Python recursive function error: "maximum recursion depth exceeded" [duplicate] - python

This question already has answers here:
What is the maximum recursion depth in Python, and how to increase it?
(19 answers)
Closed 5 years ago.
I solved Problem 10 of Project Euler with the following code, which works through brute force:
def isPrime(n):
for x in range(2, int(n**0.5)+1):
if n % x == 0:
return False
return True
def primeList(n):
primes = []
for i in range(2,n):
if isPrime(i):
primes.append(i)
return primes
def sumPrimes(primelist):
prime_sum = sum(primelist)
return prime_sum
print (sumPrimes(primeList(2000000)))
The three functions work as follows:
isPrime checks whether a number is a prime;
primeList returns a list containing a set of prime numbers for a certain range with limit 'n', and;
sumPrimes sums up the values of all numbers in a list. (This last function isn't needed, but I liked the clarity of it, especially for a beginner like me.)
I then wrote a new function, primeListRec, which does exactly the same thing as primeList, to help me better understand recursion:
def primeListRec(i, n):
primes = []
#print i
if (i != n):
primes.extend(primeListRec(i+1,n))
if (isPrime(i)):
primes.append(i)
return primes
return primes
The above recursive function worked, but only for very small values, like '500'. The function caused my program to crash when I put in '1000'. And when I put in a value like '2000', Python gave me this:
RuntimeError: maximum recursion depth exceeded.
What did I do wrong with my recursive function? Or is there some specific way to avoid a recursion limit?

Recursion is not the most idiomatic way to do things in Python, as it doesn't have tail recursion optimization thus making impractical the use of recursion as a substitute for iteration (even if in your example the function is not tail-recursive, that wouldn't help anyway). Basically, that means that you shouldn't use it for things that have a complexity greater than linear if you expect your inputs to be large, (still it's OK for doing things that have a logarithmic recursion depth, like divide and conquer algorithms as QuickSort).
If you want to try that approach, use a language better suited to do functional programming, as Lisp, Scheme, Haskell, OCaml, etc.; or give a try to Stackless Python, that has broader limits in stack usage and also has tail recursion optimisation :-)
By the way, a tail-recursive equivalent of your function could be:
def primeList(n, i=2, acc=None):
return i > n and (acc or []) or primeList(n, i+1, (acc or []) + (isPrime(i) and [i] or []))
Another "by the way", you shouldn't construct a list if you're using it just to add up the values... The Pythonic way to solve Project Euler's 10th problem is:
print sum(n for n in xrange(2, 2000001) if all(n % i for i in xrange(2, int(n**0.5)+1)))
(OK, maybe splitting it in various lines would be even more Pythonic, but I love one liners ^_^)

Like already said, in languages that can't deal with deep stacks it's better to take an iterative approach. In your case, in particular, it's best to change the algorithm used. I suggest using the Sieve of Eratosthenes to find the list of prime numbers. It will be quite faster than your current program.

Well I'm no python expert but I presume you've hit the stack limit. That's the problem with recursion, it's great when you don't have to recurse very many times but no good when the number of recursions gets even moderately big.
The ideal alternative is to rewrite your algorithm to use iteration instead.
Edit: Actually having looked closer your specific error you can get past it by changing sys.getrecursionlimit. That'll only take you so far though. Eventually you'll get a stackoverflow exception which brings me back to my original point.

You're iterating over n numbers and recursing at each step. Therefore Python's recursion limit defines your maximum input number. That's obviously undesirable. Especially because the Euler problems typically deal with pretty large numbers.

You can do it in a dirty way:
try: function() except: function()

Related

What happens when the function is called inside itself (Python) [duplicate]

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
One of the topics that seems to come up regularly on mailing lists and online discussions is the merits (or lack thereof) of doing a Computer Science Degree. An argument that seems to come up time and again for the negative party is that they have been coding for some number of years and they have never used recursion.
So the question is:
What is recursion?
When would I use recursion?
Why don't people use recursion?
There are a number of good explanations of recursion in this thread, this answer is about why you shouldn't use it in most languages.* In the majority of major imperative language implementations (i.e. every major implementation of C, C++, Basic, Python, Ruby,Java, and C#) iteration is vastly preferable to recursion.
To see why, walk through the steps that the above languages use to call a function:
space is carved out on the stack for the function's arguments and local variables
the function's arguments are copied into this new space
control jumps to the function
the function's code runs
the function's result is copied into a return value
the stack is rewound to its previous position
control jumps back to where the function was called
Doing all of these steps takes time, usually a little bit more than it takes to iterate through a loop. However, the real problem is in step #1. When many programs start, they allocate a single chunk of memory for their stack, and when they run out of that memory (often, but not always due to recursion), the program crashes due to a stack overflow.
So in these languages recursion is slower and it makes you vulnerable to crashing. There are still some arguments for using it though. In general, code written recursively is shorter and a bit more elegant, once you know how to read it.
There is a technique that language implementers can use called tail call optimization which can eliminate some classes of stack overflow. Put succinctly: if a function's return expression is simply the result of a function call, then you don't need to add a new level onto the stack, you can reuse the current one for the function being called. Regrettably, few imperative language-implementations have tail-call optimization built in.
* I love recursion. My favorite static language doesn't use loops at all, recursion is the only way to do something repeatedly. I just don't think that recursion is generally a good idea in languages that aren't tuned for it.
** By the way Mario, the typical name for your ArrangeString function is "join", and I'd be surprised if your language of choice doesn't already have an implementation of it.
Simple english example of recursion.
A child couldn't sleep, so her mother told her a story about a little frog,
who couldn't sleep, so the frog's mother told her a story about a little bear,
who couldn't sleep, so the bear's mother told her a story about a little weasel...
who fell asleep.
...and the little bear fell asleep;
...and the little frog fell asleep;
...and the child fell asleep.
In the most basic computer science sense, recursion is a function that calls itself. Say you have a linked list structure:
struct Node {
Node* next;
};
And you want to find out how long a linked list is you can do this with recursion:
int length(const Node* list) {
if (!list->next) {
return 1;
} else {
return 1 + length(list->next);
}
}
(This could of course be done with a for loop as well, but is useful as an illustration of the concept)
Whenever a function calls itself, creating a loop, then that's recursion. As with anything there are good uses and bad uses for recursion.
The most simple example is tail recursion where the very last line of the function is a call to itself:
int FloorByTen(int num)
{
if (num % 10 == 0)
return num;
else
return FloorByTen(num-1);
}
However, this is a lame, almost pointless example because it can easily be replaced by more efficient iteration. After all, recursion suffers from function call overhead, which in the example above could be substantial compared to the operation inside the function itself.
So the whole reason to do recursion rather than iteration should be to take advantage of the call stack to do some clever stuff. For example, if you call a function multiple times with different parameters inside the same loop then that's a way to accomplish branching. A classic example is the Sierpinski triangle.
You can draw one of those very simply with recursion, where the call stack branches in 3 directions:
private void BuildVertices(double x, double y, double len)
{
if (len > 0.002)
{
mesh.Positions.Add(new Point3D(x, y + len, -len));
mesh.Positions.Add(new Point3D(x - len, y - len, -len));
mesh.Positions.Add(new Point3D(x + len, y - len, -len));
len *= 0.5;
BuildVertices(x, y + len, len);
BuildVertices(x - len, y - len, len);
BuildVertices(x + len, y - len, len);
}
}
If you attempt to do the same thing with iteration I think you'll find it takes a lot more code to accomplish.
Other common use cases might include traversing hierarchies, e.g. website crawlers, directory comparisons, etc.
Conclusion
In practical terms, recursion makes the most sense whenever you need iterative branching.
Recursion is a method of solving problems based on the divide and conquer mentality.
The basic idea is that you take the original problem and divide it into smaller (more easily solved) instances of itself, solve those smaller instances (usually by using the same algorithm again) and then reassemble them into the final solution.
The canonical example is a routine to generate the Factorial of n. The Factorial of n is calculated by multiplying all of the numbers between 1 and n. An iterative solution in C# looks like this:
public int Fact(int n)
{
int fact = 1;
for( int i = 2; i <= n; i++)
{
fact = fact * i;
}
return fact;
}
There's nothing surprising about the iterative solution and it should make sense to anyone familiar with C#.
The recursive solution is found by recognising that the nth Factorial is n * Fact(n-1). Or to put it another way, if you know what a particular Factorial number is you can calculate the next one. Here is the recursive solution in C#:
public int FactRec(int n)
{
if( n < 2 )
{
return 1;
}
return n * FactRec( n - 1 );
}
The first part of this function is known as a Base Case (or sometimes Guard Clause) and is what prevents the algorithm from running forever. It just returns the value 1 whenever the function is called with a value of 1 or less. The second part is more interesting and is known as the Recursive Step. Here we call the same method with a slightly modified parameter (we decrement it by 1) and then multiply the result with our copy of n.
When first encountered this can be kind of confusing so it's instructive to examine how it works when run. Imagine that we call FactRec(5). We enter the routine, are not picked up by the base case and so we end up like this:
// In FactRec(5)
return 5 * FactRec( 5 - 1 );
// which is
return 5 * FactRec(4);
If we re-enter the method with the parameter 4 we are again not stopped by the guard clause and so we end up at:
// In FactRec(4)
return 4 * FactRec(3);
If we substitute this return value into the return value above we get
// In FactRec(5)
return 5 * (4 * FactRec(3));
This should give you a clue as to how the final solution is arrived at so we'll fast track and show each step on the way down:
return 5 * (4 * FactRec(3));
return 5 * (4 * (3 * FactRec(2)));
return 5 * (4 * (3 * (2 * FactRec(1))));
return 5 * (4 * (3 * (2 * (1))));
That final substitution happens when the base case is triggered. At this point we have a simple algrebraic formula to solve which equates directly to the definition of Factorials in the first place.
It's instructive to note that every call into the method results in either a base case being triggered or a call to the same method where the parameters are closer to a base case (often called a recursive call). If this is not the case then the method will run forever.
Recursion is solving a problem with a function that calls itself. A good example of this is a factorial function. Factorial is a math problem where factorial of 5, for example, is 5 * 4 * 3 * 2 * 1. This function solves this in C# for positive integers (not tested - there may be a bug).
public int Factorial(int n)
{
if (n <= 1)
return 1;
return n * Factorial(n - 1);
}
Recursion refers to a method which solves a problem by solving a smaller version of the problem and then using that result plus some other computation to formulate the answer to the original problem. Often times, in the process of solving the smaller version, the method will solve a yet smaller version of the problem, and so on, until it reaches a "base case" which is trivial to solve.
For instance, to calculate a factorial for the number X, one can represent it as X times the factorial of X-1. Thus, the method "recurses" to find the factorial of X-1, and then multiplies whatever it got by X to give a final answer. Of course, to find the factorial of X-1, it'll first calculate the factorial of X-2, and so on. The base case would be when X is 0 or 1, in which case it knows to return 1 since 0! = 1! = 1.
Consider an old, well known problem:
In mathematics, the greatest common divisor (gcd) … of two or more non-zero integers, is the largest positive integer that divides the numbers without a remainder.
The definition of gcd is surprisingly simple:
where mod is the modulo operator (that is, the remainder after integer division).
In English, this definition says the greatest common divisor of any number and zero is that number, and the greatest common divisor of two numbers m and n is the greatest common divisor of n and the remainder after dividing m by n.
If you'd like to know why this works, see the Wikipedia article on the Euclidean algorithm.
Let's compute gcd(10, 8) as an example. Each step is equal to the one just before it:
gcd(10, 8)
gcd(10, 10 mod 8)
gcd(8, 2)
gcd(8, 8 mod 2)
gcd(2, 0)
2
In the first step, 8 does not equal zero, so the second part of the definition applies. 10 mod 8 = 2 because 8 goes into 10 once with a remainder of 2. At step 3, the second part applies again, but this time 8 mod 2 = 0 because 2 divides 8 with no remainder. At step 5, the second argument is 0, so the answer is 2.
Did you notice that gcd appears on both the left and right sides of the equals sign? A mathematician would say this definition is recursive because the expression you're defining recurs inside its definition.
Recursive definitions tend to be elegant. For example, a recursive definition for the sum of a list is
sum l =
if empty(l)
return 0
else
return head(l) + sum(tail(l))
where head is the first element in a list and tail is the rest of the list. Note that sum recurs inside its definition at the end.
Maybe you'd prefer the maximum value in a list instead:
max l =
if empty(l)
error
elsif length(l) = 1
return head(l)
else
tailmax = max(tail(l))
if head(l) > tailmax
return head(l)
else
return tailmax
You might define multiplication of non-negative integers recursively to turn it into a series of additions:
a * b =
if b = 0
return 0
else
return a + (a * (b - 1))
If that bit about transforming multiplication into a series of additions doesn't make sense, try expanding a few simple examples to see how it works.
Merge sort has a lovely recursive definition:
sort(l) =
if empty(l) or length(l) = 1
return l
else
(left,right) = split l
return merge(sort(left), sort(right))
Recursive definitions are all around if you know what to look for. Notice how all of these definitions have very simple base cases, e.g., gcd(m, 0) = m. The recursive cases whittle away at the problem to get down to the easy answers.
With this understanding, you can now appreciate the other algorithms in Wikipedia's article on recursion!
A function that calls itself
When a function can be (easily) decomposed into a simple operation plus the same function on some smaller portion of the problem. I should say, rather, that this makes it a good candidate for recursion.
They do!
The canonical example is the factorial which looks like:
int fact(int a)
{
if(a==1)
return 1;
return a*fact(a-1);
}
In general, recursion isn't necessarily fast (function call overhead tends to be high because recursive functions tend to be small, see above) and can suffer from some problems (stack overflow anyone?). Some say they tend to be hard to get 'right' in non-trivial cases but I don't really buy into that. In some situations, recursion makes the most sense and is the most elegant and clear way to write a particular function. It should be noted that some languages favor recursive solutions and optimize them much more (LISP comes to mind).
A recursive function is one which calls itself. The most common reason I've found to use it is traversing a tree structure. For example, if I have a TreeView with checkboxes (think installation of a new program, "choose features to install" page), I might want a "check all" button which would be something like this (pseudocode):
function cmdCheckAllClick {
checkRecursively(TreeView1.RootNode);
}
function checkRecursively(Node n) {
n.Checked = True;
foreach ( n.Children as child ) {
checkRecursively(child);
}
}
So you can see that the checkRecursively first checks the node which it is passed, then calls itself for each of that node's children.
You do need to be a bit careful with recursion. If you get into an infinite recursive loop, you will get a Stack Overflow exception :)
I can't think of a reason why people shouldn't use it, when appropriate. It is useful in some circumstances, and not in others.
I think that because it's an interesting technique, some coders perhaps end up using it more often than they should, without real justification. This has given recursion a bad name in some circles.
Recursion is an expression directly or indirectly referencing itself.
Consider recursive acronyms as a simple example:
GNU stands for GNU's Not Unix
PHP stands for PHP: Hypertext Preprocessor
YAML stands for YAML Ain't Markup Language
WINE stands for Wine Is Not an Emulator
VISA stands for Visa International Service Association
More examples on Wikipedia
Recursion works best with what I like to call "fractal problems", where you're dealing with a big thing that's made of smaller versions of that big thing, each of which is an even smaller version of the big thing, and so on. If you ever have to traverse or search through something like a tree or nested identical structures, you've got a problem that might be a good candidate for recursion.
People avoid recursion for a number of reasons:
Most people (myself included) cut their programming teeth on procedural or object-oriented programming as opposed to functional programming. To such people, the iterative approach (typically using loops) feels more natural.
Those of us who cut our programming teeth on procedural or object-oriented programming have often been told to avoid recursion because it's error prone.
We're often told that recursion is slow. Calling and returning from a routine repeatedly involves a lot of stack pushing and popping, which is slower than looping. I think some languages handle this better than others, and those languages are most likely not those where the dominant paradigm is procedural or object-oriented.
For at least a couple of programming languages I've used, I remember hearing recommendations not to use recursion if it gets beyond a certain depth because its stack isn't that deep.
A recursive statement is one in which you define the process of what to do next as a combination of the inputs and what you have already done.
For example, take factorial:
factorial(6) = 6*5*4*3*2*1
But it's easy to see factorial(6) also is:
6 * factorial(5) = 6*(5*4*3*2*1).
So generally:
factorial(n) = n*factorial(n-1)
Of course, the tricky thing about recursion is that if you want to define things in terms of what you have already done, there needs to be some place to start.
In this example, we just make a special case by defining factorial(1) = 1.
Now we see it from the bottom up:
factorial(6) = 6*factorial(5)
= 6*5*factorial(4)
= 6*5*4*factorial(3) = 6*5*4*3*factorial(2) = 6*5*4*3*2*factorial(1) = 6*5*4*3*2*1
Since we defined factorial(1) = 1, we reach the "bottom".
Generally speaking, recursive procedures have two parts:
1) The recursive part, which defines some procedure in terms of new inputs combined with what you've "already done" via the same procedure. (i.e. factorial(n) = n*factorial(n-1))
2) A base part, which makes sure that the process doesn't repeat forever by giving it some place to start (i.e. factorial(1) = 1)
It can be a bit confusing to get your head around at first, but just look at a bunch of examples and it should all come together. If you want a much deeper understanding of the concept, study mathematical induction. Also, be aware that some languages optimize for recursive calls while others do not. It's pretty easy to make insanely slow recursive functions if you're not careful, but there are also techniques to make them performant in most cases.
Hope this helps...
I like this definition:
In recursion, a routine solves a small part of a problem itself, divides the problem into smaller pieces, and then calls itself to solve each of the smaller pieces.
I also like Steve McConnells discussion of recursion in Code Complete where he criticises the examples used in Computer Science books on Recursion.
Don't use recursion for factorials or Fibonacci numbers
One problem with
computer-science textbooks is that
they present silly examples of
recursion. The typical examples are
computing a factorial or computing a
Fibonacci sequence. Recursion is a
powerful tool, and it's really dumb to
use it in either of those cases. If a
programmer who worked for me used
recursion to compute a factorial, I'd
hire someone else.
I thought this was a very interesting point to raise and may be a reason why recursion is often misunderstood.
EDIT:
This was not a dig at Dav's answer - I had not seen that reply when I posted this
1.)
A method is recursive if it can call itself; either directly:
void f() {
... f() ...
}
or indirectly:
void f() {
... g() ...
}
void g() {
... f() ...
}
2.) When to use recursion
Q: Does using recursion usually make your code faster?
A: No.
Q: Does using recursion usually use less memory?
A: No.
Q: Then why use recursion?
A: It sometimes makes your code much simpler!
3.) People use recursion only when it is very complex to write iterative code. For example, tree traversal techniques like preorder, postorder can be made both iterative and recursive. But usually we use recursive because of its simplicity.
Here's a simple example: how many elements in a set. (there are better ways to count things, but this is a nice simple recursive example.)
First, we need two rules:
if the set is empty, the count of items in the set is zero (duh!).
if the set is not empty, the count is one plus the number of items in the set after one item is removed.
Suppose you have a set like this: [x x x]. let's count how many items there are.
the set is [x x x] which is not empty, so we apply rule 2. the number of items is one plus the number of items in [x x] (i.e. we removed an item).
the set is [x x], so we apply rule 2 again: one + number of items in [x].
the set is [x], which still matches rule 2: one + number of items in [].
Now the set is [], which matches rule 1: the count is zero!
Now that we know the answer in step 4 (0), we can solve step 3 (1 + 0)
Likewise, now that we know the answer in step 3 (1), we can solve step 2 (1 + 1)
And finally now that we know the answer in step 2 (2), we can solve step 1 (1 + 2) and get the count of items in [x x x], which is 3. Hooray!
We can represent this as:
count of [x x x] = 1 + count of [x x]
= 1 + (1 + count of [x])
= 1 + (1 + (1 + count of []))
= 1 + (1 + (1 + 0)))
= 1 + (1 + (1))
= 1 + (2)
= 3
When applying a recursive solution, you usually have at least 2 rules:
the basis, the simple case which states what happens when you have "used up" all of your data. This is usually some variation of "if you are out of data to process, your answer is X"
the recursive rule, which states what happens if you still have data. This is usually some kind of rule that says "do something to make your data set smaller, and reapply your rules to the smaller data set."
If we translate the above to pseudocode, we get:
numberOfItems(set)
if set is empty
return 0
else
remove 1 item from set
return 1 + numberOfItems(set)
There's a lot more useful examples (traversing a tree, for example) which I'm sure other people will cover.
Well, that's a pretty decent definition you have. And wikipedia has a good definition too. So I'll add another (probably worse) definition for you.
When people refer to "recursion", they're usually talking about a function they've written which calls itself repeatedly until it is done with its work. Recursion can be helpful when traversing hierarchies in data structures.
An example: A recursive definition of a staircase is:
A staircase consists of:
- a single step and a staircase (recursion)
- or only a single step (termination)
To recurse on a solved problem: do nothing, you're done.
To recurse on an open problem: do the next step, then recurse on the rest.
In plain English:
Assume you can do 3 things:
Take one apple
Write down tally marks
Count tally marks
You have a lot of apples in front of you on a table and you want to know how many apples there are.
start
Is the table empty?
yes: Count the tally marks and cheer like it's your birthday!
no: Take 1 apple and put it aside
Write down a tally mark
goto start
The process of repeating the same thing till you are done is called recursion.
I hope this is the "plain english" answer you are looking for!
A recursive function is a function that contains a call to itself. A recursive struct is a struct that contains an instance of itself. You can combine the two as a recursive class. The key part of a recursive item is that it contains an instance/call of itself.
Consider two mirrors facing each other. We've seen the neat infinity effect they make. Each reflection is an instance of a mirror, which is contained within another instance of a mirror, etc. The mirror containing a reflection of itself is recursion.
A binary search tree is a good programming example of recursion. The structure is recursive with each Node containing 2 instances of a Node. Functions to work on a binary search tree are also recursive.
This is an old question, but I want to add an answer from logistical point of view (i.e not from algorithm correctness point of view or performance point of view).
I use Java for work, and Java doesn't support nested function. As such, if I want to do recursion, I might have to define an external function (which exists only because my code bumps against Java's bureaucratic rule), or I might have to refactor the code altogether (which I really hate to do).
Thus, I often avoid recursion, and use stack operation instead, because recursion itself is essentially a stack operation.
You want to use it anytime you have a tree structure. It is very useful in reading XML.
Recursion as it applies to programming is basically calling a function from inside its own definition (inside itself), with different parameters so as to accomplish a task.
"If I have a hammer, make everything look like a nail."
Recursion is a problem-solving strategy for huge problems, where at every step just, "turn 2 small things into one bigger thing," each time with the same hammer.
Example
Suppose your desk is covered with a disorganized mess of 1024 papers. How do you make one neat, clean stack of papers from the mess, using recursion?
Divide: Spread all the sheets out, so you have just one sheet in each "stack".
Conquer:
Go around, putting each sheet on top of one other sheet. You now have stacks of 2.
Go around, putting each 2-stack on top of another 2-stack. You now have stacks of 4.
Go around, putting each 4-stack on top of another 4-stack. You now have stacks of 8.
... on and on ...
You now have one huge stack of 1024 sheets!
Notice that this is pretty intuitive, aside from counting everything (which isn't strictly necessary). You might not go all the way down to 1-sheet stacks, in reality, but you could and it would still work. The important part is the hammer: With your arms, you can always put one stack on top of the other to make a bigger stack, and it doesn't matter (within reason) how big either stack is.
Recursion is the process where a method call iself to be able to perform a certain task. It reduces redundency of code. Most recurssive functions or methods must have a condifiton to break the recussive call i.e. stop it from calling itself if a condition is met - this prevents the creating of an infinite loop. Not all functions are suited to be used recursively.
hey, sorry if my opinion agrees with someone, I'm just trying to explain recursion in plain english.
suppose you have three managers - Jack, John and Morgan.
Jack manages 2 programmers, John - 3, and Morgan - 5.
you are going to give every manager 300$ and want to know what would it cost.
The answer is obvious - but what if 2 of Morgan-s employees are also managers?
HERE comes the recursion.
you start from the top of the hierarchy. the summery cost is 0$.
you start with Jack,
Then check if he has any managers as employees. if you find any of them are, check if they have any managers as employees and so on. Add 300$ to the summery cost every time you find a manager.
when you are finished with Jack, go to John, his employees and then to Morgan.
You'll never know, how much cycles will you go before getting an answer, though you know how many managers you have and how many Budget can you spend.
Recursion is a tree, with branches and leaves, called parents and children respectively.
When you use a recursion algorithm, you more or less consciously are building a tree from the data.
In plain English, recursion means to repeat someting again and again.
In programming one example is of calling the function within itself .
Look on the following example of calculating factorial of a number:
public int fact(int n)
{
if (n==0) return 1;
else return n*fact(n-1)
}
Any algorithm exhibits structural recursion on a datatype if basically consists of a switch-statement with a case for each case of the datatype.
for example, when you are working on a type
tree = null
| leaf(value:integer)
| node(left: tree, right:tree)
a structural recursive algorithm would have the form
function computeSomething(x : tree) =
if x is null: base case
if x is leaf: do something with x.value
if x is node: do something with x.left,
do something with x.right,
combine the results
this is really the most obvious way to write any algorith that works on a data structure.
now, when you look at the integers (well, the natural numbers) as defined using the Peano axioms
integer = 0 | succ(integer)
you see that a structural recursive algorithm on integers looks like this
function computeSomething(x : integer) =
if x is 0 : base case
if x is succ(prev) : do something with prev
the too-well-known factorial function is about the most trivial example of
this form.
function call itself or use its own definition.

Counting Total Number of Elements in a List using Recursion

The Problem:
Count the number of elements in a List using recursion.
I wrote the following function:
def count_rec(arr, i):
"""
This function takes List (arr) and Index Number
then returns the count of number of elements in it
using Recursion.
"""
try:
temp = arr[i] # if element exists at i, continue
return 1 + count_rec(arr, i+1)
except IndexError:
# if index error, that means, i == length of list
return 0
I noticed some problems with it:
RecursionError (when the number of elements is more than 990)
Using a temp element (wasting memory..?)
Exception Handling (I feel like we shouldn't use it unless necessary)
If anyone can suggest how to improve the above solution or come up with an alternative one, It would be really helpful.
What you have is probably as efficient as you are going to get for this thought experiment (obviously, python already calculates and stores length for LIST objects, which can be retrieved with the len() built-in, so this function is completely unnecessary).
You could get shorter code if you want:
def count(L):
return count(L[:-1])+1 if L else 0
But you still need to change python's recursion limit.
import sys; sys.setrecursionlimit(100000)
However, we should note that in most cases, "if else" statements take longer to process than "try except". Hence, "try except" is going to be a better (if you are after performance). Of course, that's weird talking about performance because recursion typically doesn't perform very well, due to how python manage's namespaces and such. Recursion is typically frowned upon, unnecessary, and slow. So, trying to optimize recursion performance is a littler strange.
A last point to note. You mention the temp=arr[i] taking up memory. Yes, possibly a few bytes. Of course, any calculation you do to determine if arr has an element at i, is going to take a few bytes in memory even simply running "arr[i]" without assignment. In addition, those bytes are freed the second the temp variable falls out of scope, gets re-used, or the function exits. Hence, unless you are planning on launching 10,000,000,000 sub-processes, rest assure there is no performance degradation in using a temp variable like that.
you are prob looking for something like this
def count_rec(arr):
if arr == []:
return 0
return count_rec(arr[1:]) + 1
You can use pop() to do it.
def count_r(l):
if l==[]:
return 0
else:
l.pop()
return count_r(l)+1

Looping or Recursion

I wrote two programs to calculate the factorial of a number.
1:
import time
x = int(input('>'))
t1 = time.time()
fact=1
if x==0:
print('undefined')
elif x==1:
print(1)
else:
while x!=1:
fact *= x
x -= 1
print(fact)
print(time.time()-t1)
2:
import time
def fact(n):
if n==0:
return 'undefined'
elif n==1:
return 1
else:
return n*fact(n-1)
x = int(input('>'))
t1 = time.time()
print(fact(x))
t = time.time()-t1
print(t)
The average runtime of the second program was less than the first one. Now my question is which one is really better than the other and what else we use method 2 for (don't want any code examples). And I'm sorry if the question was asked before (which it probably was), I searched for a while but was not able to find it.
Better is naturally a subjective term. As mentioned in the comments, both run in O(n) time in terms of runtime complexity. However, depending on the details of the language, recursive functions often take up more space in memory.
Specifically, since you seem to be using Python, each recursive call requires a new function call frame, keeping track of that function call's variables. This takes up significantly more space than a simple loop while taking effectively the same amount of time. In fact, to limit your use of deep recursion, Python by default has a recursion depth limit of 1000; aka, you would not be able to calculate the factorial of numbers above 1000 this way.
Generally speaking, which is the better option depends on the language. And loops will almost always take up less if not equal space to a recursive function. However, this doesn't mean that recursion is useless! When it comes to a simple example like the factorial function, recursion is not at all necessary. However when you are building complex data structures or algorithms, recursion is occasionally necessary if not incredibly cleaner in order to write your solution.
Ultimately Recursion and Loops are nearly the same. I prefer to use recursion when
The implementation of the recursive solutions is much simpler than the iterative solution
I can be sure that the recursion won't cause a stack overflow by going too deep into the callstack
Tree Traversal, Graph Traversal, and Sorting are all good examples of places that recursion is likely your best option

Is there a way to make a recursion method with unlimited depth in Python?

For example, when writing some algorithms on graphs like
def f(graph):
#graph is dictionary of pairs vertex_i:{set of edges (i,j)} for 1<=i,j<=n
def g(vertex):
for vertex1 in graph:
do sth
...
for (i,j) in graph[vertex1]:
...
g(j)#recursive call
...
return ...
return g(1)
limited depth of recursion is sometimes very annoying, because code becomes much longer and more complicated if you have to avoid recursion.
Is there a way to reach unlimited depth?
Maybe you can describe your general solution of the problem on the following method
def nthNumber(n):
if n==1: return 1
else: return nthNumber(n-1)+1
(I know it's simple stupid and please don't give answers like "You should have written just nthNumber(n): return n " - I'm intrested in general solution). Thanks for help!
Unlimited recursion would require infinite resources; every function call requires a stack entry, and there is only a finite amount of memory to hold those. So, no, you cannot have unlimited recursion depth.
You can raise the limit, by calling sys.setrecursionlimit().

Get length of list in Python using recursion

I am trying to calculate the length of a list. When I run it on cmd, I get:
RuntimeError: maximum recursion depth exceeded in comparison
I don't think there's anything wrong with my code:
def len_recursive(list):
if list == []:
return 0
else:
return 1 + len_recursive(list[1:])
Don't use recursion unless you can predict that it is not too deep. Python has quite small limit on recursion depth.
If you insist on recursion, the efficient way is:
def len_recursive(lst):
if not lst:
return 0
return 1 + len_recursive(lst[1::2]) + len_recursive(lst[2::2])
The recursion depth in Python is limited, but can be increased as shown in this post. If Python had support for the tail call optimization, this solution would work for arbitrary-length lists:
def len_recursive(lst):
def loop(lst, acc):
if not lst:
return acc
return loop(lst[1:], acc + 1)
return loop(lst, 0)
But as it is, you will have to use shorter lists and/or increase the maximum recursion depth allowed.
Of course, no one would use this implementation in real life (instead using the len() built-in function), I'm guessing this is an academic example of recursion, but even so the best approach here would be to use iteration, as shown in #poke's answer.
As others have explained, there are two problems with your function:
It's not tail-recursive, so it can only handle lists as long as sys.getrecursionlimit.
Even if it were tail-recursive, Python doesn't do tail recursion optimization.
The first is easy to solve. For example, see Óscar López's answer.
The second is hard to solve, but not impossible. One approach is to use coroutines (built on generators) instead of subroutines. Another is to not actually call the function recursively, but instead return a function with the recursive result, and use a driver that applies the results. See Tail Recursion in Python by Paul Butler for an example of how to implement the latter, but here's what it would look like in your case.
Start with Paul Butler's tail_rec function:
def tail_rec(fun):
def tail(fun):
a = fun
while callable(a):
a = a()
return a
return (lambda x: tail(fun(x)))
This doesn't work as a decorator for his case, because he has two mutually-recursive functions. But in your case, that's not an issue. So, using Óscar López's's version:
#tail_rec
def tail_len(lst):
def loop(lst, acc):
if not lst:
return acc
return lambda: loop(lst[1:], acc + 1)
return lambda: loop(lst, 0)
And now:
>>> print tail_len(range(10000))
10000
Tada.
If you actually wanted to use this, you might want to make tail_rec into a nicer decorator:
def tail_rec(fun):
def tail(fun):
a = fun
while callable(a):
a = a()
return a
return functools.update_wrapper(lambda x: tail(fun(x)), fun)
Imagine you're running this using a stack of paper. You want to count how many sheets you have. If someone gives you 10 sheets you take the first sheet, put it down on the table and grab the next sheet, placing it next to the first sheet. You do this 10 times and your desk is pretty full, but you've set out each sheet. You then start to count every page, recycling it as you count it up, 0 + 1 + 1 + ... => 10. This isn't the best way to count pages, but it mirrors the recursive approach and python's implementaion.
This works for small numbers of pages. Now imagine someone gives you 10000 sheets. Pretty soon there is no room on your desk to set out each page. This is essentially what the error message is telling you.
The Maximum Recursion depth is "how many sheets" can the table hold. Each time you call python needs to keep the "1 + result of recursive call" around so that when all the pages have been laid out it can come back and count them up. Unfortunately you're running out of space before the final counting-up occurs.
If you want to do this recursively to learn, since you're want to use len() in any reasonable situation, just use small lists, 25 should be fine.
Some systems could handle this for large lists if they support tail calls
Your exception message means that your method is called recursively too often, so it’s likely that your list is just too long to count the elements recursively like that. You could do it simply using a iterative solution though:
def len_iterative(lst):
length = 0
while lst:
length += 1
lst = lst[1:]
return length
Note that this will very likely still be a terrible solution as lst[1:] will keep creating copies of the list. So you will end up with len(lst) + 1 list instances (with lengths 0 to len(lst)). It is probably the best idea to just use the built-in len directly, but I guess it was an assignment.
Python isn't optimising tail recursion calls, so using such recursive algorythms isn't a good idea.
You can tweak stack with sys.setrecursionlimit(), but it's still not a good idea.

Categories

Resources