Can you recommend an Amazon AMI for Python? - python

I want to remove as much complexity as I can from administering Python in on Amazon EC2 following some truly awful experiences with hosting providers who claim support for Python. I am looking for some guidance on which AMI to choose so that I have a stable and easily managed environment which already included Python and ideally an Apache web server and a database.
I am agnostic to Python version, web server, DB and OS as I am still early enough in my development cycle that I can influence those choices. Cost is not a consideration (within bounds) so Windows will work fine if it means easy administration.
Anyone have any practical experience or recommendations they can share?

Try the Ubuntu EC2 images. Python 2.7 is installed by default. The rest you just apt-get install and optionally create an image when the baseline is the way you want it (or just maintain a script that installs all the pieces and run after you create the base Ubuntu instance).

If you can get by with using the Amazon provided ones, I'd recommend it. I tend to use ami-84db39ed.
Honestly though, if you plan on leaving this running all the time, you would probably save a bit of money by just going with a VPS. Amazon tends to be cheaper if you are turning the service on and off over time.

Related

Push updates to python desktop apps

I'm working in a small CG animation company that does need small tools for production and CG artists. I'm coming from an animator's background, so my knowledge of code is extremely basic, but I'm learning.
Here is the situation: I write python tools, most are using PySide for GUI. Now I need to regularly and easily deploy tools and updates to the machines in our studio (about 20 computers).
We do want to do things the right way and are willing to learn, but the amount of information is quite overwhelming for I am a neophyte.
I keep reading about various scary keywords that seem to be the answer I'm looking for, such as DevOps, CI/CD, Docker, Kubernetes...
We are setting up a Gitlab instance on our local server, and now I'm asking what would be the most suitable way to easily deploy my scripts and their requested environment easily onto the company's computers (MacOs, Windows, and Linux), and how should I package them.
I hope my question isn't vague but if so, please tell me and I'll try to be more precise.
Thanks a lot
pyupdater seems to do just what you're trying to do.
have a look at pyupdater.org and this demo.

Run multiple Python scripts in Azure (using Docker?)

I have a Python script that consumes an Azure queue, and I would like to scale this easily inside Azure infrastructure. I'm looking for the easiest solution possible to
run the Python script in an environment that is as managed as possible
have a centralized way to see the scripts running and their output, and easily scale the amount of scripts running through a GUI or something very easy to use
I'm looking at Docker at the moment, but this seems very complicated for the extremely simple task I'm trying to achieve. What possible approaches are known to do this? An added bonus would be if I could scale wrt the amount of items on the queue, but it is fine if we'd just be able to manually control the amount of parallelism.
You should have a look at Azure Web Apps, which also support Python.
This would be a managed and scaleable environment and also supports background tasks (WebJobs) with a central logging.
Azure Web Apps also offer a free plan for development and testing.
Per my experience, I think CoreOS on Azure can satisfy your needs. You can try to refer to the doc https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-coreos-how-to/ to know how to get started.
CoreOS is a Linux distribution for running Docker as Linux container, that you can remote access via SSH client like putty. For using Docker, you can search the key words Docker tutorial via Bing to rapidly learning some simple usage that enough for running Python scripts.
Sounds to me like you are describing something like a micro-services architecture. From that perspective, Docker is a great choice. I recommend you consider using an orchestration framework such as Apache Mesos or Docker Swarm which will allow you to run your containers on a cluster of VMs with the ability to easily scale, deploy new versions, rollback and implement load balancing. The schedulers Mesos supports (Marathon and Chronos) also have a Web UI. I believe you can also implement some kind of triggered scaling like you describe but that will probably not be off the shelf.
This does seem like a bit of a learning curve but I think is worth it especially once you start considering the complexities of deploying new versions (with possible rollbacks), monitoring failures and even integrating things like Jenkins and continuous delivery.
For Azure, an easy way to deploy and configure a Mesos or Swarm cluster is by using Azure Container Service (ACS) which does all the hard work of configuring the cluster for you. Find additional info here: https://azure.microsoft.com/en-us/documentation/articles/container-service-intro/

How to build a web service with one sandboxed Python (VM) per request

As part of an effort to make the scikit-image examples gallery interactive, I would like to build a web service that receives a Python code snippet, executes it, and provides me with the generated output image.
For safety, the Python instances launched should be sandboxed and resource controlled, so I was thinking of using LXC containers.
Is this a good way to approach the problem? If so, what is the recommended way of launching one Python VM per request?
Stefan, perhaps "Docker" could be of use? I get the impression that you could constrain the VM that the application is run in -- an example web service:
http://docs.docker.io/en/latest/examples/python_web_app/
You could try running the application on Digital Ocean, like so:
https://www.digitalocean.com/community/articles/how-to-install-and-use-docker-getting-started
[disclaimer: I'm an engineer at Continuum working on Wakari]
Wakari Enterprise (http://enterprise.wakari.io) is aiming to do exactly this, and we're hoping to back-port the functionality into Wakari Cloud (http://wakari.io) so "published" IPython Notebooks can have some knobs on them for variable input control, then they can be "invoked" in a sandboxed state, and then the output given back to the user.
However for things that exist now, you should look at Sage Notebook. A few years ago several people worked hard on a Sage Notebook Cell Server that could do exactly what you were asking for: execute small code snippets. I haven't followed it since then, but it seems it is still alive and well from a quick search:
http://sagecell.sagemath.org/?q=ejwwif
http://sagecell.sagemath.org
http://www.sagemath.org/eval.html
For the last URL, check out Graphics->Mandelbrot and you can see that Sage already has some great capabilities for UI widgets that are tied to the "cell execution".
I think docker is the way to go for this. The instances are very light weight, and docker is designed to spawn 100s of instances at a time (Spin up time is fractions of a second vs traditional VMs couple of seconds). Configured correctly I believe it also gives you a complete sandboxed environment. Then it matters not about trying to sandbox python :-D
I'm not sure if you really have to go as far as setting up LXC containers:
There is seccomp-nurse, a Python sandbox that leverages the seccomp feature of the Linux kernel.
Another option would be to use PyPy, which has explicit support for sandboxing out of the box.
In any case, do not use pysandbox, it is broken by design and has severe security risks.

Alternatives to Hadoop / Map-reduce framework for win32 platform

I'm finding Hadoop on Windows somewhat frustrating: I want to know if there are any serious alternatives to Hadoop for Win32 users. The features I most value are:
Ease of initial setup & deployment on a smallish network (I'd be astonished if we ever got more than 20 worker-PCs assigned to this project)
Ease of management - the ideal framework should have web/GUI based administration system so that I do not have to write one myself.
Something popular & stable. Bonuses depend on us getting this project delivered in time.
BACKGROUND:
The company I work for wants to build a new grid system to run some financial calculations.
The first framework I have been evaluating is Hadoop. This seemed to do exactly what was intended except that it's very UNIX oriented. I was able to get all of the tutorials up & running on an Ubuntu VirtualBox. Unfortunately nothing seems to run easily on Win32.
Yes... Win32: Our company has a policy that everything has to run on Windows. None of the server admins (or anybody outside of select few developers) know anything about Linux. I'd probably get in trouble if they found my virtual Ubuntu environment! The sad fact is that our grid needs to be hosted on Win32 (since all the test PCs run Windows XP 32bit), with an option to upgrade to Win64 at sometime in the future.
To complicate matters - 95% of what we want to run are Python scripts with C++ Windows 32bit DLL add ons. Our calculation library is overwhelmingly written in Python. Our calculation libraries will not run on anything other than Windows... I do not really have a choice
For python there is:
disco
bigtempo
celery - not really a map-reduce framework, but it's a good start if you want something very customized
And you can find a bunch of hadoop clients/integrations on pypi
You could try MPI. It is a standard for message-passing concurrent applications. We are running it on our Linux cluster but it is cross-platform. The most popular implementation is mpich2, written in C. There are python bindings for MPI through the mpi4py library.
IPython has some parallel computing features that are simple and work on windows. It may be enough for your needs. Here's a good place to start:
http://showmedo.com/videotutorials/video?name=7200100&fromSeriesID=720
I've compiled a list of available MapReduce/Hadoop offerings in the cloud (hosted services, PaaS-level), this might be of help as well.
Many distributed computing frameworks can be used for many-task computing. If you don't need the MapReduce paradigm, but rather the ability to distribute the tasks of a job across separate computers, communication and resource management, then you could take a look at other platforms in this area like Condor, or even Boinc; both run on Windows.
You could also run Hadoop on Linux virtual machines.

For Python support, what company would be best to get hosting from?

I want to be able to run WSGI apps but my current hosting restricts it. Does anybody know a company that can accommodate my requirements?
My automatic response would be WebFaction.
I haven't personally hosted with them, but they are primarily Python-oriented (founded by the guy who wrote CherryPy, for example, and as far as I know they were the first to roll out Python 3.0 support).
I am a big fan of Slicehost -- you get root access to a virtual server that takes about 2 minutes to install from stock OS images. The 256m slice, which has been enough for me, is US$20/mo -- it is cheaper than keeping an old box plugged in, and easy to back up. Very easy to recommend.
Plug plug for PythonAnywhere, our own modest offering in this space.
We offer free hosting for basic web apps, with 1-click config for popular frameworks like Django, Flask, Web2py etc. MySql is included, and you also get full suite of browser-based development tools like an editor and a console...
I have been using WebFaction for years and very happy with the service. They are not only python oriented. You should be able to run anything within the limitations of shared hosting (unless of course you have a dedicated server).
They are probably not the cheapest hosting service though. I don't know the prices. But I can still remember very well my previous hosting provider was unreachable for a week (not their servers, I mean the people).
I've been pretty happy with Dreamhost, and of course Google AppEngine.
Google App engine and OpenHosting.com
Have virtual server by OpenHosting, they are ultra fast with support and have very high uptime.
Check out http://pythonplugged.com/
They are trying to collect information on Python hosting providers using variuos technologies (CGI, FCGI, mod_python, mod_wsgi, etc)
I advise you to have a look at http://www.python-cloud.com
This PaaS platform can automatically scale up and down your application regarding your traffic. You can also finely customize if you want vertical, horizontal or both types of scalability. The consequence of this scaling is that you pay as you go : you only pay for your real consumption and not the potential one.
Deployment via git.
Non AWS, hosted in tier-4+ datacenters.
Free trial ;)
I use AWS micro server, 1 year free and after that you can get a 3 year reserved which works out to about $75/yr :) The micro server has only 20MB/sec throughput, ~600MB of ram, and a slower CPU. I run a few Mezzanine sites on mine and it seems fine.

Categories

Resources