Whats new in Python 3.x? - python

http://docs.python.org/3.0/whatsnew/3.0.html says it lists whats new, but in my opinion, it only lists differences, so has does anybody know of any completely new Python features, introduced in release 3.x?
To Avoid Confusion, I will define a completely new feature as something that has never been used in any other code before, somehting you walk up to and go "Ooh, shiny!". E.g. a function to make aliens invade, etc.

Many of the completely new features introduced in 3.0 were also backported to 2.6, a deliberate choice. However, this was not practical in all cases, so some of the new features remained Python 3 - only.
How metaclasses work, is probably the biggest single new feature. The syntax is clearly better than 2.*'s __metaclass__ assignment...:
class X(abase, metaclass=Y):
but more importantly, the new syntax means the compiler knows the metaclass to use before it processes the class body, and so the metaclass can finally influence the way the class body is processed -- this was not possible in 2.*. Specifically, the metaclass's new __prepare__ method can return any writable mapping, and if so then that's used instead of a regular dict to record the assignments (and assigning keywords such as def) performed in the class body. In particular, this lets the order of the class body finally get preserved exactly as it's written down, as well as allowing the metaclass, if it so chooses, to record multiple assignments/definitions for any name in the class body, rather than just the last assignment or definition performed for that name. This hugely broadens the applicability of classes with appropriate custom metaclasses, compared to what was feasible in 2.*.
Another syntax biggie is annotations -- see the PEP I'm pointing to for details. Python's standard library gives no special semantics to annotations, but exactly because of that third-party frameworks and tools are empowered to apply any semantics they wish -- such tasks as type-checking for function arguments are hereby allowed, though not directly performed by the standard Python library.
There are of course many others (the new "views" concept embodied by such methods as dict's .keys &c in 3.*, keyword-only arguments, better sequence unpacking, nonlocal for more powerful closures, ...), of varying heft, but all pretty useful and well-designed.

The section New Syntax lists, well, the new syntax in Python 3.x. I think it's debatable sometimes whether stuff is new or changed. E.g. exception chaining (PEP 3134): is that a new feature, or is it a change to the exception machinery?
In general, I recommend looking at all the PEPs listed in the document. They are the major changes/new features.

Related

Python/Django and services as classes

Are there any conventions on how to implement services in Django? Coming from a Java background, we create services for business logic and we "inject" them wherever we need them.
Not sure if I'm using python/django the wrong way, but I need to connect to a 3rd party API, so I'm using an api_service.py file to do that. The question is, I want to define this service as a class, and in Java, I can inject this class wherever I need it and it acts more or less like a singleton. Is there something like this I can use with Django or should I build the service as a singleton and get the instance somewhere or even have just separate functions and no classes?
TL;DR It's hard to tell without more details but chances are you only need a mere module with a couple plain functions or at most just a couple simple classes.
Longest answer:
Python is not Java. You can of course (technically I mean) use Java-ish designs, but this is usually not the best thing to do.
Your description of the problem to solve is a bit too vague to come with a concrete answer, but we can at least give you a few hints and pointers (no pun intended):
1/ Everything is an object
In python, everything (well, everything you can find on the RHS of an assignment that is) is an object, including modules, classes, functions and methods.
One of the consequences is that you don't need any complex framework for dependency injection - you just pass the desired object (module, class, function, method, whatever) as argument and you're done.
Another consequence is that you don't necessarily need classes for everything - a plain function or module can be just enough.
A typical use case is the strategy pattern, which, in Python, is most often implemented using a mere callback function (or any other callable FWIW).
2/ a python module is a singleton.
As stated above, at runtime a python module is an object (of type module) whose attributes are the names defined at the module's top-level.
Except for some (pathological) corner cases, a python module is only imported once for a given process and is garanteed to be unique. Combined with the fact that python's "global" scope is really only "module-level" global, this make modules proper singletons, so this design pattern is actually already builtin.
3/ a python class is (almost) a singleton
Python classes are objects too (instance of type type, directly or indirectly), and python has classmethods (methods that act on the class itself instead of acting on the current instance) and class-level attributes (attributes that belong to the class object itself, not to it's instances), so if you write a class that only has classmethods and class attributes, you technically have a singleton - and you can use this class either directly or thru instances without any difference since classmethods can be called on instances too.
The main difference here wrt/ "modules as singletons" is that with classes you can use inheritance...
4/ python has callables
Python has the concept of "callable" objects. A "callable" is an object whose class implements the __call__() operator), and each such object can be called as if it was a function.
This means that you can not only use functions as objects but also use objects as functions - IOW, the "functor" pattern is builtin. This makes it very easy to "capture" some context in one part of the code and use this context for computations in another part.
5/ a python class is a factory
Python has no new keyword. Pythonc classes are callables, and instanciation is done by just calling the class.
This means that you can actually use a class or function the same way to get an instance, so the "factory" pattern is also builtin.
6/ python has computed attributes
and beside the most obvious application (replacing a public attribute by a pair of getter/setter without breaking client code), this - combined with other features like callables etc - can prove to be very powerful. As a matter of fact, that's how functions defined in a class become methods
7/ Python is dynamic
Python's objects are (usually) dict-based (there are exceptions but those are few and mostly low-level C-coded classes), which means you can dynamically add / replace (and even remove) attributes and methods (since methods are attributes) on a per-instance or per-class basis.
While this is not a feature you want to use without reasons, it's still a very powerful one as it allows to dynamically customize an object (remember that classes are objects too), allowing for more complex objects and classes creation schemes than what you can do in a static language.
But Python's dynamic nature goes even further - you can use class decorators and/or metaclasses to taylor the creation of a class object (you may want to have a look at Django models source code for a concrete example), or even just dynamically create a new class using it's metaclass and a dict of functions and other class-level attributes.
Here again, this can really make seemingly complex issues a breeze to solve (and avoid a lot of boilerplate code).
Actually, Python exposes and lets you hook into most of it's inners (object model, attribute resolution rules, import mechanism etc), so once you understand the whole design and how everything fits together you really have the hand on most aspects of your code at runtime.
Python is not Java
Now I understand that all of this looks a bit like a vendor's catalog, but the point is highlight how Python differs from Java and why canonical Java solutions - or (at least) canonical Java implementations of those solutions - usually don't port well to the Python world. It's not that they don't work at all, just that Python usually has more straightforward (and much simpler IMHO) ways to implement common (and less common) design patterns.
wrt/ your concrete use case, you will have to post a much more detailed description, but "connecting to a 3rd part API" (I assume a REST api ?) from a Django project is so trivial that it really doesn't warrant much design considerations by itself.
In Python you can write the same as Java program structure. You don't need to be so strongly typed but you can. I'm using types when creating common classes and libraries that are used across multiple scripts.
Here you can read about Python typing
You can do the same here in Python. Define your class in package (folder) called services
Then if you want singleton you can do like that:
class Service(object):
instance = None
def __new__(cls):
if cls.instance is not None:
return cls.instance
else:
inst = cls.instance = super(Service, cls).__new__()
return inst
And now you import it wherever you want in the rest of the code
from services import Service
Service().do_action()
Adding to the answer given by bruno desthuilliers and TreantBG.
There are certain questions that you can ask about the requirements.
For example one question could be, does the api being called change with different type of objects ?
If the api doesn't change, you will probably be okay with keeping it as a method in some file or class.
If it does change, such that you are calling API 1 for some scenario, API 2 for some and so on and so forth, you will likely be better off with moving/abstracting this logic out to some class (from a better code organisation point of view).
PS: Python allows you to be as flexible as you want when it comes to code organisation. It's really upto you to decide on how you want to organise the code.

A technique for a C++-to-Python migrant to lessen the impact of missing identifier declarations

Before coming to a concrete example, let me mention the problem. As a beginning Python programmer with extensive experience in C++, I'm always missing variable declarations. I could yield to the temptation of documenting the type of every nontrivial identifier, but I have a feeling that that would not be terribly pythonic. For one thing, it would be silly that neither the interpreter nor any tool parse these informal declarations. And if the interpreter did, that would be an entirely different language.
As an alternative to writing mere comments, I am contemplating switching to a mode of creating datatypes whose only purpose is to enforce types/interfaces. They would streamline the code and would make me detect type errors at earlier stages. For this convenience I would be paying a little loss in efficiency from the indirection.
For example, to avoid writing as a comment "Dictionary of Employee objects indexed by employeeID", I would write a wrapper class called "EmployeeDict", whose interface would limit the operations that can/cannot be performed.
Would such an idea fly in the long term? Does it defeat the spirit of Python in some way? Is it used by experienced Pythonistas?
For those conversant in C++, I would in other words be translating
typedef std::map<EmployeeId, Employee> MyMap;
into a type. (Though I am not actually porting any code across.)
Update
Even if it's unphythonic, as HumphreyTriscuit confirms, I am loath to write comments that get read by humans without also automating a little the type checking. It's nice that this issue is resolved in 3.5, but I'm stuck for the time being with 2.7, and so I'll mark jsbueno's answer correct until someone can suggest a way—à la "assert isinstance(param, dict)", but one that also concisely confirms the type of the key/value, somewhat paralleling C++—to solve this problem in 2.7.
Actually, as of Python 3.5, the language comes bundled with tools for parameter type annotations that is introspectable by third party tools- of which tehre might be some ut there already.
Anyway, take a look at https://www.python.org/dev/peps/pep-0484/
Even if you don't use any other tools - the way described on PEP 484 above is the "Pythonic way" of declaring types, that won't conflict with other 3rd party tools. So,if you want to write a tool chain of yours as you describe, you should start by creating using function annotations as described on that PEP.
That is good for documenting (and enfocing if the case be), parameters and return values. For class attributes, you can check this answer of mine, based on crafting a special __setitem__ method on a abse class of your hierarchy:
Force python class member variable to be specific type
As for local variables - there is no way to enforce/check their type but code comments.
And a last advise to keep you "on the Python way" remember to be permissive and check for interfaces, rather than specific classes.

understanding proper python code organization [duplicate]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
Much of my programming background is in Java, and I'm still doing most of my programming in Java. However, I'm starting to learn Python for some side projects at work, and I'd like to learn it as independent of my Java background as possible - i.e. I don't want to just program Java in Python. What are some things I should look out for?
A quick example - when looking through the Python tutorial, I came across the fact that defaulted mutable parameters of a function (such as a list) are persisted (remembered from call to call). This was counter-intuitive to me as a Java programmer and hard to get my head around. (See here and here if you don't understand the example.)
Someone also provided me with this list, which I found helpful, but short. Anyone have any other examples of how a Java programmer might tend to misuse Python...? Or things a Java programmer would falsely assume or have trouble understanding?
Edit: Ok, a brief overview of the reasons addressed by the article I linked to to prevent duplicates in the answers (as suggested by Bill the Lizard). (Please let me know if I make a mistake in phrasing, I've only just started with Python so I may not understand all the concepts fully. And a disclaimer - these are going to be very brief, so if you don't understand what it's getting at check out the link.)
A static method in Java does not translate to a Python classmethod
A switch statement in Java translates to a hash table in Python
Don't use XML
Getters and setters are evil (hey, I'm just quoting :) )
Code duplication is often a necessary evil in Java (e.g. method overloading), but not in Python
(And if you find this question at all interesting, check out the link anyway. :) It's quite good.)
Don't put everything into classes. Python's built-in list and dictionaries will take you far.
Don't worry about keeping one class per module. Divide modules by purpose, not by class.
Use inheritance for behavior, not interfaces. Don't create an "Animal" class for "Dog" and "Cat" to inherit from, just so you can have a generic "make_sound" method.
Just do this:
class Dog(object):
def make_sound(self):
return "woof!"
class Cat(object):
def make_sound(self):
return "meow!"
class LolCat(object):
def make_sound(self):
return "i can has cheezburger?"
The referenced article has some good advice that can easily be misquoted and misunderstood. And some bad advice.
Leave Java behind. Start fresh. "do not trust your [Java-based] instincts". Saying things are "counter-intuitive" is a bad habit in any programming discipline. When learning a new language, start fresh, and drop your habits. Your intuition must be wrong.
Languages are different. Otherwise, they'd be the same language with different syntax, and there'd be simple translators. Because there are not simple translators, there's no simple mapping. That means that intuition is unhelpful and dangerous.
"A static method in Java does not translate to a Python classmethod." This kind of thing is really limited and unhelpful. Python has a staticmethod decorator. It also has a classmethod decorator, for which Java has no equivalent.
This point, BTW, also included the much more helpful advice on not needlessly wrapping everything in a class. "The idiomatic translation of a Java static method is usually a module-level function".
The Java switch statement in Java can be implemented several ways. First, and foremost, it's usually an if elif elif elif construct. The article is unhelpful in this respect. If you're absolutely sure this is too slow (and can prove it) you can use a Python dictionary as a slightly faster mapping from value to block of code. Blindly translating switch to dictionary (without thinking) is really bad advice.
Don't use XML. Doesn't make sense when taken out of context. In context it means don't rely on XML to add flexibility. Java relies on describing stuff in XML; WSDL files, for example, repeat information that's obvious from inspecting the code. Python relies on introspection instead of restating everything in XML.
But Python has excellent XML processing libraries. Several.
Getters and setters are not required in Python they way they're required in Java. First, you have better introspection in Python, so you don't need getters and setters to help make dynamic bean objects. (For that, you use collections.namedtuple).
However, you have the property decorator which will bundle getters (and setters) into an attribute-like construct. The point is that Python prefers naked attributes; when necessary, we can bundle getters and setters to appear as if there's a simple attribute.
Also, Python has descriptor classes if properties aren't sophisticated enough.
Code duplication is often a necessary evil in Java (e.g. method overloading), but not in Python. Correct. Python uses optional arguments instead of method overloading.
The bullet point went on to talk about closure; that isn't as helpful as the simple advice to use default argument values wisely.
One thing you might be used to in Java that you won't find in Python is strict privacy. This is not so much something to look out for as it is something not to look for (I am embarrassed by how long I searched for a Python equivalent to 'private' when I started out!). Instead, Python has much more transparency and easier introspection than Java. This falls under what is sometimes described as the "we're all consenting adults here" philosophy. There are a few conventions and language mechanisms to help prevent accidental use of "unpublic" methods and so forth, but the whole mindset of information hiding is virtually absent in Python.
The biggest one I can think of is not understanding or not fully utilizing duck typing. In Java you're required to specify very explicit and detailed type information upfront. In Python typing is both dynamic and largely implicit. The philosophy is that you should be thinking about your program at a higher level than nominal types. For example, in Python, you don't use inheritance to model substitutability. Substitutability comes by default as a result of duck typing. Inheritance is only a programmer convenience for reusing implementation.
Similarly, the Pythonic idiom is "beg forgiveness, don't ask permission". Explicit typing is considered evil. Don't check whether a parameter is a certain type upfront. Just try to do whatever you need to do with the parameter. If it doesn't conform to the proper interface, it will throw a very clear exception and you will be able to find the problem very quickly. If someone passes a parameter of a type that was nominally unexpected but has the same interface as what you expected, then you've gained flexibility for free.
The most important thing, from a Java POV, is that it's perfectly ok to not make classes for everything. There are many situations where a procedural approach is simpler and shorter.
The next most important thing is that you will have to get over the notion that the type of an object controls what it may do; rather, the code controls what objects must be able to support at runtime (this is by virtue of duck-typing).
Oh, and use native lists and dicts (not customized descendants) as far as possible.
The way exceptions are treated in Python is different from
how they are treated in Java. While in Java the advice
is to use exceptions only for exceptional conditions this is not
so with Python.
In Python things like Iterator makes use of exception mechanism to signal that there are no more items.But such a design is not considered as good practice in Java.
As Alex Martelli puts in his book Python in a Nutshell
the exception mechanism with other languages (and applicable to Java)
is LBYL (Look Before You Leap) :
is to check in advance, before attempting an operation, for all circumstances that might make the operation invalid.
Where as with Python the approach is EAFP (it's easier to Ask for forgiveness than permission)
A corrollary to "Don't use classes for everything": callbacks.
The Java way for doing callbacks relies on passing objects that implement the callback interface (for example ActionListener with its actionPerformed() method). Nothing of this sort is necessary in Python, you can directly pass methods or even locally defined functions:
def handler():
print("click!")
button.onclick(handler)
Or even lambdas:
button.onclick(lambda: print("click!\n"))

Should methods in a class be classmethod by default?

I was just working on a large class hierarchy and thought that probably all methods in a class should be classmethods by default.
I mean that it is very rare that one needs to change the actual method for an object, and whatever variables one needs can be passed in explicitly. Also, this way there would be lesser number of methods where people could change the object itself (more typing to do it the other way), and people would be more inclined to be "functional" by default.
But, I am a newb and would like to find out the flaws in my idea (if there are any :).
Having classmethods as a default is a well-known but outdated paradigm. It's called Modular Programming. Your classes become effectively modules this way.
The Object-Oriented Paradigm (OOP) is mostly considered superior to the Modular Paradigm (and it is younger). The main difference is exactly that parts of code are associated by default to a group of data (called an object) — and thus not classmethods.
It turns out in practice that this is much more useful. Combined with other OOP architectural ideas like inheritance this offers directer ways to represent the models in the heads of the developers.
Using object methods I can write abstract code which can be used for objects of various types; I don't have to know the type of the objects while writing my routine. E. g. I can write a max() routine which compares the elements of a list with each other to find the greatest. Comparing then is done using the > operator which is effectively an object method of the element (in Python this is __gt__(), in C++ it would be operator>() etc.). Now the object itself (maybe a number, maybe a date, etc.) can handle the comparison of itself with another of its type. In code this can be written as short as
a > b # in Python this calls a.__gt__(b)
while with only having classmethods you would have to write it as
type(a).__gt__(a, b)
which is much less readable.
If the method doesn't access any of an object's state, but is specific to that object's class, then it's a good candidate for being a classmethod.
Otherwise if it's more general, then just use a function defined at module level, no need to make it belong to a specific class.
I've found that classmethods are actually pretty rare in practice, and certainly not the default. There should be plenty of good code out there (on e.g. github) to get examples from.

Why do pythonistas call the current reference "self" and not "this"?

Python is the language I know the most, and strangely I still don't know why I'm typing "self" and not "this" like in Java or PHP.
I know that Python is older than Java, but I can't figure out where does this come from. Especially since you can use any name instead of "self": the program will work fine.
So where does this convention come from?
Smalltalk-80, released by Xerox in 1980, used self. Objective-C (early 1980s) layers Smalltalk features over C, so it uses self too. Modula-3 (1988), Python (late 1980s), and Ruby (mid 1990s) also follow this tradition.
C++, also dating from the early 1980s, chose this instead of self. Since Java was designed to be familiar to C/C++ developers, it uses this too.
Smalltalk uses the metaphor of objects sending messages to each other, so "self" just indicates that the object is sending a message to itself.
Check the history of Python for user defined classes:
Instead, one simply defines a function whose first argument corresponds to the instance, which by convention is named "self." For example:
def spam(self,y):
print self.x, y
This approach resembles something I
had seen in Modula-3, which had
already provided me with the syntax
for import and exception handling.
It's a choice as good as any other. You might ask why C++, Java, and C# chose "this" just as easily.
Smalltalk, which predates Java of course.
With respect to python, there is nothing special about self. You can use this instead if you wanted:
Here's an example:
>>> class A(object):
... def __init__(this):
... this.x = 3
...
>>> a = A()
>>> a.x
3
Although you could name it whatever you want, self is the convention for the first argument of a class function. Check out paragraph 5 of section 9.4 in the python documentation, which says:
Often, the first argument of a method is called self. This is nothing
more than a convention: the name self has absolutely no special
meaning to Python. Note, however, that by not following the convention
your code may be less readable to other Python programmers, and it is
also conceivable that a class browser program might be written that
relies upon such a convention.
As for the convention, it started out in Smalltalk, but is also used in Object Pascal, Python, Ruby, and Objective-C. This answer has a great explanation.
Python follows Smalltalk's footsteps in the aspect - self is used in Smalltalk as well. I guess the real question should be 'why did Bjarne decide to use this in C++'...
The primary inspiration was Modula-3, which Guido was introduced to at DEC:
the Modula-3 final report was being
written there at about the same time.
What I learned there showed up in
Python's exception handling, modules,
and the fact that methods explicitly
contain “self” in their parameter
list.
-- Guido, Linux Journal Interviews Guido van Rossum
I think that since it's explicitly declared it makes more sense seeing an actual argument called "self" rather than "this". From the grammatical point of view at least, "self" is not as context dependent as "this".
I don't know if I made myself clear enough, but anyway this is just a subjective appreciation.
self is not a keyword (*).
self represents by convention the address of the current object
You can get more info on self here.
Why not this ? well it is a convention for a name. You can use this for your code if you like it better.
(*) This answer has been ported and merged here from a question asking why 'self' instead of 'this' keyword. As the clarification in this first line could be useful for others I keep it here.

Categories

Resources