:17471](+), [17547:17671](+)"
jctP = re.compile("\[\d+\:\d+\]")
jcts = jctP.findall(jct_info)
jcts
['[0:229]', '[11680:11768]', '[11871:12135]', '[15277:15339]', '[16136:16416]', '[17220:17471]', '[17547:17671]']
Now you can loop through the list of start:end values, pull them out of the text and convert them to ints so that you can use them as sequence indexes. Something like this:
for jct in jcts:
(start,end) = jct.replace('[', '').replace(']', '').split(':')
try: # You need to account for going out of index, e.g. where start = 0
start_20_20 = seq[int(start)-20:int(start)+20]
except IndexError:
# do your alternatives e.g. start = int(start)
I am getting rows from a spreadsheet with mixtures of numbers, text and dates
I want to find elements within the list, some numbers and some text
for example
sg = [500782, u'BMOU9015488', u'SD4', u'CLOSED', -1, '', '', -1]
sg = map(str, sg)
#sg = map(unicode, sg) #option?
if any("-1" in s for s in sg):
#do something if matched
I don't feel this is the correct way to do this, I am also trying to match stuff like -1.5 and -1.5C and other unexpected characters like OPEN15 compared to 15
I have also looked at
sg.index("-1")
If positive then its a match (Only good for direct matches)
Some help would be appreciated
If you want to call a function for each case, I would do it this way:
def stub1(elem):
#do something for match of type '-1'
return
def stub2(elem):
#do something for match of type 'SD4'
return
def stub3(elem):
#do something for match of type 'OPEN15'
return
sg = [500782, u'BMOU9015488', u'SD4', u'CLOSED', -1, '', '', -1]
sg = map(unicode, sg)
patterns = {u"-1":stub1, u"SD4": stub2, u"OPEN15": stub3} # add more if you want
for elem in sg:
for k, stub in patterns.iteritems():
if k in elem:
stub(elem)
break
Where stub1, stub2, ... are the fonctions that contains the code for each case.
It will be called (max 1 time per strings) if the string contains a matching substring.
What do you mean by "I don't feel this is the correct way to do this" ? Are you not getting the result you expect ? Is it too slow ?
Maybe, you can organize your data by columns instead of rows and have a more specific filters. If you are looking for speed, I'd suggest using the numpy module which has a very intersting function called select()
Scipy select example
By transforming all your rows in a numpy array, you can test several columns in one pass. This function is amazingly efficient and powerful ! Basically it's used like this:
import numpy as np
a = array(...)
conds = [a < 10, a % 3 == 0, a > 25]
actions = [a + 100, a / 3, a * 10]
result = np.select(conds, actions, default = 0)
All values in a will be transformed as follow:
A value 100 will be added to any value of a which is smaller than 10
Any value in a which is a multiple of 3, will be divided by 3
Any value above 25 will be multiplied by 10
Any other value, not matching the previous conditions, will be set to 0
Bot conds and actions are lists, and must have the same number of arguments. The first element in conds has its action set as the first element of actions.
It could be used to determine the index in a vector for a particular value (eventhough this should be done using the nonzero() numpy function).
a = array(....)
conds = [a <= target, a > target]
actions = [1, 0]
index = select(conds, actions).sum()
This is probably a stupid way of getting an index, but it demonstrates how we can use select()... and it works :-)