This question already has answers here:
How do I make a flat list out of a list of lists?
(34 answers)
Closed 6 years ago.
Is there a simple way to flatten a list of iterables with a list comprehension, or failing that, what would you all consider to be the best way to flatten a shallow list like this, balancing performance and readability?
I tried to flatten such a list with a nested list comprehension, like this:
[image for image in menuitem for menuitem in list_of_menuitems]
But I get in trouble of the NameError variety there, because the name 'menuitem' is not defined. After googling and looking around on Stack Overflow, I got the desired results with a reduce statement:
reduce(list.__add__, map(lambda x: list(x), list_of_menuitems))
But this method is fairly unreadable because I need that list(x) call there because x is a Django QuerySet object.
Conclusion:
Thanks to everyone who contributed to this question. Here is a summary of what I learned. I'm also making this a community wiki in case others want to add to or correct these observations.
My original reduce statement is redundant and is better written this way:
>>> reduce(list.__add__, (list(mi) for mi in list_of_menuitems))
This is the correct syntax for a nested list comprehension (Brilliant summary dF!):
>>> [image for mi in list_of_menuitems for image in mi]
But neither of these methods are as efficient as using itertools.chain:
>>> from itertools import chain
>>> list(chain(*list_of_menuitems))
And as #cdleary notes, it's probably better style to avoid * operator magic by using chain.from_iterable like so:
>>> chain = itertools.chain.from_iterable([[1,2],[3],[5,89],[],[6]])
>>> print(list(chain))
>>> [1, 2, 3, 5, 89, 6]
If you're just looking to iterate over a flattened version of the data structure and don't need an indexable sequence, consider itertools.chain and company.
>>> list_of_menuitems = [['image00', 'image01'], ['image10'], []]
>>> import itertools
>>> chain = itertools.chain(*list_of_menuitems)
>>> print(list(chain))
['image00', 'image01', 'image10']
It will work on anything that's iterable, which should include Django's iterable QuerySets, which it appears that you're using in the question.
Edit: This is probably as good as a reduce anyway, because reduce will have the same overhead copying the items into the list that's being extended. chain will only incur this (same) overhead if you run list(chain) at the end.
Meta-Edit: Actually, it's less overhead than the question's proposed solution, because you throw away the temporary lists you create when you extend the original with the temporary.
Edit: As J.F. Sebastian says itertools.chain.from_iterable avoids the unpacking and you should use that to avoid * magic, but the timeit app shows negligible performance difference.
You almost have it! The way to do nested list comprehensions is to put the for statements in the same order as they would go in regular nested for statements.
Thus, this
for inner_list in outer_list:
for item in inner_list:
...
corresponds to
[... for inner_list in outer_list for item in inner_list]
So you want
[image for menuitem in list_of_menuitems for image in menuitem]
#S.Lott: You inspired me to write a timeit app.
I figured it would also vary based on the number of partitions (number of iterators within the container list) -- your comment didn't mention how many partitions there were of the thirty items. This plot is flattening a thousand items in every run, with varying number of partitions. The items are evenly distributed among the partitions.
Code (Python 2.6):
#!/usr/bin/env python2.6
"""Usage: %prog item_count"""
from __future__ import print_function
import collections
import itertools
import operator
from timeit import Timer
import sys
import matplotlib.pyplot as pyplot
def itertools_flatten(iter_lst):
return list(itertools.chain(*iter_lst))
def itertools_iterable_flatten(iter_iter):
return list(itertools.chain.from_iterable(iter_iter))
def reduce_flatten(iter_lst):
return reduce(operator.add, map(list, iter_lst))
def reduce_lambda_flatten(iter_lst):
return reduce(operator.add, map(lambda x: list(x), [i for i in iter_lst]))
def comprehension_flatten(iter_lst):
return list(item for iter_ in iter_lst for item in iter_)
METHODS = ['itertools', 'itertools_iterable', 'reduce', 'reduce_lambda',
'comprehension']
def _time_test_assert(iter_lst):
"""Make sure all methods produce an equivalent value.
:raise AssertionError: On any non-equivalent value."""
callables = (globals()[method + '_flatten'] for method in METHODS)
results = [callable(iter_lst) for callable in callables]
if not all(result == results[0] for result in results[1:]):
raise AssertionError
def time_test(partition_count, item_count_per_partition, test_count=10000):
"""Run flatten methods on a list of :param:`partition_count` iterables.
Normalize results over :param:`test_count` runs.
:return: Mapping from method to (normalized) microseconds per pass.
"""
iter_lst = [[dict()] * item_count_per_partition] * partition_count
print('Partition count: ', partition_count)
print('Items per partition:', item_count_per_partition)
_time_test_assert(iter_lst)
test_str = 'flatten(%r)' % iter_lst
result_by_method = {}
for method in METHODS:
setup_str = 'from test import %s_flatten as flatten' % method
t = Timer(test_str, setup_str)
per_pass = test_count * t.timeit(number=test_count) / test_count
print('%20s: %.2f usec/pass' % (method, per_pass))
result_by_method[method] = per_pass
return result_by_method
if __name__ == '__main__':
if len(sys.argv) != 2:
raise ValueError('Need a number of items to flatten')
item_count = int(sys.argv[1])
partition_counts = []
pass_times_by_method = collections.defaultdict(list)
for partition_count in xrange(1, item_count):
if item_count % partition_count != 0:
continue
items_per_partition = item_count / partition_count
result_by_method = time_test(partition_count, items_per_partition)
partition_counts.append(partition_count)
for method, result in result_by_method.iteritems():
pass_times_by_method[method].append(result)
for method, pass_times in pass_times_by_method.iteritems():
pyplot.plot(partition_counts, pass_times, label=method)
pyplot.legend()
pyplot.title('Flattening Comparison for %d Items' % item_count)
pyplot.xlabel('Number of Partitions')
pyplot.ylabel('Microseconds')
pyplot.show()
Edit: Decided to make it community wiki.
Note: METHODS should probably be accumulated with a decorator, but I figure it'd be easier for people to read this way.
sum(list_of_lists, []) would flatten it.
l = [['image00', 'image01'], ['image10'], []]
print sum(l,[]) # prints ['image00', 'image01', 'image10']
This solution works for arbitrary nesting depths - not just the "list of lists" depth that some (all?) of the other solutions are limited to:
def flatten(x):
result = []
for el in x:
if hasattr(el, "__iter__") and not isinstance(el, basestring):
result.extend(flatten(el))
else:
result.append(el)
return result
It's the recursion which allows for arbitrary depth nesting - until you hit the maximum recursion depth, of course...
In Python 2.6, using chain.from_iterable():
>>> from itertools import chain
>>> list(chain.from_iterable(mi.image_set.all() for mi in h.get_image_menu()))
It avoids creating of intermediate list.
Performance Results. Revised.
import itertools
def itertools_flatten( aList ):
return list( itertools.chain(*aList) )
from operator import add
def reduce_flatten1( aList ):
return reduce(add, map(lambda x: list(x), [mi for mi in aList]))
def reduce_flatten2( aList ):
return reduce(list.__add__, map(list, aList))
def comprehension_flatten( aList ):
return list(y for x in aList for y in x)
I flattened a 2-level list of 30 items 1000 times
itertools_flatten 0.00554
comprehension_flatten 0.00815
reduce_flatten2 0.01103
reduce_flatten1 0.01404
Reduce is always a poor choice.
There seems to be a confusion with operator.add! When you add two lists together, the correct term for that is concat, not add. operator.concat is what you need to use.
If you're thinking functional, it is as easy as this::
>>> from functools import reduce
>>> import operator
>>> list2d = ((1,2,3),(4,5,6), (7,), (8,9))
>>> reduce(operator.concat, list2d)
(1, 2, 3, 4, 5, 6, 7, 8, 9)
You see reduce respects the sequence type, so when you supply a tuple, you get back a tuple. let's try with a list::
>>> list2d = [[1,2,3],[4,5,6], [7], [8,9]]
>>> reduce(operator.concat, list2d)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
Aha, you get back a list.
How about performance::
>>> list2d = [[1,2,3],[4,5,6], [7], [8,9]]
>>> %timeit list(itertools.chain.from_iterable(list2d))
1000000 loops, best of 3: 1.36 µs per loop
from_iterable is pretty fast! But it's no comparison to reduce with concat.
>>> list2d = ((1,2,3),(4,5,6), (7,), (8,9))
>>> %timeit reduce(operator.concat, list2d)
1000000 loops, best of 3: 492 ns per loop
Here is the correct solution using list comprehensions (they're backward in the question):
>>> join = lambda it: (y for x in it for y in x)
>>> list(join([[1,2],[3,4,5],[]]))
[1, 2, 3, 4, 5]
In your case it would be
[image for menuitem in list_of_menuitems for image in menuitem.image_set.all()]
or you could use join and say
join(menuitem.image_set.all() for menuitem in list_of_menuitems)
In either case, the gotcha was the nesting of the for loops.
Off the top of my head, you can eliminate the lambda:
reduce(list.__add__, map(list, [mi.image_set.all() for mi in list_of_menuitems]))
Or even eliminate the map, since you've already got a list-comp:
reduce(list.__add__, [list(mi.image_set.all()) for mi in list_of_menuitems])
You can also just express this as a sum of lists:
sum([list(mi.image_set.all()) for mi in list_of_menuitems], [])
This version is a generator.Tweak it if you want a list.
def list_or_tuple(l):
return isinstance(l,(list,tuple))
## predicate will select the container to be flattened
## write your own as required
## this one flattens every list/tuple
def flatten(seq,predicate=list_or_tuple):
## recursive generator
for i in seq:
if predicate(seq):
for j in flatten(i):
yield j
else:
yield i
You can add a predicate ,if want to flatten those which satisfy a condition
Taken from python cookbook
If you have to flat a more complicated list with not iterable elements or with depth more than 2 you can use following function:
def flat_list(list_to_flat):
if not isinstance(list_to_flat, list):
yield list_to_flat
else:
for item in list_to_flat:
yield from flat_list(item)
It will return a generator object which you can convert to a list with list() function. Notice that yield from syntax is available starting from python3.3, but you can use explicit iteration instead.
Example:
>>> a = [1, [2, 3], [1, [2, 3, [1, [2, 3]]]]]
>>> print(list(flat_list(a)))
[1, 2, 3, 1, 2, 3, 1, 2, 3]
Here is a version working for multiple levels of list using collectons.Iterable:
import collections
def flatten(o, flatten_condition=lambda i: isinstance(i,
collections.Iterable) and not isinstance(i, str)):
result = []
for i in o:
if flatten_condition(i):
result.extend(flatten(i, flatten_condition))
else:
result.append(i)
return result
have you tried flatten?
From matplotlib.cbook.flatten(seq, scalarp=) ?
l=[[1,2,3],[4,5,6], [7], [8,9]]*33
run("list(flatten(l))")
3732 function calls (3303 primitive calls) in 0.007 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.007 0.007 <string>:1(<module>)
429 0.001 0.000 0.001 0.000 cbook.py:475(iterable)
429 0.002 0.000 0.003 0.000 cbook.py:484(is_string_like)
429 0.002 0.000 0.006 0.000 cbook.py:565(is_scalar_or_string)
727/298 0.001 0.000 0.007 0.000 cbook.py:605(flatten)
429 0.000 0.000 0.001 0.000 core.py:5641(isMaskedArray)
858 0.001 0.000 0.001 0.000 {isinstance}
429 0.000 0.000 0.000 0.000 {iter}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*66
run("list(flatten(l))")
7461 function calls (6603 primitive calls) in 0.007 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.007 0.007 <string>:1(<module>)
858 0.001 0.000 0.001 0.000 cbook.py:475(iterable)
858 0.002 0.000 0.003 0.000 cbook.py:484(is_string_like)
858 0.002 0.000 0.006 0.000 cbook.py:565(is_scalar_or_string)
1453/595 0.001 0.000 0.007 0.000 cbook.py:605(flatten)
858 0.000 0.000 0.001 0.000 core.py:5641(isMaskedArray)
1716 0.001 0.000 0.001 0.000 {isinstance}
858 0.000 0.000 0.000 0.000 {iter}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*99
run("list(flatten(l))")
11190 function calls (9903 primitive calls) in 0.010 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.010 0.010 <string>:1(<module>)
1287 0.002 0.000 0.002 0.000 cbook.py:475(iterable)
1287 0.003 0.000 0.004 0.000 cbook.py:484(is_string_like)
1287 0.002 0.000 0.009 0.000 cbook.py:565(is_scalar_or_string)
2179/892 0.001 0.000 0.010 0.000 cbook.py:605(flatten)
1287 0.001 0.000 0.001 0.000 core.py:5641(isMaskedArray)
2574 0.001 0.000 0.001 0.000 {isinstance}
1287 0.000 0.000 0.000 0.000 {iter}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*132
run("list(flatten(l))")
14919 function calls (13203 primitive calls) in 0.013 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.013 0.013 <string>:1(<module>)
1716 0.002 0.000 0.002 0.000 cbook.py:475(iterable)
1716 0.004 0.000 0.006 0.000 cbook.py:484(is_string_like)
1716 0.003 0.000 0.011 0.000 cbook.py:565(is_scalar_or_string)
2905/1189 0.002 0.000 0.013 0.000 cbook.py:605(flatten)
1716 0.001 0.000 0.001 0.000 core.py:5641(isMaskedArray)
3432 0.001 0.000 0.001 0.000 {isinstance}
1716 0.001 0.000 0.001 0.000 {iter}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'
UPDATE
Which gave me another idea:
l=[[1,2,3],[4,5,6], [7], [8,9]]*33
run("flattenlist(l)")
564 function calls (432 primitive calls) in 0.000 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
133/1 0.000 0.000 0.000 0.000 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
429 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*66
run("flattenlist(l)")
1125 function calls (861 primitive calls) in 0.001 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
265/1 0.001 0.000 0.001 0.001 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.001 0.001 <string>:1(<module>)
858 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*99
run("flattenlist(l)")
1686 function calls (1290 primitive calls) in 0.001 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
397/1 0.001 0.000 0.001 0.001 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.001 0.001 <string>:1(<module>)
1287 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*132
run("flattenlist(l)")
2247 function calls (1719 primitive calls) in 0.002 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
529/1 0.001 0.000 0.002 0.002 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.002 0.002 <string>:1(<module>)
1716 0.001 0.000 0.001 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*1320
run("flattenlist(l)")
22443 function calls (17163 primitive calls) in 0.016 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
5281/1 0.011 0.000 0.016 0.016 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.016 0.016 <string>:1(<module>)
17160 0.005 0.000 0.005 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
So to test how effective it is when recursive gets deeper: How much deeper?
l=[[1,2,3],[4,5,6], [7], [8,9]]*1320
new=[l]*33
run("flattenlist(new)")
740589 function calls (566316 primitive calls) in 0.418 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
174274/1 0.281 0.000 0.417 0.417 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.001 0.001 0.418 0.418 <string>:1(<module>)
566313 0.136 0.000 0.136 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
new=[l]*66
run("flattenlist(new)")
1481175 function calls (1132629 primitive calls) in 0.809 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
348547/1 0.542 0.000 0.807 0.807 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.002 0.002 0.809 0.809 <string>:1(<module>)
1132626 0.266 0.000 0.266 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
new=[l]*99
run("flattenlist(new)")
2221761 function calls (1698942 primitive calls) in 1.211 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
522820/1 0.815 0.000 1.208 1.208 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.002 0.002 1.211 1.211 <string>:1(<module>)
1698939 0.393 0.000 0.393 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
new=[l]*132
run("flattenlist(new)")
2962347 function calls (2265255 primitive calls) in 1.630 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
697093/1 1.091 0.000 1.627 1.627 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.003 0.003 1.630 1.630 <string>:1(<module>)
2265252 0.536 0.000 0.536 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
new=[l]*1320
run("flattenlist(new)")
29623443 function calls (22652523 primitive calls) in 16.103 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
6970921/1 10.842 0.000 16.069 16.069 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.034 0.034 16.103 16.103 <string>:1(<module>)
22652520 5.227 0.000 5.227 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
I will bet "flattenlist" I am going to use this rather than matploblib for a long long time unless I want a yield generator and fast result as "flatten" uses in matploblib.cbook
This, is fast.
And here is the code
:
typ=(list,tuple)
def flattenlist(d):
thelist = []
for x in d:
if not isinstance(x,typ):
thelist += [x]
else:
thelist += flattenlist(x)
return thelist
From my experience, the most efficient way to flatten a list of lists is:
flat_list = []
map(flat_list.extend, list_of_list)
Some timeit comparisons with the other proposed methods:
list_of_list = [range(10)]*1000
%timeit flat_list=[]; map(flat_list.extend, list_of_list)
#10000 loops, best of 3: 119 µs per loop
%timeit flat_list=list(itertools.chain.from_iterable(list_of_list))
#1000 loops, best of 3: 210 µs per loop
%timeit flat_list=[i for sublist in list_of_list for i in sublist]
#1000 loops, best of 3: 525 µs per loop
%timeit flat_list=reduce(list.__add__,list_of_list)
#100 loops, best of 3: 18.1 ms per loop
Now, the efficiency gain appears better when processing longer sublists:
list_of_list = [range(1000)]*10
%timeit flat_list=[]; map(flat_list.extend, list_of_list)
#10000 loops, best of 3: 60.7 µs per loop
%timeit flat_list=list(itertools.chain.from_iterable(list_of_list))
#10000 loops, best of 3: 176 µs per loop
And this methods also works with any iterative object:
class SquaredRange(object):
def __init__(self, n):
self.range = range(n)
def __iter__(self):
for i in self.range:
yield i**2
list_of_list = [SquaredRange(5)]*3
flat_list = []
map(flat_list.extend, list_of_list)
print flat_list
#[0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16]
def is_iterable(item):
return isinstance(item, list) or isinstance(item, tuple)
def flatten(items):
for i in items:
if is_iterable(item):
for m in flatten(i):
yield m
else:
yield i
Test:
print list(flatten2([1.0, 2, 'a', (4,), ((6,), (8,)), (((8,),(9,)), ((12,),(10)))]))
What about:
from operator import add
reduce(add, map(lambda x: list(x.image_set.all()), [mi for mi in list_of_menuitems]))
But, Guido is recommending against performing too much in a single line of code since it reduces readability. There is minimal, if any, performance gain by performing what you want in a single line vs. multiple lines.
pylab provides a flatten:
link to numpy flatten
If you're looking for a built-in, simple, one-liner you can use:
a = [[1, 2, 3], [4, 5, 6]
b = [i[x] for i in a for x in range(len(i))]
print b
returns
[1, 2, 3, 4, 5, 6]
If each item in the list is a string (and any strings inside those strings use " " rather than ' '), you can use regular expressions (re module)
>>> flattener = re.compile("\'.*?\'")
>>> flattener
<_sre.SRE_Pattern object at 0x10d439ca8>
>>> stred = str(in_list)
>>> outed = flattener.findall(stred)
The above code converts in_list into a string, uses the regex to find all the substrings within quotes (i.e. each item of the list) and spits them out as a list.
A simple alternative is to use numpy's concatenate but it converts the contents to float:
import numpy as np
print np.concatenate([[1,2],[3],[5,89],[],[6]])
# array([ 1., 2., 3., 5., 89., 6.])
print list(np.concatenate([[1,2],[3],[5,89],[],[6]]))
# [ 1., 2., 3., 5., 89., 6.]
The easiest way to achieve this in either Python 2 or 3 is to use the morph library using pip install morph.
The code is:
import morph
list = [[1,2],[3],[5,89],[],[6]]
flattened_list = morph.flatten(list) # returns [1, 2, 3, 5, 89, 6]
In Python 3.4 you will be able to do:
[*innerlist for innerlist in outer_list]
Related
I tried to repeat the functionality of IPython %time, but for some strange reason, results of testing of some function are horrific.
IPython:
In [11]: from random import shuffle
....: import numpy as np
....: def numpy_seq_el_rank(seq, el):
....: return sum(seq < el)
....:
....: seq = np.array(xrange(10000))
....: shuffle(seq)
....:
In [12]: %timeit numpy_seq_el_rank(seq, 10000//2)
10000 loops, best of 3: 46.1 µs per loop
Python:
from timeit import timeit, repeat
def my_timeit(code, setup, rep, loops):
result = repeat(code, setup=setup, repeat=rep, number=loops)
return '%d loops, best of %d: %0.9f sec per loop'%(loops, rep, min(result))
np_setup = '''
from random import shuffle
import numpy as np
def numpy_seq_el_rank(seq, el):
return sum(seq < el)
seq = np.array(xrange(10000))
shuffle(seq)
'''
np_code = 'numpy_seq_el_rank(seq, 10000//2)'
print 'Numpy seq_el_rank:\n\t%s'%my_timeit(code=np_code, setup=np_setup, rep=3, loops=100)
And its output:
Numpy seq_el_rank:
100 loops, best of 3: 1.655324947 sec per loop
As you can see, in python i made 100 loops instead 10000 (and get 35000 times slower result) as in ipython, because it takes really long time. Can anybody explain why result in python is so slow?
UPD:
Here is cProfile.run('my_timeit(code=np_code, setup=np_setup, rep=3, loops=10000)') output:
30650 function calls in 4.987 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 4.987 4.987 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 <timeit-src>:2(<module>)
3 0.001 0.000 4.985 1.662 <timeit-src>:2(inner)
300 0.006 0.000 4.961 0.017 <timeit-src>:7(numpy_seq_el_rank)
1 0.000 0.000 4.987 4.987 Lab10.py:47(my_timeit)
3 0.019 0.006 0.021 0.007 random.py:277(shuffle)
1 0.000 0.000 0.002 0.002 timeit.py:121(__init__)
3 0.000 0.000 4.985 1.662 timeit.py:185(timeit)
1 0.000 0.000 4.985 4.985 timeit.py:208(repeat)
1 0.000 0.000 4.987 4.987 timeit.py:239(repeat)
2 0.000 0.000 0.000 0.000 timeit.py:90(reindent)
3 0.002 0.001 0.002 0.001 {compile}
3 0.000 0.000 0.000 0.000 {gc.disable}
3 0.000 0.000 0.000 0.000 {gc.enable}
3 0.000 0.000 0.000 0.000 {gc.isenabled}
1 0.000 0.000 0.000 0.000 {globals}
3 0.000 0.000 0.000 0.000 {isinstance}
3 0.000 0.000 0.000 0.000 {len}
3 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
29997 0.001 0.000 0.001 0.000 {method 'random' of '_random.Random' objects}
2 0.000 0.000 0.000 0.000 {method 'replace' of 'str' objects}
1 0.000 0.000 0.000 0.000 {min}
3 0.003 0.001 0.003 0.001 {numpy.core.multiarray.array}
1 0.000 0.000 0.000 0.000 {range}
300 4.955 0.017 4.955 0.017 {sum}
6 0.000 0.000 0.000 0.000 {time.clock}
Well, one issue is that you're misreading the results. ipython is telling you how long it took each of the 10,000 iterations for the set of 10,000 iterations with the lowest total time. The timeit.repeat module is reporting how long the whole round of 100 iterations took (again, for the shortest of three). So the real discrepancy is 46.1 µs per loop (ipython) vs. 16.5 ms per loop (python), still a factor of ~350x difference, but not 35,000x.
You didn't show profiling results for ipython. Is it possible that in your ipython session, you did either from numpy import sum or from numpy import *? If so, you'd have been timing the numpy.sum (which is optimized for numpy arrays and would run several orders of magnitude faster), while your python code (which isolated the globals in a way that ipython does not) ran the normal sum (that has to convert all the values to Python ints and sum them).
If you check your profiling output, virtually all of your work is being done in sum; if that part of your code was sped up by several orders of magnitude, the total time would reduce similarly. That would explain the "real" discrepancy; in the test case linked above, it was a 40x difference, and that was for a smaller array (the smaller the array, the less numpy can "show off") with more complex values (vs. summing 0s and 1s here I believe).
The remainder (if any) is probably an issue of how the code is being evaled slightly differently, or possibly weirdness with the random shuffle (for consistent tests, you'd want to seed random with a consistent seed to make the "randomness" repeatable) but I doubt that's a difference of more than a few percent.
There could be any number of reasons this code is running slower in one implementation of python than another. One may be optimized differently than another, one may pre-compile certain parts while the other is fully interpreted. The only way to figure out why is to profile your code.
https://docs.python.org/2/library/profile.html
import cProfile
cProfile.run('repeat(code, setup=setup, repeat=rep, number=loops)')
Will give a result similar to
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 <stdin>:1(testing)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.000 0.000 0.000 0.000 {method 'upper' of 'str' objects}
Which shows you when function calls were made, how many times they were made and how long they took.
I have a set of one-dimensional numpy arrays with monthly data. I need to aggregate them by quarter, creating a new array where the first item is the sum of the first 3 items of the old array, etc.
I am using this function, with x =3 :
def sumeveryxrows(myarray,x):
return([sum(myarray[x*n:x*n+x]) for n in range( int(len(myarray)/x))])
It works, but can you think of a faster way? I profiled it, and 97% of the time is spent doing __getitem__
You could use reshape (assuming your array has a size multiple of x):
sumeveryxrows = lambda myarray, x: myarray.reshape((myarray.shape[0] / x, x)).sum(1)
The above takes less than .3s on an array with 30000000 values:
>>> a = numpy.random.rand(30000000)
>>> cProfile.run('sumeveryxrows(a, 3)')
8 function calls in 0.263 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.258 0.258 <stdin>:1(<lambda>)
1 0.005 0.005 0.263 0.263 <string>:1(<module>)
1 0.000 0.000 0.258 0.258 _methods.py:31(_sum)
1 0.000 0.000 0.263 0.263 {built-in method exec}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.258 0.258 0.258 0.258 {method 'reduce' of 'numpy.ufunc' objects}
1 0.000 0.000 0.000 0.000 {method 'reshape' of 'numpy.ndarray' objects}
1 0.000 0.000 0.258 0.258 {method 'sum' of 'numpy.ndarray' objects}
another solution may be
def sumeveryxrows(myarray, x):
return [sum(myarray[n: n+x]) for n in xrange(0, len(myarray), x)]
This is for python 2.x. If your using python 3 replace xrange with range.
xrange uses an iterator rather than generating an entire list.
You can also specify a step. This removes the need to use multiplication.
Then of course there is always the non-python way to do it (specifically for 3).
def sumevery3rows(a):
i = 0
ret = []
stop = len(a) - 2
while i < stop:
ret.append(a[i] + a[i+1] + a[i+2])
i += 3
if i != len(a):
ret.append(sum(a[i:len(a)]))
return ret
I don't know how well this performs, and an implementation for variable x would probably make any benefits of this solution non-existent.
Using cProfile:
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 17.834 17.834 <string>:1(<module>)
1 0.007 0.007 17.834 17.834 basher.py:5551(_refresh)
1 0.000 0.000 10.522 10.522 basher.py:1826(RefreshUI)
4 0.024 0.006 10.517 2.629 basher.py:961(PopulateItems)
211 1.494 0.007 7.488 0.035 basher.py:1849(PopulateItem)
231 0.074 0.000 6.734 0.029 {method 'sort' of 'list' objects}
215 0.002 0.000 6.688 0.031 bosh.py:4764(getOrdered)
1910 3.039 0.002 6.648 0.003 bosh.py:4770(<lambda>)
253 0.178 0.001 5.600 0.022 bosh.py:3325(getStatus)
1 0.000 0.000 5.508 5.508 bosh.py:4327(refresh)
1911 3.051 0.002 3.330 0.002 {method 'index' of 'list' objects}
The 1910 3.039 0.002 6.648 0.003 bosh.py:4770(<lambda>) line puzzles me. At bosh.py:4770 I have modNames.sort(key=lambda a: (a in data) and data.index(a)), data and modNames being lists. Notice 1911 3.051 0.002 3.330 0.002 {method 'index' of 'list' objects} which seems to come from this line.
So why is this so slow ? Any way I can rewrite this sort() so it performs faster ?
EDIT: a final ingredient I was missing to grok this lambda:
>>> True and 3
3
As YardGlassOfCode stated, it's not the lambda per se which is slow, it is the O(n) operation inside the lambda which is slow. Both a in data and data.index(a) are O(n) operations, where n is the length of data. And as an additional affront to efficiency, the call to index repeats much of the work done in a in data too. If the items in data are hashable, then you can speed this up considerably by first preparing a dict:
weight = dict(zip(data, range(len(data))))
modNames.sort(key=weight.get) # Python2, or
modNames.sort(key=lambda a: weight.get(a, -1)) # works in Python3
This is much quicker because each dict lookup is a O(1) operation.
Note that modNames.sort(key=weight.get) relies on None comparing as less than integers:
In [39]: None < 0
Out[39]: True
In Python3, None < 0 raises an TypeError. So lambda a: weight.get(a, -1) is used to return -1 when a is not in weight.
I need to store an array of size n with values of cos(x) and sin(x), lets say
array[[cos(0.9), sin(0.9)],
[cos(0.35),sin(0.35)],
...]
The arguments of each pair of cos and sin is given by random choice. My code as far as I have been improving it is like this:
def randvector():
""" Generates random direction for n junctions in the unitary circle """
x = np.empty([n,2])
theta = 2 * np.pi * np.random.random_sample((n))
x[:,0] = np.cos(theta)
x[:,1] = np.sin(theta)
return x
Is there a shorter way or more effective way to achieve this?
Your code is effective enough. And justhalf's answer is not bad I think.
For effective and short, How about this code?
def randvector(n):
theta = 2 * np.pi * np.random.random_sample((n))
return np.vstack((np.cos(theta), np.sin(theta))).T
UPDATE
Append cProfile result.
justhalf's
5 function calls in 4.707 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 4.707 4.707 <string>:1(<module>)
1 2.452 2.452 4.706 4.706 test.py:6(randvector1)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.010 0.010 0.010 0.010 {method 'random_sample' of 'mtrand.RandomState' objects}
1 2.244 2.244 2.244 2.244 {numpy.core.multiarray.array}
OP's
5 function calls in 0.088 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.088 0.088 <string>:1(<module>)
1 0.079 0.079 0.088 0.088 test.py:9(randvector2)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.009 0.009 0.009 0.009 {method 'random_sample' of 'mtrand.RandomState' objects}
1 0.000 0.000 0.000 0.000 {numpy.core.multiarray.empty}
mine
21 function calls in 0.087 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.087 0.087 <string>:1(<module>)
2 0.000 0.000 0.000 0.000 numeric.py:322(asanyarray)
1 0.000 0.000 0.002 0.002 shape_base.py:177(vstack)
2 0.000 0.000 0.000 0.000 shape_base.py:58(atleast_2d)
1 0.076 0.076 0.087 0.087 test.py:17(randvector3)
6 0.000 0.000 0.000 0.000 {len}
1 0.000 0.000 0.000 0.000 {map}
2 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.009 0.009 0.009 0.009 {method 'random_sample' of 'mtrand.RandomState' objects}
2 0.000 0.000 0.000 0.000 {numpy.core.multiarray.array}
1 0.002 0.002 0.002 0.002 {numpy.core.multiarray.concatenate}
Your code already looks fine to me, but here are a few more thoughts.
Here's a one-liner.
It is marginally slower than your version.
def randvector2(n):
return np.exp((2.0j * np.pi) * np.random.rand(n, 1)).view(dtype=np.float64)
I get these timings for n=10000
Yours:
1000 loops, best of 3: 716 µs per loop
my shortened version:
1000 loops, best of 3: 834 µs per loop
Now if speed is a concern, your approach is really very good.
Another answer shows how to use hstack.
That works well.
Here is another version that is just a little different from yours and is marginally faster.
def randvector3(n):
x = np.empty([n,2])
theta = (2 * np.pi) * np.random.rand(n)
np.cos(theta, out=x[:,0])
np.sin(theta, out=x[:,1])
return x
This gives me the timing:
1000 loops, best of 3: 698 µs per loop
If you have access to numexpr, the following is faster (at least on my machine).
import numexpr as ne
def randvector3(n):
sample = np.random.rand(n, 1)
c = 2.0j * np.pi
return ne.evaluate('exp(c * sample)').view(dtype=np.float64)
This gives me the timing:
1000 loops, best of 3: 366 µs per loop
Honestly though, if I were writing this for anything that wasn't extremely performance intensive, I'd do pretty much the same thing you did.
It makes your intent pretty clear to the reader.
The version with hstack works well too.
Another quick note:
When I run timings for n=10, my one-line version is fastest.
When I do n=10000000, the fast pure-numpy version is fastest.
You can use list comprehension to make the code a little bit shorter:
def randvector(n):
return np.array([(np.cos(theta), np.sin(theta)) for theta in 2*np.pi*np.random.random_sample(n)])
But, as IanH mentioned in comments, this is slower. In fact, through my experiment, this is 5x slower, because this doesn't take advantage of NumPy vectorization.
So to answer your question:
Is there a shorter way?
Yes, which is what I give in this answer, although it's only shorter by a few characters (but it saves many lines!)
Is there a more effective (I believe you meant "efficient") way?
I believe the answer to this question, without overly complicating the code, is no, since numpy already optimizes the vectorization (assigning of the cos and sin values to the array)
Timing
Comparing various methods:
OP's randvector: 0.002131 s
My randvector: 0.013218 s
mskimm's randvector: 0.003175 s
So it seems that mskimm's randvector looks good in terms of code length end efficiency =D
Given a dictionary of lists, such as
d = {'1':[11,12], '2':[21,21]}
Which is more pythonic or otherwise preferable:
for k in d:
for x in d[k]:
# whatever with k, x
or
for k, dk in d.iteritems():
for x in dk:
# whatever with k, x
or is there something else to consider?
EDIT, in case a list might be useful (e.g., standard dicts don't preserve order), this might be appropriate, although it's much slower.
d2 = d.items()
for k in d2:
for x in d2[1]:
# whatever with k, x
Here's a speed test, why not:
import random
numEntries = 1000000
d = dict(zip(range(numEntries), [random.sample(range(0, 100), 2) for x in range(numEntries)]))
def m1(d):
for k in d:
for x in d[k]:
pass
def m2(d):
for k, dk in d.iteritems():
for x in dk:
pass
import cProfile
cProfile.run('m1(d)')
print
cProfile.run('m2(d)')
# Ran 3 trials:
# m1: 0.205, 0.194, 0.193: average 0.197 s
# m2: 0.176, 0.166, 0.173: average 0.172 s
# Method 1 takes 15% more time than method 2
cProfile example output:
3 function calls in 0.194 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.194 0.194 <string>:1(<module>)
1 0.194 0.194 0.194 0.194 stackoverflow.py:7(m1)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
4 function calls in 0.179 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.179 0.179 <string>:1(<module>)
1 0.179 0.179 0.179 0.179 stackoverflow.py:12(m2)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.000 0.000 0.000 0.000 {method 'iteritems' of 'dict' objects}
I considered a couple methods:
import itertools
COLORED_THINGS = {'blue': ['sky', 'jeans', 'powerline insert mode'],
'yellow': ['sun', 'banana', 'phone book/monitor stand'],
'red': ['blood', 'tomato', 'test failure']}
def forloops():
""" Nested for loops. """
for color, things in COLORED_THINGS.items():
for thing in things:
pass
def iterator():
""" Use itertools and list comprehension to construct iterator. """
for color, thing in (
itertools.chain.from_iterable(
[itertools.product((k,), v) for k, v in COLORED_THINGS.items()])):
pass
def iterator_gen():
""" Use itertools and generator to construct iterator. """
for color, thing in (
itertools.chain.from_iterable(
(itertools.product((k,), v) for k, v in COLORED_THINGS.items()))):
pass
I used ipython and memory_profiler to test performance:
>>> %timeit forloops()
1000000 loops, best of 3: 1.31 µs per loop
>>> %timeit iterator()
100000 loops, best of 3: 3.58 µs per loop
>>> %timeit iterator_gen()
100000 loops, best of 3: 3.91 µs per loop
>>> %memit -r 1000 forloops()
peak memory: 35.79 MiB, increment: 0.02 MiB
>>> %memit -r 1000 iterator()
peak memory: 35.79 MiB, increment: 0.00 MiB
>>> %memit -r 1000 iterator_gen()
peak memory: 35.79 MiB, increment: 0.00 MiB
As you can see, the method had no observable impact on peak memory usage, but nested for loops were unbeatable for speed (not to mention readability).
Here's the list comprehension approach. Nested...
r = [[i for i in d[x]] for x in d.keys()]
print r
[[11, 12], [21, 21]]
My results from Brionius code:
3 function calls in 0.173 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.173 0.173 <string>:1(<module>)
1 0.173 0.173 0.173 0.173 speed.py:5(m1)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof
iler' objects}
4 function calls in 0.185 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.185 0.185 <string>:1(<module>)
1 0.185 0.185 0.185 0.185 speed.py:10(m2)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof
iler' objects}
1 0.000 0.000 0.000 0.000 {method 'iteritems' of 'dict' obje
cts}