Verifying that an object in python adheres to a specific structure - python

Is there some simple method that can check if an input object to some function adheres to a specific structure? For example, I want only a dictionary of string keys and values that are a list of integers.
One method would be to write a recursive function that you pass in the object and you iterate over it, checking at each level it is what you expect. But I feel that there should be a more elegant way to do it than this in python.

Why would you expect Python to provide an "elegant way" to check types, since the whole idea of type-checking is so utterly alien to the Pythonic way of conceiving the world and interacting with it?! Normally in Python you'd use duck typing -- so "an integer" might equally well be an int, a long, a gmpy.mpz -- types with no relation to each other except they all implement the same core signature... just as "a dict" might be any implementation of mapping, and so forth.
The new-in-2.6-and-later concept of "abstract base classes" provides a more systematic way to implement and verify duck typing, and 3.0-and-later function annotations let you interface with such a checking system (third-party, since Python adopts no such system for the foreseeable future). For example, this recipe provides a 3.0-and-later way to perform "kinda but not quite" type checking based on function annotations -- though I doubt it goes anywhere as deep as you desire, but then, it's early times for function annotations, and most of us Pythonistas feel so little craving for such checking that we're unlikely to run flat out to implement such monumental systems in lieu of actually useful code;-).

Short answer, no, you have to create your own function.
Long answer: its not pythonic to do what you're asking. There might be some special cases (e.g, marshalling a dict to xmlrpc), but by and large, assume the objects will act like what they're documented to be. If they don't, let the AttributeError bubble up. If you are ok with coercing values, then use str() and int() to convert them. They could, afterall, implement __str__, __add__, etc that makes them not descendants of int/str, but still usable.
def dict_of_string_and_ints(obj):
assert isinstance(obj, dict)
for key, value in obj.iteritems(): # py2.4
assert isinstance(key, basestring)
assert isinstance(value, list)
assert sum(isinstance(x, int) for x in value) == len(list)

Since Python emphasizes things just working, your best bet is to just assert as you go and trust the users of your library to feed you proper data. Let exceptions happen, if you must; that's on your clients for not reading your docstring.
In your case, something like this:
def myfunction(arrrrrgs):
assert issubclass(dict, type(arrrrrgs)), "Need a dictionary!"
for key in arrrrrgs:
assert type(key) is str, "Need a string!"
val = arrrrrgs[key]
assert type(val) is list, "Need a list!"
And so forth.
Really, it isn't worth the effort, and let your program blow up if you express yourself clearly in the docstring, or throw well-placed exceptions to guide the late-night debugger.

I will take a shot and propose a helper function that can do something like that for you in a more generic+elegant way:
def check_type(value, type_def):
"""
This validates an object instanct <value> against a type template <type_def>
presented as a simplified object.
E.g.
if value is list of dictionaries that have string values as key and integers
as values:
>> check_type(value, [{'':0}])
if value is list of dictionaries, no restriction on key/values
>> check_type(value, [{}])
"""
if type(value) != type(type_def):
return False
if hasattr(value, '__iter__'):
if len(type_def) == 0:
return True
type_def_val = iter(type_def).next()
for key in value:
if not check_type(key, type_def_val):
return False
if type(value) is dict:
if not check_type(value.values(), type_def.values()):
return False
return True
The comment explains a sample of usage, but you can always go pretty deep, e.g.
>>> check_type({1:['a', 'b'], 2:['c', 'd']}, {0:['']})
True
>>> check_type({1:['a', 'b'], 2:['c', 3]}, {0:['']})
False
P.S. Feel free to modify it if you want one-by-one tuple validation (e.g. validation against ([], '', {0:0}) which is not handled as it is expected now)

Related

What is the good practice to raise the Error? [duplicate]

How do I check if an object is of a given type, or if it inherits from a given type?
How do I check if the object o is of type str?
Beginners often wrongly expect the string to already be "a number" - either expecting Python 3.x input to convert type, or expecting that a string like '1' is also simultaneously an integer. This is the wrong canonical for those questions. Please carefully read the question and then use How do I check if a string represents a number (float or int)?, How can I read inputs as numbers? and/or Asking the user for input until they give a valid response as appropriate.
Use isinstance to check if o is an instance of str or any subclass of str:
if isinstance(o, str):
To check if the type of o is exactly str, excluding subclasses of str:
if type(o) is str:
See Built-in Functions in the Python Library Reference for relevant information.
Checking for strings in Python 2
For Python 2, this is a better way to check if o is a string:
if isinstance(o, basestring):
because this will also catch Unicode strings. unicode is not a subclass of str; both str and unicode are subclasses of basestring. In Python 3, basestring no longer exists since there's a strict separation of strings (str) and binary data (bytes).
Alternatively, isinstance accepts a tuple of classes. This will return True if o is an instance of any subclass of any of (str, unicode):
if isinstance(o, (str, unicode)):
The most Pythonic way to check the type of an object is... not to check it.
Since Python encourages Duck Typing, you should just try...except to use the object's methods the way you want to use them. So if your function is looking for a writable file object, don't check that it's a subclass of file, just try to use its .write() method!
Of course, sometimes these nice abstractions break down and isinstance(obj, cls) is what you need. But use sparingly.
isinstance(o, str) will return True if o is an str or is of a type that inherits from str.
type(o) is str will return True if and only if o is a str. It will return False if o is of a type that inherits from str.
After the question was asked and answered, type hints were added to Python. Type hints in Python allow types to be checked but in a very different way from statically typed languages. Type hints in Python associate the expected types of arguments with functions as runtime accessible data associated with functions and this allows for types to be checked. Example of type hint syntax:
def foo(i: int):
return i
foo(5)
foo('oops')
In this case we want an error to be triggered for foo('oops') since the annotated type of the argument is int. The added type hint does not cause an error to occur when the script is run normally. However, it adds attributes to the function describing the expected types that other programs can query and use to check for type errors.
One of these other programs that can be used to find the type error is mypy:
mypy script.py
script.py:12: error: Argument 1 to "foo" has incompatible type "str"; expected "int"
(You might need to install mypy from your package manager. I don't think it comes with CPython but seems to have some level of "officialness".)
Type checking this way is different from type checking in statically typed compiled languages. Because types are dynamic in Python, type checking must be done at runtime, which imposes a cost -- even on correct programs -- if we insist that it happen at every chance. Explicit type checks may also be more restrictive than needed and cause unnecessary errors (e.g. does the argument really need to be of exactly list type or is anything iterable sufficient?).
The upside of explicit type checking is that it can catch errors earlier and give clearer error messages than duck typing. The exact requirements of a duck type can only be expressed with external documentation (hopefully it's thorough and accurate) and errors from incompatible types can occur far from where they originate.
Python's type hints are meant to offer a compromise where types can be specified and checked but there is no additional cost during usual code execution.
The typing package offers type variables that can be used in type hints to express needed behaviors without requiring particular types. For example, it includes variables such as Iterable and Callable for hints to specify the need for any type with those behaviors.
While type hints are the most Pythonic way to check types, it's often even more Pythonic to not check types at all and rely on duck typing. Type hints are relatively new and the jury is still out on when they're the most Pythonic solution. A relatively uncontroversial but very general comparison: Type hints provide a form of documentation that can be enforced, allow code to generate earlier and easier to understand errors, can catch errors that duck typing can't, and can be checked statically (in an unusual sense but it's still outside of runtime). On the other hand, duck typing has been the Pythonic way for a long time, doesn't impose the cognitive overhead of static typing, is less verbose, and will accept all viable types and then some.
In Python 3.10, you can use | in isinstance:
>>> isinstance('1223', int | str)
True
>>> isinstance('abcd', int | str)
True
isinstance(o, str)
Link to docs
You can check for type of a variable using __name__ of a type.
Ex:
>>> a = [1,2,3,4]
>>> b = 1
>>> type(a).__name__
'list'
>>> type(a).__name__ == 'list'
True
>>> type(b).__name__ == 'list'
False
>>> type(b).__name__
'int'
For more complex type validations I like typeguard's approach of validating based on python type hint annotations:
from typeguard import check_type
from typing import List
try:
check_type('mylist', [1, 2], List[int])
except TypeError as e:
print(e)
You can perform very complex validations in very clean and readable fashion.
check_type('foo', [1, 3.14], List[Union[int, float]])
# vs
isinstance(foo, list) and all(isinstance(a, (int, float)) for a in foo)
I think the cool thing about using a dynamic language like Python is you really shouldn't have to check something like that.
I would just call the required methods on your object and catch an AttributeError. Later on this will allow you to call your methods with other (seemingly unrelated) objects to accomplish different tasks, such as mocking an object for testing.
I've used this a lot when getting data off the web with urllib2.urlopen() which returns a file like object. This can in turn can be passed to almost any method that reads from a file, because it implements the same read() method as a real file.
But I'm sure there is a time and place for using isinstance(), otherwise it probably wouldn't be there :)
The accepted answer answers the question in that it provides the answers to the asked questions.
Q: What is the best way to check whether a given object is of a given type? How about checking whether the object inherits from a given type?
A: Use isinstance, issubclass, type to check based on types.
As other answers and comments are quick to point out however, there's a lot more to the idea of "type-checking" than that in python. Since the addition of Python 3 and type hints, much has changed as well. Below, I go over some of the difficulties with type checking, duck typing, and exception handling. For those that think type checking isn't what is needed (it usually isn't, but we're here), I also point out how type hints can be used instead.
Type Checking
Type checking is not always an appropriate thing to do in python. Consider the following example:
def sum(nums):
"""Expect an iterable of integers and return the sum."""
result = 0
for n in nums:
result += n
return result
To check if the input is an iterable of integers, we run into a major issue. The only way to check if every element is an integer would be to loop through to check each element. But if we loop through the entire iterator, then there will be nothing left for intended code. We have two options in this kind of situation.
Check as we loop.
Check beforehand but store everything as we check.
Option 1 has the downside of complicating our code, especially if we need to perform similar checks in many places. It forces us to move type checking from the top of the function to everywhere we use the iterable in our code.
Option 2 has the obvious downside that it destroys the entire purpose of iterators. The entire point is to not store the data because we shouldn't need to.
One might also think that checking if checking all of the elements is too much then perhaps we can just check if the input itself is of the type iterable, but there isn't actually any iterable base class. Any type implementing __iter__ is iterable.
Exception Handling and Duck Typing
An alternative approach would be to forgo type checking altogether and focus on exception handling and duck typing instead. That is to say, wrap your code in a try-except block and catch any errors that occur. Alternatively, don't do anything and let exceptions rise naturally from your code.
Here's one way to go about catching an exception.
def sum(nums):
"""Try to catch exceptions?"""
try:
result = 0
for n in nums:
result += n
return result
except TypeError as e:
print(e)
Compared to the options before, this is certainly better. We're checking as we run the code. If there's a TypeError anywhere, we'll know. We don't have to place a check everywhere that we loop through the input. And we don't have to store the input as we iterate over it.
Furthermore, this approach enables duck typing. Rather than checking for specific types, we have moved to checking for specific behaviors and look for when the input fails to behave as expected (in this case, looping through nums and being able to add n).
However, the exact reasons which make exception handling nice can also be their downfall.
A float isn't an int, but it satisfies the behavioral requirements to work.
It is also bad practice to wrap the entire code with a try-except block.
At first these may not seem like issues, but here's some reasons that may change your mind.
A user can no longer expect our function to return an int as intended. This may break code elsewhere.
Since exceptions can come from a wide variety of sources, using the try-except on the whole code block may end up catching exceptions you didn't intend to. We only wanted to check if nums was iterable and had integer elements.
Ideally we'd like to catch exceptions our code generators and raise, in their place, more informative exceptions. It's not fun when an exception is raised from someone else's code with no explanation other than a line you didn't write and that some TypeError occured.
In order to fix the exception handling in response to the above points, our code would then become this... abomination.
def sum(nums):
"""
Try to catch all of our exceptions only.
Re-raise them with more specific details.
"""
result = 0
try:
iter(nums)
except TypeError as e:
raise TypeError("nums must be iterable")
for n in nums:
try:
result += int(n)
except TypeError as e:
raise TypeError("stopped mid iteration since a non-integer was found")
return result
You can kinda see where this is going. The more we try to "properly" check things, the worse our code is looking. Compared to the original code, this isn't readable at all.
We could argue perhaps this is a bit extreme. But on the other hand, this is only a very simple example. In practice, your code is probably much more complicated than this.
Type Hints
We've seen what happens when we try to modify our small example to "enable type checking". Rather than focusing on trying to force specific types, type hinting allows for a way to make types clear to users.
from typing import Iterable
def sum(nums: Iterable[int]) -> int:
result = 0
for n in nums:
result += n
return result
Here are some advantages to using type-hints.
The code actually looks good now!
Static type analysis may be performed by your editor if you use type hints!
They are stored on the function/class, making them dynamically usable e.g. typeguard and dataclasses.
They show up for functions when using help(...).
No need to sanity check if your input type is right based on a description or worse lack thereof.
You can "type" hint based on structure e.g. "does it have this attribute?" without requiring subclassing by the user.
The downside to type hinting?
Type hints are nothing more than syntax and special text on their own. It isn't the same as type checking.
In other words, it doesn't actually answer the question because it doesn't provide type checking. Regardless, however, if you are here for type checking, then you should be type hinting as well. Of course, if you've come to the conclusion that type checking isn't actually necessary but you want some semblance of typing, then type hints are for you.
To Hugo:
You probably mean list rather than array, but that points to the whole problem with type checking - you don't want to know if the object in question is a list, you want to know if it's some kind of sequence or if it's a single object. So try to use it like a sequence.
Say you want to add the object to an existing sequence, or if it's a sequence of objects, add them all
try:
my_sequence.extend(o)
except TypeError:
my_sequence.append(o)
One trick with this is if you are working with strings and/or sequences of strings - that's tricky, as a string is often thought of as a single object, but it's also a sequence of characters. Worse than that, as it's really a sequence of single-length strings.
I usually choose to design my API so that it only accepts either a single value or a sequence - it makes things easier. It's not hard to put a [ ] around your single value when you pass it in if need be.
(Though this can cause errors with strings, as they do look like (are) sequences.)
If you have to check for the type of str or int please use instanceof. As already mentioned by others the explanation is to also include sub classes. One important example for sub classes from my perspective are Enums with data type like IntEnum or StrEnum. Which are a pretty nice way to define related constants. However, it is kind of annoying if libraries do not accept those as such types.
Example:
import enum
class MyEnum(str, enum.Enum):
A = "a"
B = "b"
print(f"is string: {isinstance(MyEnum.A, str)}") # True
print(f"is string: {type(MyEnum.A) == str}") # False!!!
print(f"is string: {type(MyEnum.A.value) == str}") # True
In Python, you can use the built-in isinstance() function to check if an object is of a given type, or if it inherits from a given type.
To check if the object o is of type str, you would use the following code:
if isinstance(o, str):
# o is of type str
You can also use type() function to check the object type.
if type(o) == str:
# o is of type str
You can also check if the object is a sub class of a particular class using issubclass() function.
if issubclass(type(o),str):
# o is sub class of str
A simple way to check type is to compare it with something whose type you know.
>>> a = 1
>>> type(a) == type(1)
True
>>> b = 'abc'
>>> type(b) == type('')
True
I think the best way is to typing well your variables. You can do this by using the "typing" library.
Example:
from typing import NewType
UserId = NewType ('UserId', int)
some_id = UserId (524313`)
See https://docs.python.org/3/library/typing.html.

A more appropriate way of checking if the input is a shapely point object [duplicate]

How do I check if an object is of a given type, or if it inherits from a given type?
How do I check if the object o is of type str?
Beginners often wrongly expect the string to already be "a number" - either expecting Python 3.x input to convert type, or expecting that a string like '1' is also simultaneously an integer. This is the wrong canonical for those questions. Please carefully read the question and then use How do I check if a string represents a number (float or int)?, How can I read inputs as numbers? and/or Asking the user for input until they give a valid response as appropriate.
Use isinstance to check if o is an instance of str or any subclass of str:
if isinstance(o, str):
To check if the type of o is exactly str, excluding subclasses of str:
if type(o) is str:
See Built-in Functions in the Python Library Reference for relevant information.
Checking for strings in Python 2
For Python 2, this is a better way to check if o is a string:
if isinstance(o, basestring):
because this will also catch Unicode strings. unicode is not a subclass of str; both str and unicode are subclasses of basestring. In Python 3, basestring no longer exists since there's a strict separation of strings (str) and binary data (bytes).
Alternatively, isinstance accepts a tuple of classes. This will return True if o is an instance of any subclass of any of (str, unicode):
if isinstance(o, (str, unicode)):
The most Pythonic way to check the type of an object is... not to check it.
Since Python encourages Duck Typing, you should just try...except to use the object's methods the way you want to use them. So if your function is looking for a writable file object, don't check that it's a subclass of file, just try to use its .write() method!
Of course, sometimes these nice abstractions break down and isinstance(obj, cls) is what you need. But use sparingly.
isinstance(o, str) will return True if o is an str or is of a type that inherits from str.
type(o) is str will return True if and only if o is a str. It will return False if o is of a type that inherits from str.
After the question was asked and answered, type hints were added to Python. Type hints in Python allow types to be checked but in a very different way from statically typed languages. Type hints in Python associate the expected types of arguments with functions as runtime accessible data associated with functions and this allows for types to be checked. Example of type hint syntax:
def foo(i: int):
return i
foo(5)
foo('oops')
In this case we want an error to be triggered for foo('oops') since the annotated type of the argument is int. The added type hint does not cause an error to occur when the script is run normally. However, it adds attributes to the function describing the expected types that other programs can query and use to check for type errors.
One of these other programs that can be used to find the type error is mypy:
mypy script.py
script.py:12: error: Argument 1 to "foo" has incompatible type "str"; expected "int"
(You might need to install mypy from your package manager. I don't think it comes with CPython but seems to have some level of "officialness".)
Type checking this way is different from type checking in statically typed compiled languages. Because types are dynamic in Python, type checking must be done at runtime, which imposes a cost -- even on correct programs -- if we insist that it happen at every chance. Explicit type checks may also be more restrictive than needed and cause unnecessary errors (e.g. does the argument really need to be of exactly list type or is anything iterable sufficient?).
The upside of explicit type checking is that it can catch errors earlier and give clearer error messages than duck typing. The exact requirements of a duck type can only be expressed with external documentation (hopefully it's thorough and accurate) and errors from incompatible types can occur far from where they originate.
Python's type hints are meant to offer a compromise where types can be specified and checked but there is no additional cost during usual code execution.
The typing package offers type variables that can be used in type hints to express needed behaviors without requiring particular types. For example, it includes variables such as Iterable and Callable for hints to specify the need for any type with those behaviors.
While type hints are the most Pythonic way to check types, it's often even more Pythonic to not check types at all and rely on duck typing. Type hints are relatively new and the jury is still out on when they're the most Pythonic solution. A relatively uncontroversial but very general comparison: Type hints provide a form of documentation that can be enforced, allow code to generate earlier and easier to understand errors, can catch errors that duck typing can't, and can be checked statically (in an unusual sense but it's still outside of runtime). On the other hand, duck typing has been the Pythonic way for a long time, doesn't impose the cognitive overhead of static typing, is less verbose, and will accept all viable types and then some.
In Python 3.10, you can use | in isinstance:
>>> isinstance('1223', int | str)
True
>>> isinstance('abcd', int | str)
True
isinstance(o, str)
Link to docs
You can check for type of a variable using __name__ of a type.
Ex:
>>> a = [1,2,3,4]
>>> b = 1
>>> type(a).__name__
'list'
>>> type(a).__name__ == 'list'
True
>>> type(b).__name__ == 'list'
False
>>> type(b).__name__
'int'
For more complex type validations I like typeguard's approach of validating based on python type hint annotations:
from typeguard import check_type
from typing import List
try:
check_type('mylist', [1, 2], List[int])
except TypeError as e:
print(e)
You can perform very complex validations in very clean and readable fashion.
check_type('foo', [1, 3.14], List[Union[int, float]])
# vs
isinstance(foo, list) and all(isinstance(a, (int, float)) for a in foo)
I think the cool thing about using a dynamic language like Python is you really shouldn't have to check something like that.
I would just call the required methods on your object and catch an AttributeError. Later on this will allow you to call your methods with other (seemingly unrelated) objects to accomplish different tasks, such as mocking an object for testing.
I've used this a lot when getting data off the web with urllib2.urlopen() which returns a file like object. This can in turn can be passed to almost any method that reads from a file, because it implements the same read() method as a real file.
But I'm sure there is a time and place for using isinstance(), otherwise it probably wouldn't be there :)
The accepted answer answers the question in that it provides the answers to the asked questions.
Q: What is the best way to check whether a given object is of a given type? How about checking whether the object inherits from a given type?
A: Use isinstance, issubclass, type to check based on types.
As other answers and comments are quick to point out however, there's a lot more to the idea of "type-checking" than that in python. Since the addition of Python 3 and type hints, much has changed as well. Below, I go over some of the difficulties with type checking, duck typing, and exception handling. For those that think type checking isn't what is needed (it usually isn't, but we're here), I also point out how type hints can be used instead.
Type Checking
Type checking is not always an appropriate thing to do in python. Consider the following example:
def sum(nums):
"""Expect an iterable of integers and return the sum."""
result = 0
for n in nums:
result += n
return result
To check if the input is an iterable of integers, we run into a major issue. The only way to check if every element is an integer would be to loop through to check each element. But if we loop through the entire iterator, then there will be nothing left for intended code. We have two options in this kind of situation.
Check as we loop.
Check beforehand but store everything as we check.
Option 1 has the downside of complicating our code, especially if we need to perform similar checks in many places. It forces us to move type checking from the top of the function to everywhere we use the iterable in our code.
Option 2 has the obvious downside that it destroys the entire purpose of iterators. The entire point is to not store the data because we shouldn't need to.
One might also think that checking if checking all of the elements is too much then perhaps we can just check if the input itself is of the type iterable, but there isn't actually any iterable base class. Any type implementing __iter__ is iterable.
Exception Handling and Duck Typing
An alternative approach would be to forgo type checking altogether and focus on exception handling and duck typing instead. That is to say, wrap your code in a try-except block and catch any errors that occur. Alternatively, don't do anything and let exceptions rise naturally from your code.
Here's one way to go about catching an exception.
def sum(nums):
"""Try to catch exceptions?"""
try:
result = 0
for n in nums:
result += n
return result
except TypeError as e:
print(e)
Compared to the options before, this is certainly better. We're checking as we run the code. If there's a TypeError anywhere, we'll know. We don't have to place a check everywhere that we loop through the input. And we don't have to store the input as we iterate over it.
Furthermore, this approach enables duck typing. Rather than checking for specific types, we have moved to checking for specific behaviors and look for when the input fails to behave as expected (in this case, looping through nums and being able to add n).
However, the exact reasons which make exception handling nice can also be their downfall.
A float isn't an int, but it satisfies the behavioral requirements to work.
It is also bad practice to wrap the entire code with a try-except block.
At first these may not seem like issues, but here's some reasons that may change your mind.
A user can no longer expect our function to return an int as intended. This may break code elsewhere.
Since exceptions can come from a wide variety of sources, using the try-except on the whole code block may end up catching exceptions you didn't intend to. We only wanted to check if nums was iterable and had integer elements.
Ideally we'd like to catch exceptions our code generators and raise, in their place, more informative exceptions. It's not fun when an exception is raised from someone else's code with no explanation other than a line you didn't write and that some TypeError occured.
In order to fix the exception handling in response to the above points, our code would then become this... abomination.
def sum(nums):
"""
Try to catch all of our exceptions only.
Re-raise them with more specific details.
"""
result = 0
try:
iter(nums)
except TypeError as e:
raise TypeError("nums must be iterable")
for n in nums:
try:
result += int(n)
except TypeError as e:
raise TypeError("stopped mid iteration since a non-integer was found")
return result
You can kinda see where this is going. The more we try to "properly" check things, the worse our code is looking. Compared to the original code, this isn't readable at all.
We could argue perhaps this is a bit extreme. But on the other hand, this is only a very simple example. In practice, your code is probably much more complicated than this.
Type Hints
We've seen what happens when we try to modify our small example to "enable type checking". Rather than focusing on trying to force specific types, type hinting allows for a way to make types clear to users.
from typing import Iterable
def sum(nums: Iterable[int]) -> int:
result = 0
for n in nums:
result += n
return result
Here are some advantages to using type-hints.
The code actually looks good now!
Static type analysis may be performed by your editor if you use type hints!
They are stored on the function/class, making them dynamically usable e.g. typeguard and dataclasses.
They show up for functions when using help(...).
No need to sanity check if your input type is right based on a description or worse lack thereof.
You can "type" hint based on structure e.g. "does it have this attribute?" without requiring subclassing by the user.
The downside to type hinting?
Type hints are nothing more than syntax and special text on their own. It isn't the same as type checking.
In other words, it doesn't actually answer the question because it doesn't provide type checking. Regardless, however, if you are here for type checking, then you should be type hinting as well. Of course, if you've come to the conclusion that type checking isn't actually necessary but you want some semblance of typing, then type hints are for you.
To Hugo:
You probably mean list rather than array, but that points to the whole problem with type checking - you don't want to know if the object in question is a list, you want to know if it's some kind of sequence or if it's a single object. So try to use it like a sequence.
Say you want to add the object to an existing sequence, or if it's a sequence of objects, add them all
try:
my_sequence.extend(o)
except TypeError:
my_sequence.append(o)
One trick with this is if you are working with strings and/or sequences of strings - that's tricky, as a string is often thought of as a single object, but it's also a sequence of characters. Worse than that, as it's really a sequence of single-length strings.
I usually choose to design my API so that it only accepts either a single value or a sequence - it makes things easier. It's not hard to put a [ ] around your single value when you pass it in if need be.
(Though this can cause errors with strings, as they do look like (are) sequences.)
If you have to check for the type of str or int please use instanceof. As already mentioned by others the explanation is to also include sub classes. One important example for sub classes from my perspective are Enums with data type like IntEnum or StrEnum. Which are a pretty nice way to define related constants. However, it is kind of annoying if libraries do not accept those as such types.
Example:
import enum
class MyEnum(str, enum.Enum):
A = "a"
B = "b"
print(f"is string: {isinstance(MyEnum.A, str)}") # True
print(f"is string: {type(MyEnum.A) == str}") # False!!!
print(f"is string: {type(MyEnum.A.value) == str}") # True
In Python, you can use the built-in isinstance() function to check if an object is of a given type, or if it inherits from a given type.
To check if the object o is of type str, you would use the following code:
if isinstance(o, str):
# o is of type str
You can also use type() function to check the object type.
if type(o) == str:
# o is of type str
You can also check if the object is a sub class of a particular class using issubclass() function.
if issubclass(type(o),str):
# o is sub class of str
A simple way to check type is to compare it with something whose type you know.
>>> a = 1
>>> type(a) == type(1)
True
>>> b = 'abc'
>>> type(b) == type('')
True
I think the best way is to typing well your variables. You can do this by using the "typing" library.
Example:
from typing import NewType
UserId = NewType ('UserId', int)
some_id = UserId (524313`)
See https://docs.python.org/3/library/typing.html.

Type checking best practice [duplicate]

How do I check if an object is of a given type, or if it inherits from a given type?
How do I check if the object o is of type str?
Beginners often wrongly expect the string to already be "a number" - either expecting Python 3.x input to convert type, or expecting that a string like '1' is also simultaneously an integer. This is the wrong canonical for those questions. Please carefully read the question and then use How do I check if a string represents a number (float or int)?, How can I read inputs as numbers? and/or Asking the user for input until they give a valid response as appropriate.
Use isinstance to check if o is an instance of str or any subclass of str:
if isinstance(o, str):
To check if the type of o is exactly str, excluding subclasses of str:
if type(o) is str:
See Built-in Functions in the Python Library Reference for relevant information.
Checking for strings in Python 2
For Python 2, this is a better way to check if o is a string:
if isinstance(o, basestring):
because this will also catch Unicode strings. unicode is not a subclass of str; both str and unicode are subclasses of basestring. In Python 3, basestring no longer exists since there's a strict separation of strings (str) and binary data (bytes).
Alternatively, isinstance accepts a tuple of classes. This will return True if o is an instance of any subclass of any of (str, unicode):
if isinstance(o, (str, unicode)):
The most Pythonic way to check the type of an object is... not to check it.
Since Python encourages Duck Typing, you should just try...except to use the object's methods the way you want to use them. So if your function is looking for a writable file object, don't check that it's a subclass of file, just try to use its .write() method!
Of course, sometimes these nice abstractions break down and isinstance(obj, cls) is what you need. But use sparingly.
isinstance(o, str) will return True if o is an str or is of a type that inherits from str.
type(o) is str will return True if and only if o is a str. It will return False if o is of a type that inherits from str.
After the question was asked and answered, type hints were added to Python. Type hints in Python allow types to be checked but in a very different way from statically typed languages. Type hints in Python associate the expected types of arguments with functions as runtime accessible data associated with functions and this allows for types to be checked. Example of type hint syntax:
def foo(i: int):
return i
foo(5)
foo('oops')
In this case we want an error to be triggered for foo('oops') since the annotated type of the argument is int. The added type hint does not cause an error to occur when the script is run normally. However, it adds attributes to the function describing the expected types that other programs can query and use to check for type errors.
One of these other programs that can be used to find the type error is mypy:
mypy script.py
script.py:12: error: Argument 1 to "foo" has incompatible type "str"; expected "int"
(You might need to install mypy from your package manager. I don't think it comes with CPython but seems to have some level of "officialness".)
Type checking this way is different from type checking in statically typed compiled languages. Because types are dynamic in Python, type checking must be done at runtime, which imposes a cost -- even on correct programs -- if we insist that it happen at every chance. Explicit type checks may also be more restrictive than needed and cause unnecessary errors (e.g. does the argument really need to be of exactly list type or is anything iterable sufficient?).
The upside of explicit type checking is that it can catch errors earlier and give clearer error messages than duck typing. The exact requirements of a duck type can only be expressed with external documentation (hopefully it's thorough and accurate) and errors from incompatible types can occur far from where they originate.
Python's type hints are meant to offer a compromise where types can be specified and checked but there is no additional cost during usual code execution.
The typing package offers type variables that can be used in type hints to express needed behaviors without requiring particular types. For example, it includes variables such as Iterable and Callable for hints to specify the need for any type with those behaviors.
While type hints are the most Pythonic way to check types, it's often even more Pythonic to not check types at all and rely on duck typing. Type hints are relatively new and the jury is still out on when they're the most Pythonic solution. A relatively uncontroversial but very general comparison: Type hints provide a form of documentation that can be enforced, allow code to generate earlier and easier to understand errors, can catch errors that duck typing can't, and can be checked statically (in an unusual sense but it's still outside of runtime). On the other hand, duck typing has been the Pythonic way for a long time, doesn't impose the cognitive overhead of static typing, is less verbose, and will accept all viable types and then some.
In Python 3.10, you can use | in isinstance:
>>> isinstance('1223', int | str)
True
>>> isinstance('abcd', int | str)
True
isinstance(o, str)
Link to docs
You can check for type of a variable using __name__ of a type.
Ex:
>>> a = [1,2,3,4]
>>> b = 1
>>> type(a).__name__
'list'
>>> type(a).__name__ == 'list'
True
>>> type(b).__name__ == 'list'
False
>>> type(b).__name__
'int'
For more complex type validations I like typeguard's approach of validating based on python type hint annotations:
from typeguard import check_type
from typing import List
try:
check_type('mylist', [1, 2], List[int])
except TypeError as e:
print(e)
You can perform very complex validations in very clean and readable fashion.
check_type('foo', [1, 3.14], List[Union[int, float]])
# vs
isinstance(foo, list) and all(isinstance(a, (int, float)) for a in foo)
I think the cool thing about using a dynamic language like Python is you really shouldn't have to check something like that.
I would just call the required methods on your object and catch an AttributeError. Later on this will allow you to call your methods with other (seemingly unrelated) objects to accomplish different tasks, such as mocking an object for testing.
I've used this a lot when getting data off the web with urllib2.urlopen() which returns a file like object. This can in turn can be passed to almost any method that reads from a file, because it implements the same read() method as a real file.
But I'm sure there is a time and place for using isinstance(), otherwise it probably wouldn't be there :)
The accepted answer answers the question in that it provides the answers to the asked questions.
Q: What is the best way to check whether a given object is of a given type? How about checking whether the object inherits from a given type?
A: Use isinstance, issubclass, type to check based on types.
As other answers and comments are quick to point out however, there's a lot more to the idea of "type-checking" than that in python. Since the addition of Python 3 and type hints, much has changed as well. Below, I go over some of the difficulties with type checking, duck typing, and exception handling. For those that think type checking isn't what is needed (it usually isn't, but we're here), I also point out how type hints can be used instead.
Type Checking
Type checking is not always an appropriate thing to do in python. Consider the following example:
def sum(nums):
"""Expect an iterable of integers and return the sum."""
result = 0
for n in nums:
result += n
return result
To check if the input is an iterable of integers, we run into a major issue. The only way to check if every element is an integer would be to loop through to check each element. But if we loop through the entire iterator, then there will be nothing left for intended code. We have two options in this kind of situation.
Check as we loop.
Check beforehand but store everything as we check.
Option 1 has the downside of complicating our code, especially if we need to perform similar checks in many places. It forces us to move type checking from the top of the function to everywhere we use the iterable in our code.
Option 2 has the obvious downside that it destroys the entire purpose of iterators. The entire point is to not store the data because we shouldn't need to.
One might also think that checking if checking all of the elements is too much then perhaps we can just check if the input itself is of the type iterable, but there isn't actually any iterable base class. Any type implementing __iter__ is iterable.
Exception Handling and Duck Typing
An alternative approach would be to forgo type checking altogether and focus on exception handling and duck typing instead. That is to say, wrap your code in a try-except block and catch any errors that occur. Alternatively, don't do anything and let exceptions rise naturally from your code.
Here's one way to go about catching an exception.
def sum(nums):
"""Try to catch exceptions?"""
try:
result = 0
for n in nums:
result += n
return result
except TypeError as e:
print(e)
Compared to the options before, this is certainly better. We're checking as we run the code. If there's a TypeError anywhere, we'll know. We don't have to place a check everywhere that we loop through the input. And we don't have to store the input as we iterate over it.
Furthermore, this approach enables duck typing. Rather than checking for specific types, we have moved to checking for specific behaviors and look for when the input fails to behave as expected (in this case, looping through nums and being able to add n).
However, the exact reasons which make exception handling nice can also be their downfall.
A float isn't an int, but it satisfies the behavioral requirements to work.
It is also bad practice to wrap the entire code with a try-except block.
At first these may not seem like issues, but here's some reasons that may change your mind.
A user can no longer expect our function to return an int as intended. This may break code elsewhere.
Since exceptions can come from a wide variety of sources, using the try-except on the whole code block may end up catching exceptions you didn't intend to. We only wanted to check if nums was iterable and had integer elements.
Ideally we'd like to catch exceptions our code generators and raise, in their place, more informative exceptions. It's not fun when an exception is raised from someone else's code with no explanation other than a line you didn't write and that some TypeError occured.
In order to fix the exception handling in response to the above points, our code would then become this... abomination.
def sum(nums):
"""
Try to catch all of our exceptions only.
Re-raise them with more specific details.
"""
result = 0
try:
iter(nums)
except TypeError as e:
raise TypeError("nums must be iterable")
for n in nums:
try:
result += int(n)
except TypeError as e:
raise TypeError("stopped mid iteration since a non-integer was found")
return result
You can kinda see where this is going. The more we try to "properly" check things, the worse our code is looking. Compared to the original code, this isn't readable at all.
We could argue perhaps this is a bit extreme. But on the other hand, this is only a very simple example. In practice, your code is probably much more complicated than this.
Type Hints
We've seen what happens when we try to modify our small example to "enable type checking". Rather than focusing on trying to force specific types, type hinting allows for a way to make types clear to users.
from typing import Iterable
def sum(nums: Iterable[int]) -> int:
result = 0
for n in nums:
result += n
return result
Here are some advantages to using type-hints.
The code actually looks good now!
Static type analysis may be performed by your editor if you use type hints!
They are stored on the function/class, making them dynamically usable e.g. typeguard and dataclasses.
They show up for functions when using help(...).
No need to sanity check if your input type is right based on a description or worse lack thereof.
You can "type" hint based on structure e.g. "does it have this attribute?" without requiring subclassing by the user.
The downside to type hinting?
Type hints are nothing more than syntax and special text on their own. It isn't the same as type checking.
In other words, it doesn't actually answer the question because it doesn't provide type checking. Regardless, however, if you are here for type checking, then you should be type hinting as well. Of course, if you've come to the conclusion that type checking isn't actually necessary but you want some semblance of typing, then type hints are for you.
To Hugo:
You probably mean list rather than array, but that points to the whole problem with type checking - you don't want to know if the object in question is a list, you want to know if it's some kind of sequence or if it's a single object. So try to use it like a sequence.
Say you want to add the object to an existing sequence, or if it's a sequence of objects, add them all
try:
my_sequence.extend(o)
except TypeError:
my_sequence.append(o)
One trick with this is if you are working with strings and/or sequences of strings - that's tricky, as a string is often thought of as a single object, but it's also a sequence of characters. Worse than that, as it's really a sequence of single-length strings.
I usually choose to design my API so that it only accepts either a single value or a sequence - it makes things easier. It's not hard to put a [ ] around your single value when you pass it in if need be.
(Though this can cause errors with strings, as they do look like (are) sequences.)
If you have to check for the type of str or int please use instanceof. As already mentioned by others the explanation is to also include sub classes. One important example for sub classes from my perspective are Enums with data type like IntEnum or StrEnum. Which are a pretty nice way to define related constants. However, it is kind of annoying if libraries do not accept those as such types.
Example:
import enum
class MyEnum(str, enum.Enum):
A = "a"
B = "b"
print(f"is string: {isinstance(MyEnum.A, str)}") # True
print(f"is string: {type(MyEnum.A) == str}") # False!!!
print(f"is string: {type(MyEnum.A.value) == str}") # True
In Python, you can use the built-in isinstance() function to check if an object is of a given type, or if it inherits from a given type.
To check if the object o is of type str, you would use the following code:
if isinstance(o, str):
# o is of type str
You can also use type() function to check the object type.
if type(o) == str:
# o is of type str
You can also check if the object is a sub class of a particular class using issubclass() function.
if issubclass(type(o),str):
# o is sub class of str
A simple way to check type is to compare it with something whose type you know.
>>> a = 1
>>> type(a) == type(1)
True
>>> b = 'abc'
>>> type(b) == type('')
True
I think the best way is to typing well your variables. You can do this by using the "typing" library.
Example:
from typing import NewType
UserId = NewType ('UserId', int)
some_id = UserId (524313`)
See https://docs.python.org/3/library/typing.html.

Dynamic typing design : is recursivity for dealing with lists a good design?

Lacking experience with maintaining dynamic-typed code, I'm looking for the best way to handle this kind of situations :
(Example in python, but could work with any dynamic-typed language)
def some_function(object_that_could_be_a_list):
if isinstance(object_that_could_be_a_list, list):
for element in object_that_could_be_a_list:
some_function(element)
else:
# Do stuff that expects the object to have certain properties
# a list would not have
I'm quite uneasy with this, since I think a method should do only one thing, and I'm thinking that it is not as readable as it should be. So, I'd be tempted to make three functions : the first that'll take any object and "sort" between the two others, one for the lists, another for the "simple" objects. Then again, that'd add some complexity.
What is the most "sustainable" solution here, and the one that guarantee ease of maintenance ? Is there an idiom in python for those situations that I'm unaware of ? Thanks in advance.
Don't type check - do what you want to do, and if it won't work, it'll throw an exception which you can catch and manage.
The python mantra is 'ask for forgiveness, not permission'. Type checking takes extra time, when most of the time, it'll be pointless. It also doesn't make much sense in a duck-typed environment - if it works, who cares why type it is? Why limit yourself to lists when other iterables will work too?
E.g:
def some_function(object_that_could_be_a_list):
try:
for element in object_that_could_be_a_list:
some_function(element)
except TypeError:
...
This is more readable, will work in more cases (if I pass in any other iterable which isn't a list, there are a lot) and will often be faster.
Note you are getting terminology mixed up. Python is dynamically typed, but not weakly typed. Weak typing means objects change type as needed. For example, if you add a string and an int, it will convert the string to an int to do the addition. Python does not do this. Dynamic typing means you don't declare a type for a variable, and it may contain a string at some point, then an int later.
Duck typing is a term used to describe the use of an object without caring about it's type. If it walks like a duck, and quacks like a duck - it's probably a duck.
Now, this is a general thing, and if you think your code will get the 'wrong' type of object more often than the 'right', then you might want to type check for speed. Note that this is rare, and it's always best to avoid premature optimisation. Do it by catching exceptions, and then test - if you find it's a bottleneck, then optimise.
A common practice is to implement the multiple interface by way of using different parameters for different kinds of input.
def foo(thing=None, thing_seq=None):
if thing_seq is not None:
for _thing in thing_seq:
foo(thing=_thing)
if thing is not None:
print "did foo with", thing
Rather than doing it recursive I tend do it this way:
def foo(x):
if not isinstance(x, list):
x = [x]
for y in x:
do_something(y)
You can use decorators in this case to make it more maintainable:
from mm import multimethod
#multimethod(int, int)
def foo(a, b):
...code for two ints...
#multimethod(float, float):
def foo(a, b):
...code for two floats...
#multimethod(str, str):
def foo(a, b):
...code for two strings...

What's the canonical way to check for type in Python?

How do I check if an object is of a given type, or if it inherits from a given type?
How do I check if the object o is of type str?
Beginners often wrongly expect the string to already be "a number" - either expecting Python 3.x input to convert type, or expecting that a string like '1' is also simultaneously an integer. This is the wrong canonical for those questions. Please carefully read the question and then use How do I check if a string represents a number (float or int)?, How can I read inputs as numbers? and/or Asking the user for input until they give a valid response as appropriate.
Use isinstance to check if o is an instance of str or any subclass of str:
if isinstance(o, str):
To check if the type of o is exactly str, excluding subclasses of str:
if type(o) is str:
See Built-in Functions in the Python Library Reference for relevant information.
Checking for strings in Python 2
For Python 2, this is a better way to check if o is a string:
if isinstance(o, basestring):
because this will also catch Unicode strings. unicode is not a subclass of str; both str and unicode are subclasses of basestring. In Python 3, basestring no longer exists since there's a strict separation of strings (str) and binary data (bytes).
Alternatively, isinstance accepts a tuple of classes. This will return True if o is an instance of any subclass of any of (str, unicode):
if isinstance(o, (str, unicode)):
The most Pythonic way to check the type of an object is... not to check it.
Since Python encourages Duck Typing, you should just try...except to use the object's methods the way you want to use them. So if your function is looking for a writable file object, don't check that it's a subclass of file, just try to use its .write() method!
Of course, sometimes these nice abstractions break down and isinstance(obj, cls) is what you need. But use sparingly.
isinstance(o, str) will return True if o is an str or is of a type that inherits from str.
type(o) is str will return True if and only if o is a str. It will return False if o is of a type that inherits from str.
After the question was asked and answered, type hints were added to Python. Type hints in Python allow types to be checked but in a very different way from statically typed languages. Type hints in Python associate the expected types of arguments with functions as runtime accessible data associated with functions and this allows for types to be checked. Example of type hint syntax:
def foo(i: int):
return i
foo(5)
foo('oops')
In this case we want an error to be triggered for foo('oops') since the annotated type of the argument is int. The added type hint does not cause an error to occur when the script is run normally. However, it adds attributes to the function describing the expected types that other programs can query and use to check for type errors.
One of these other programs that can be used to find the type error is mypy:
mypy script.py
script.py:12: error: Argument 1 to "foo" has incompatible type "str"; expected "int"
(You might need to install mypy from your package manager. I don't think it comes with CPython but seems to have some level of "officialness".)
Type checking this way is different from type checking in statically typed compiled languages. Because types are dynamic in Python, type checking must be done at runtime, which imposes a cost -- even on correct programs -- if we insist that it happen at every chance. Explicit type checks may also be more restrictive than needed and cause unnecessary errors (e.g. does the argument really need to be of exactly list type or is anything iterable sufficient?).
The upside of explicit type checking is that it can catch errors earlier and give clearer error messages than duck typing. The exact requirements of a duck type can only be expressed with external documentation (hopefully it's thorough and accurate) and errors from incompatible types can occur far from where they originate.
Python's type hints are meant to offer a compromise where types can be specified and checked but there is no additional cost during usual code execution.
The typing package offers type variables that can be used in type hints to express needed behaviors without requiring particular types. For example, it includes variables such as Iterable and Callable for hints to specify the need for any type with those behaviors.
While type hints are the most Pythonic way to check types, it's often even more Pythonic to not check types at all and rely on duck typing. Type hints are relatively new and the jury is still out on when they're the most Pythonic solution. A relatively uncontroversial but very general comparison: Type hints provide a form of documentation that can be enforced, allow code to generate earlier and easier to understand errors, can catch errors that duck typing can't, and can be checked statically (in an unusual sense but it's still outside of runtime). On the other hand, duck typing has been the Pythonic way for a long time, doesn't impose the cognitive overhead of static typing, is less verbose, and will accept all viable types and then some.
In Python 3.10, you can use | in isinstance:
>>> isinstance('1223', int | str)
True
>>> isinstance('abcd', int | str)
True
isinstance(o, str)
Link to docs
You can check for type of a variable using __name__ of a type.
Ex:
>>> a = [1,2,3,4]
>>> b = 1
>>> type(a).__name__
'list'
>>> type(a).__name__ == 'list'
True
>>> type(b).__name__ == 'list'
False
>>> type(b).__name__
'int'
For more complex type validations I like typeguard's approach of validating based on python type hint annotations:
from typeguard import check_type
from typing import List
try:
check_type('mylist', [1, 2], List[int])
except TypeError as e:
print(e)
You can perform very complex validations in very clean and readable fashion.
check_type('foo', [1, 3.14], List[Union[int, float]])
# vs
isinstance(foo, list) and all(isinstance(a, (int, float)) for a in foo)
I think the cool thing about using a dynamic language like Python is you really shouldn't have to check something like that.
I would just call the required methods on your object and catch an AttributeError. Later on this will allow you to call your methods with other (seemingly unrelated) objects to accomplish different tasks, such as mocking an object for testing.
I've used this a lot when getting data off the web with urllib2.urlopen() which returns a file like object. This can in turn can be passed to almost any method that reads from a file, because it implements the same read() method as a real file.
But I'm sure there is a time and place for using isinstance(), otherwise it probably wouldn't be there :)
The accepted answer answers the question in that it provides the answers to the asked questions.
Q: What is the best way to check whether a given object is of a given type? How about checking whether the object inherits from a given type?
A: Use isinstance, issubclass, type to check based on types.
As other answers and comments are quick to point out however, there's a lot more to the idea of "type-checking" than that in python. Since the addition of Python 3 and type hints, much has changed as well. Below, I go over some of the difficulties with type checking, duck typing, and exception handling. For those that think type checking isn't what is needed (it usually isn't, but we're here), I also point out how type hints can be used instead.
Type Checking
Type checking is not always an appropriate thing to do in python. Consider the following example:
def sum(nums):
"""Expect an iterable of integers and return the sum."""
result = 0
for n in nums:
result += n
return result
To check if the input is an iterable of integers, we run into a major issue. The only way to check if every element is an integer would be to loop through to check each element. But if we loop through the entire iterator, then there will be nothing left for intended code. We have two options in this kind of situation.
Check as we loop.
Check beforehand but store everything as we check.
Option 1 has the downside of complicating our code, especially if we need to perform similar checks in many places. It forces us to move type checking from the top of the function to everywhere we use the iterable in our code.
Option 2 has the obvious downside that it destroys the entire purpose of iterators. The entire point is to not store the data because we shouldn't need to.
One might also think that checking if checking all of the elements is too much then perhaps we can just check if the input itself is of the type iterable, but there isn't actually any iterable base class. Any type implementing __iter__ is iterable.
Exception Handling and Duck Typing
An alternative approach would be to forgo type checking altogether and focus on exception handling and duck typing instead. That is to say, wrap your code in a try-except block and catch any errors that occur. Alternatively, don't do anything and let exceptions rise naturally from your code.
Here's one way to go about catching an exception.
def sum(nums):
"""Try to catch exceptions?"""
try:
result = 0
for n in nums:
result += n
return result
except TypeError as e:
print(e)
Compared to the options before, this is certainly better. We're checking as we run the code. If there's a TypeError anywhere, we'll know. We don't have to place a check everywhere that we loop through the input. And we don't have to store the input as we iterate over it.
Furthermore, this approach enables duck typing. Rather than checking for specific types, we have moved to checking for specific behaviors and look for when the input fails to behave as expected (in this case, looping through nums and being able to add n).
However, the exact reasons which make exception handling nice can also be their downfall.
A float isn't an int, but it satisfies the behavioral requirements to work.
It is also bad practice to wrap the entire code with a try-except block.
At first these may not seem like issues, but here's some reasons that may change your mind.
A user can no longer expect our function to return an int as intended. This may break code elsewhere.
Since exceptions can come from a wide variety of sources, using the try-except on the whole code block may end up catching exceptions you didn't intend to. We only wanted to check if nums was iterable and had integer elements.
Ideally we'd like to catch exceptions our code generators and raise, in their place, more informative exceptions. It's not fun when an exception is raised from someone else's code with no explanation other than a line you didn't write and that some TypeError occured.
In order to fix the exception handling in response to the above points, our code would then become this... abomination.
def sum(nums):
"""
Try to catch all of our exceptions only.
Re-raise them with more specific details.
"""
result = 0
try:
iter(nums)
except TypeError as e:
raise TypeError("nums must be iterable")
for n in nums:
try:
result += int(n)
except TypeError as e:
raise TypeError("stopped mid iteration since a non-integer was found")
return result
You can kinda see where this is going. The more we try to "properly" check things, the worse our code is looking. Compared to the original code, this isn't readable at all.
We could argue perhaps this is a bit extreme. But on the other hand, this is only a very simple example. In practice, your code is probably much more complicated than this.
Type Hints
We've seen what happens when we try to modify our small example to "enable type checking". Rather than focusing on trying to force specific types, type hinting allows for a way to make types clear to users.
from typing import Iterable
def sum(nums: Iterable[int]) -> int:
result = 0
for n in nums:
result += n
return result
Here are some advantages to using type-hints.
The code actually looks good now!
Static type analysis may be performed by your editor if you use type hints!
They are stored on the function/class, making them dynamically usable e.g. typeguard and dataclasses.
They show up for functions when using help(...).
No need to sanity check if your input type is right based on a description or worse lack thereof.
You can "type" hint based on structure e.g. "does it have this attribute?" without requiring subclassing by the user.
The downside to type hinting?
Type hints are nothing more than syntax and special text on their own. It isn't the same as type checking.
In other words, it doesn't actually answer the question because it doesn't provide type checking. Regardless, however, if you are here for type checking, then you should be type hinting as well. Of course, if you've come to the conclusion that type checking isn't actually necessary but you want some semblance of typing, then type hints are for you.
To Hugo:
You probably mean list rather than array, but that points to the whole problem with type checking - you don't want to know if the object in question is a list, you want to know if it's some kind of sequence or if it's a single object. So try to use it like a sequence.
Say you want to add the object to an existing sequence, or if it's a sequence of objects, add them all
try:
my_sequence.extend(o)
except TypeError:
my_sequence.append(o)
One trick with this is if you are working with strings and/or sequences of strings - that's tricky, as a string is often thought of as a single object, but it's also a sequence of characters. Worse than that, as it's really a sequence of single-length strings.
I usually choose to design my API so that it only accepts either a single value or a sequence - it makes things easier. It's not hard to put a [ ] around your single value when you pass it in if need be.
(Though this can cause errors with strings, as they do look like (are) sequences.)
If you have to check for the type of str or int please use instanceof. As already mentioned by others the explanation is to also include sub classes. One important example for sub classes from my perspective are Enums with data type like IntEnum or StrEnum. Which are a pretty nice way to define related constants. However, it is kind of annoying if libraries do not accept those as such types.
Example:
import enum
class MyEnum(str, enum.Enum):
A = "a"
B = "b"
print(f"is string: {isinstance(MyEnum.A, str)}") # True
print(f"is string: {type(MyEnum.A) == str}") # False!!!
print(f"is string: {type(MyEnum.A.value) == str}") # True
In Python, you can use the built-in isinstance() function to check if an object is of a given type, or if it inherits from a given type.
To check if the object o is of type str, you would use the following code:
if isinstance(o, str):
# o is of type str
You can also use type() function to check the object type.
if type(o) == str:
# o is of type str
You can also check if the object is a sub class of a particular class using issubclass() function.
if issubclass(type(o),str):
# o is sub class of str
A simple way to check type is to compare it with something whose type you know.
>>> a = 1
>>> type(a) == type(1)
True
>>> b = 'abc'
>>> type(b) == type('')
True
I think the best way is to typing well your variables. You can do this by using the "typing" library.
Example:
from typing import NewType
UserId = NewType ('UserId', int)
some_id = UserId (524313`)
See https://docs.python.org/3/library/typing.html.

Categories

Resources