Why does "**" bind more tightly than negation? - python

I was just bitten by the following scenario:
>>> -1 ** 2
-1
Now, digging through the Python docs, it's clear that this is intended behavior, but why? I don't work with any other languages with power as a builtin operator, but not having unary negation bind as tightly as possible seems dangerously counter-intuitive to me.
Is there a reason it was done this way? Do other languages with power operators behave similarly?

That behaviour is the same as in math formulas, so I am not sure what the problem is, or why it is counter-intuitive. Can you explain where have you seen something different? "**" always bind more than "-": -x^2 is not the same as (-x)^2
Just use (-1) ** 2, exactly as you'd do in math.

Short answer: it's the standard way precedence works in math.
Let's say I want to evaluate the polynomial 3x3 - x2 + 5.
def polynomial(x):
return 3*x**3 - x**2 + 5
It looks better than...
def polynomial
return 3*x**3 - (x**2) + 5
And the first way is the way mathematicians do it. Other languages with exponentiation work the same way. Note that the negation operator also binds more loosely than multiplication, so
-x*y === -(x*y)
Which is also the way they do it in math.

If I had to guess, it would be because having an exponentiation operator allows programmers to easily raise numbers to fractional powers. Negative numbers raised to fractional powers end up with an imaginary component (usually), so that can be avoided by binding ** more tightly than unary -. Most languages don't like imaginary numbers.
Ultimately, of course, it's just a convention - and to make your code readable by yourself and others down the line, you'll probably want to explicitly group your (-1) so no one else gets caught by the same trap :) Good luck!

It seems intuitive to me.
Fist, because it's consistent with mathematical notaiton: -2^2 = -4.
Second, the operator ** was widely introduced by FORTRAN long time ago. In FORTRAN, -2**2 is -4, as well.

Ocaml doesn't do the same
# -12.0**2.0
;;
- : float = 144.
That's kind of weird...
# -12.0**0.5;;
- : float = nan
Look at that link though...
order of operations

Related

Why does integer division round down in many scripting languages?

In the languages I have tested, - (x div y ) is not equal to -x div y; I have tested // in Python, / in Ruby, div in Perl 6; C has a similar behavior.
That behavior is usually according to spec, since div is usually defined as the rounding down of the result of the division, however it does not make a lot of sense from the arithmetic point of view, since it makes div behave in a different way depending on the sign, and it causes confusion such as this post on how it is done in Python.
Is there some specific rationale behind this design decision, or is just div defined that way from scratch? Apparently Guido van Rossum uses a coherency argument in a blog post that explains how it is done in Python, but you can have coherency also if you choose to round up.
(Inspired by this question by PMurias in the #perl6 IRC channel)
Ideally, we would like to have two operations div and mod, satisfying, for each b>0:
(a div b) * b + (a mod b) = a
0 <= (a mod b) < b
(-a) div b = -(a div b)
This is, however, a mathematical impossibility. If all the above were true, we would have
1 div 2 = 0
1 mod 2 = 1
since this is the unique integer solution to (1) and (2). Hence, we would also have, by (3),
0 = -0 = -(1 div 2) = (-1) div 2
which, by (1), implies
-1 = ((-1) div 2) * 2 + ((-1) mod 2) = 0 * 2 + ((-1) mod 2) = (-1) mod 2
making (-1) mod 2 < 0 which contradicts (2).
Hence, we need to give up some property among (1), (2), and (3).
Some programming languages give up (3), and make div round down (Python, Ruby).
In some (rare) cases the language offers multiple division operators. For instance, in Haskell we have div,mod satisfying only (1) and (2), similarly to Python, and we also have quot,rem satisfying only (1) and (3). The latter pair of operators rounds division towards zero, at the price of returning negative remainders, e.g., we have (-1) `quot` 2 = 0 and (-1) `rem` 2 = (-1).
C# also gives up (2), and allows % to return a negative remainder. Coherently, integer division rounds towards zero. Java, Scala, Pascal, and C, starting from C99, also adopt this strategy.
Floating-point operations are defined by IEEE754 with numeric applications in mind and, by default, round to the nearest representable value in a very strictly-defined manner.
Integer operations in computers are not defined by general international standards. The operations granted by languages (especially those of the C family) tend to follow whatever the underlying computer provides. Some languages define certain operations more robustly than others, but to avoid excessively difficult or slow implementations on the available (and popular) computers of their time, will choose a definition that follows its behaviour quite closely.
For this reason, integer operations tend to wrap around on overflow (for addition, multiplication, and shifting-left), and round towards negative infinity when producing an inexact result (for division, and shifting-right). Both of these are simple truncation at their respective end of the integer in two's-complement binary arithmetic; the simplest way to handle a corner-case.
Other answers discuss the relationship with the remainder or modulus operator that a language might provide alongside division. Unfortunately they have it backwards. Remainder depends on the definition of division, not the other way around, while modulus can be defined independently of division - if both arguments happen to be positive and division rounds down, they work out to be the same, so people rarely notice.
Most modern languages provide either a remainder operator or a modulus operator, rarely both. A library function may provide the other operation for people who care about the difference, which is that remainder retains the sign of the dividend, while modulus retains the sign of the divisor.
Because the implication of integer division is that the full answer includes a remainder.
Wikipedia has a great article on this, including history as well as theory.
As long as a language satisfies the Euclidean division property that (a/b) * b + (a%b) == a, both flooring division and truncating division are coherent and arithmetically sensible.
Of course people like to argue that one is obviously correct and the other is obviously wrong, but it has more the character of a holy war than a sensible discussion, and it usually has more to do with the choice of their early preferred language than anything else. They also often tend to argue primarily for their chosen %, even though it probably makes more sense to choose / first and then just pick the % that matches.
Flooring (like Python):
No less an authority than Donald Knuth suggests it.
% following the sign of the divisor is apparently what about 70% of all students guess
The operator is usually read as mod or modulo rather than remainder.
"C does it"—which isn't even true.1
Truncating (like C++):
Makes integer division more consistent with IEEE float division (in default rounding mode).
More CPUs implement it. (May not be true at different times in history.)
The operator is read modulo rather than remainder (even though this actually argues against their point).
The division property conceptually is more about remainder than modulus.
The operator is read mod rather than modulo, so it should follow Fortran's distinction. (This may sound silly, but may have been the clincher for C99. See this thread.)
"Euclidean" (like Pascal—/ floors or truncates depending on signs, so % is never negative):
Niklaus Wirth argued that nobody is ever surprised by positive mod.
Raymond T. Boute later argued that you can't implement Euclidean division naively with either of the other rules.
A number of languages provide both. Typically—as in Ada, Modula-2, some Lisps, Haskell, and Julia—they use names related to mod for the Python-style operator and rem for the C++-style operator. But not always—Fortran, for example, calls the same things modulo and mod (as mentioned above for C99).
We don't know why Python, Tcl, Perl, and the other influential scripting languages mostly chose flooring. As noted in the question, Guido van Rossum's answer only explains why he had to choose one of the three consistent answers, not why he picked the one he did.
However, I suspect the influence of C was key. Most scripting languages are (at least initially) implemented in C, and borrow their operator inventory from C. C89's implementation-defined % is obviously broken, and not suitable for a "friendly" language like Tcl or Python. And C calls the operator "mod". So they go with modulus, not remainder.
1. Despite what the question says—and many people using it as an argument—C actually doesn't have similar behavior to Python and friends. C99 requires truncating division, not flooring. C89 allowed either, and also allowed either version of mod, so there's no guarantee of the division property, and no way to write portable code doing signed integer division. That's just broken.
As Paula said, it is because of the remainder.
The algorithm is founded on Euclidean division.
In Ruby, you can write this rebuilding the dividend with consistency:
puts (10/3)*3 + 10%3
#=> 10
It works the same in real life. 10 apples and 3 people. Ok you can cut one apple in three, but going outside the set integers.
With negative numbers the consistency is also kept:
puts (-10/3)*3 + -10%3 #=> -10
puts (10/(-3))*(-3) + 10%(-3) #=> 10
puts (-10/(-3))*(-3) + -10%(-3) #=> -10
The quotient is always round down (down along the negative axis) and the reminder follows:
puts (-10/3) #=> -4
puts -10%3 #=> 2
puts (10/(-3)) #=> -4
puts 10%(-3) # => -2
puts (-10/(-3)) #=> 3
puts -10%(-3) #=> -1
This answer addresses a sub-part of the question that the other (excellent) answers didn't explicitly address. You noted:
you can have coherency also if you choose to round up.
Other answers addressed the choice between rounding down (towards -∞) and truncating (rounding towards 0) but didn't compare rounding up (towards ∞).
(The accepted answer touches on performance reasons to prefer rounding down on a two's-complement machine, which would also apply in comparison to rounding up. But there are more important semantic reasons to avoid rounding up.)
This answer directly addresses why rounding up is not a great solution.
Rounding up breaks elementary-school expectations
Building on an example from a previous answer's, it's common to informally say something like this:
If I evenly divide fourteen marbles among three people, each person gets four marbles and there are two marbles left over.
Indeed, this is how many students are first taught division (before being introduced to fractions/decimals). A student might write 14 ÷ 3 = 4 remainder 2. Since this is introduced so early, we'd really like our div operator to preserve this property.
Or, put a bit more formally, of the three properties discussed in the top-voted answer, the first one ((a div b) × b + (a mod b) = a) is by far the most important.
But rounding up breaks this property. If div rounds up, then 14 div 3 returns 5. This means that the equation above simplifies to 15 + (13 mod 4) = 13 – and that's not true for any definition of mod. Similarly, the less-formal/elementary-school approach is also out of luck – or at least requires introducing negative marbles: "Each person gets 5 marbles and there are negative one marbles left over".
(Rounding to the nearest integer also breaks the property when, as in the example above, that means rounding up.)
Thus, if we want to maintain elementary expectations, we cannot round up. And with rounding up off the table, the coherency argument that you linked in the question is sufficient to justify rounding down.

ValueError: Math domain error (for a 2nd grade equation function)

I've tried to solve the problem myself but i cant. Its a function in order to solve 2nd grade equations when y=0 like 'ax2+bx+c=0'. when i execute it it says me there is math domain error. if u can help me it will be nice thx.
a=raw_input('put a number for variable a:')
b=raw_input('put a number for variable b:')
c=raw_input('put a number for variable c:')
a=float(a)
b=float(b)
c=float(c)`
import math
x=(-b+math.sqrt((b**2)-4*a*c))/2*a
print x`
x=(-b-math.sqrt((b**2)-4*a*c))/2*a`
print x
PD:im starting with python so im quite a disaster sorry.
The issue here is that the standard math library in python cannot handle complex variables. The sqrt you've got up there reflects this.
If you want to handle a function that could have complex variables (such as the one above) I would suggest using the cmath library, which has a replacement cmath.sqrt function.
You could change your above code to the following:
from cmath import sqrt
a = raw_input('put a number for variable a:')
b = raw_input('put a number for variable b:')
c = raw_input('put a number for variable c:')
a = float(a)
b = float(b)
c = float(c)`
x = (-b + sqrt((b**2) - 4 * a * c)) / 2 * a
print x`
x = (-b - sqrt((b**2) - 4 * a * c)) / 2 * a`
print x
and it should fix your problem (I also made some edits to make the code look a little more pythonic (read: pep8 compliant))
First, it's worth noting that in "2nd grade math", that equation doesn't have a solution with the values you (presumably) entered.* When you get to high school math and learn about imaginary numbers, you learn that all quadratic equations actually do have solutions, it's just that sometimes the solutions are complex numbers. And then, when you get to university, you learn that whether or not the equations have solutions depends on the domain; the function to real numbers and the function to complex numbers are different functions. So, from either a 2nd-grade perspective or a university perspective, Python is doing the right thing by raising a "math domain error".
* Actually, do you even learn about quadratic equations before middle school? That seems a bit early…
The math docs explain:
These functions cannot be used with complex numbers; use the functions of the same name from the cmath module if you require support for complex numbers. The distinction between functions which support complex numbers and those which don’t is made since most users do not want to learn quite as much mathematics as required to understand complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected complex number used as a parameter, so that the programmer can determine how and why it was generated in the first place.
But there's another reason for this: math was specifically designed to be thin wrappers around the standard C library math functions. It's part of the intended goal that you can take code written for another language that uses C's <math.h>, C++'s <cmath>, or similar functions in Perl, PHP, etc. and have it work the same way with the math module in Python.
So, if you want the complex roots, all you have to do is import cmath and use cmath.sqrt instead of math.sqrt.
As a side note: In general, the operators and other builtins are more "friendly" than the functions from these modules. However, until 3.0, the ** operator breaks this rule, so ** .5 will just raise ValueError: negative number cannot be raised to a fractional power. If you upgrade to 3.x, it will work as desired. (This change is exactly like the one with integer division giving a floating-point result, but there's no __future__ statement to enable it in 2.6-2.7 because it was deemed to be less of a visible and important change.)

not able to understand behaviour of ** operator

I have suddenly came across this, I am not able to understand why this is happening!
On python prompt,
using the ** operator on 3 onwards like below giving wrong result.
i.e.,
>>> 2**2**2
16
>>> 3**3**3
7625597484987L
>>> 4**4**4
13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096L
Then i thought i must have to use parentheses, so i used it and it is giving correct result.
>>>(3**3)**3
19683
BUT the // operator is supporting and giving correct results
in this kind of operations, that is
>>> 4//4//4
0
>>> 40//4//6
1
please help me to understand.
** is right-associative. Mathematically, this makes sense: 333 is equal to 327, not 273.
The documentation states that it is right-associative:
In an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left.
As the docs say:
Operators in the same box group left to right (except for comparisons… and exponentiation, which groups from right to left).
In other words, ** is right-associative, while // (like all other operators except comparisons) is left-associative.
Elsewhere, there's a whole section on The power operator that, after giving a rule (which isn't relevant here) about how power and unary operators interacts, clarifies that:
[I]n an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left…
This is actually the way most programming languages do it.
Exponentiation isn't written with symmetrical operator syntax in mathematics, so there's really no reason it should have the same default associativity. And right-associative exponentiation is much less useful, because (2**3)**4 is exactly the same thing as 2**(3*4), whereas there's nothing obvious that's the same thing as 2**(3**4).
Looks like the ** operator is right-associative, meaning 3**3**3 evaluates as 3**27 and 4**4**4 as 4**256.
When you do stuff like 4**4**4, you should use parentheses to make your intentions explicit. The parser will resolve the ambiguity, as #cHao indicated, but it is confusing to others. You should use (4**4)**4 or 4**(4**4). Explicit here is better than implicit, since taking powers of powers is not exactly a workaday operation we see all of the time.

Python Math module subtleties

I've been experimenting with the standard python math module and have come across some subtle difficulties. For example, I'm noticing the following behavior concerning indeterminate forms:
0**0
>>> 1
def inf():
return 1e900
# Will return inf
inf()**inf()
>>> inf
And other anomalies of the sort. I'm writing a calculator, and I'd like to have it be mathematically accurate. Is there something I can do about this? Or, is there some way to circumvent this? Thanks in advance.
There's nothing wrong with your first example. 0**0 is often defined to be 1.
The second example is all to do with precision of doubles. 1E900 exceeds the maximum positive value of a (most likely 64-bit) double. If you want doubles outside of that range, you'll have to look into libraries. Fortunately Python has one built-in: the decimal module.
For example:
from decimal import Decimal
d = Decimal('1E900')
f = d + d
print(f)
>>> 2E900
According to Wolfram (quoting Knuth) while 0**0 is indeterminate, it's sometimes given as 1. This is because holding the statement 'x**0 = 1' to be true in all cases is in some cases useful. Even more interestingly Python will consider NaN**0 to be 1 as well.
http://mathworld.wolfram.com/Power.html
In the case of infinity**infinity, you're not really dealing with the mathematical concept of infinity here (where that would be undefined), but rather a number that's too large and has overflowed. As such all that statement is saying is that a number that's huge to the power of another number that's huge is still a number that's huge.
Edit: I do not think it is possible to overload a built in type (such as float) in Python so overloading the float.__pow__(x,y) operator directly. What you could possibly do is define your own version of float.
class myfloat(float):
def __pow__(x,y):
if(x==y==0):
return 'NaN'
else:
return float.__pow__(x,y)
m = myfloat(0)
m**0
Not sure if that's exactly what you're looking for though.
Well returning NaN for 0**0 is almost always useless and lots of algorithms avoid special cases if we assume 0**0 == 1. So while it may not be mathematically perfect - we're talking about IEEE-754 here, mathematical exactness is really the least of our problems [1]
But if you want to change it, that's rather simple. The following works as expected in Python 3.2:
def my_pow(x, y):
if y == 0: return 'NaN'
return float.__pow__(float(x), y)
pow = my_pow
[1] The following code can theoretically execute the if branch with x86 CPUs (well at least in C and co):
float x = sqrt(y);
if (x != sqrt(y)) printf("Surprise, surprise!\n");

What does the ** maths operator do in Python?

What does this mean in Python:
sock.recvfrom(2**16)
I know what sock is, and I get the gist of the recvfrom function, but what the heck is 2**16? Specifically, the two asterisk/double asterisk operator?
(english keywords, because it's hard to search for this: times-times star-star asterisk-asterisk double-times double-star double-asterisk operator)
It is the power operator.
From the Python 3 docs:
The power operator has the same semantics as the built-in pow() function, when called with two arguments: it yields its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type, and the result is of that type.
It is equivalent to 216 = 65536, or pow(2, 16)
http://docs.python.org/library/operator.html#mapping-operators-to-functions
a ** b = pow(a,b)
2 raised to the 16th power
I believe that's the power operator, such that 2**5 = 32.
It is the awesome power operator which like complex numbers is another thing you wonder why more programming languages don't have.

Categories

Resources