I'm trying to scrape product prices from a website and both real price and the monthly payment quota value has exactly the same class, so I can't figure it out how to only get main price.
and this is for the main price: "879.990"
this is for the monthly payment quota: "39.990",
this is the URL: https://listado.mercadolibre.cl/macbook#D[A:macbook]
#THIS GETS ALL THE NAMES AND STORES IT IN A LIST
prod = soup.find_all('h2', class_ ='ui-search-item__title shops__item-title')
productos = list()
count=0
for i in prod:
if count < 33:
productos.append(i.text)
else:
break
count +=1
size= len(productos) +1
#print(size)
#print(productos, len(productos))
print(productos)
#THIS GETS ALL THE NAMES AND STORES IT IN A LIST
pri = soup.find_all('span',class_ ="price-tag-fraction")
precios = list()
count=0
for i in pri:
if count < 33:
precios.append(i.text)
else:
break
count +=1
#rint(precios)
prices= [item.split(',')for item in precios]
Here is the output
You can filter out the other prices using CSS selectors
# filsel = 'span.price-tag-fraction:not(span.ui-search-installments span):not(s.price-tag__disabled span)'
emiSp_sel = 'span.ui-search-installments span' # monthly
disab_sel = 's.price-tag__disabled span' # crossed out
filsel = f'span.price-tag-fraction:not({emiSp_sel}):not({disab_sel})'
pri = [p.get_text() for p in soup.select(filsel)]
or using lambda with find
pri = soup.find_all(
lambda p: p.name == 'span' and 'price-tag-fraction' in p.get('class', '')
and p.find_parent('span', {'class': 'ui-search-installments'}) is None
and p.find_parent('s', {'class': 'price-tag__disabled'}) is None
)
or even by combining lists comprehension with your current method
pri = [
p for p in soup.find_all('span',class_ ="price-tag-fraction")
if p.find_parent('span', {'class': 'ui-search-installments'}) is None
and p.find_parent('s', {'class': 'price-tag__disabled'}) is None
]
I try to make a table (or csv, I'm using pandas dataframe) from the information of an XML file.
The file is here (.zip is 14 MB, XML is ~370MB), https://nvd.nist.gov/feeds/xml/cpe/dictionary/official-cpe-dictionary_v2.3.xml.zip . It has package information of different languages - node.js, python, java etc. aka, CPE 2.3 list by the US government org NVD.
this is how it looks like in the first 30 rows:
<cpe-list xmlns:config="http://scap.nist.gov/schema/configuration/0.1" xmlns="http://cpe.mitre.org/dictionary/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:scap-core="http://scap.nist.gov/schema/scap-core/0.3" xmlns:cpe-23="http://scap.nist.gov/schema/cpe-extension/2.3" xmlns:ns6="http://scap.nist.gov/schema/scap-core/0.1" xmlns:meta="http://scap.nist.gov/schema/cpe-dictionary-metadata/0.2" xsi:schemaLocation="http://scap.nist.gov/schema/cpe-extension/2.3 https://scap.nist.gov/schema/cpe/2.3/cpe-dictionary-extension_2.3.xsd http://cpe.mitre.org/dictionary/2.0 https://scap.nist.gov/schema/cpe/2.3/cpe-dictionary_2.3.xsd http://scap.nist.gov/schema/cpe-dictionary-metadata/0.2 https://scap.nist.gov/schema/cpe/2.1/cpe-dictionary-metadata_0.2.xsd http://scap.nist.gov/schema/scap-core/0.3 https://scap.nist.gov/schema/nvd/scap-core_0.3.xsd http://scap.nist.gov/schema/configuration/0.1 https://scap.nist.gov/schema/nvd/configuration_0.1.xsd http://scap.nist.gov/schema/scap-core/0.1 https://scap.nist.gov/schema/nvd/scap-core_0.1.xsd">
<generator>
<product_name>National Vulnerability Database (NVD)</product_name>
<product_version>4.9</product_version>
<schema_version>2.3</schema_version>
<timestamp>2022-03-17T03:51:01.909Z</timestamp>
</generator>
<cpe-item name="cpe:/a:%240.99_kindle_books_project:%240.99_kindle_books:6::~~~android~~">
<title xml:lang="en-US">$0.99 Kindle Books project $0.99 Kindle Books (aka com.kindle.books.for99) for android 6.0</title>
<references>
<reference href="https://play.google.com/store/apps/details?id=com.kindle.books.for99">Product information</reference>
<reference href="https://docs.google.com/spreadsheets/d/1t5GXwjw82SyunALVJb2w0zi3FoLRIkfGPc7AMjRF0r4/edit?pli=1#gid=1053404143">Government Advisory</reference>
</references>
<cpe-23:cpe23-item name="cpe:2.3:a:\$0.99_kindle_books_project:\$0.99_kindle_books:6:*:*:*:*:android:*:*"/>
</cpe-item>
The tree structure of the XML file is quite simple, the root is 'cpe-list', the child element is 'cpe-item', and the grandchild elements are 'title', 'references' and 'cpe23-item'.
From 'title', I want the text in the element;
From 'cpe23-item', I want the attribute 'name';
From 'references', I want the attributes 'href' from its great-grandchildren, 'reference'.
The dataframe should look like this:
| cpe23_name | title_text | ref1 | ref2 | ref3 | ref_other
0 | 'cpe23name 1'| 'this is a python pkg'| 'url1'| 'url2'| NaN | NaN
1 | 'cpe23name 2'| 'this is a java pkg' | 'url1'| 'url2'| NaN | NaN
...
my code is here,finished in ~100sec:
import xml.etree.ElementTree as et
xtree = et.parse("official-cpe-dictionary_v2.3.xml")
xroot = xtree.getroot()
import time
start_time = time.time()
df_cols = ["cpe", "text", "vendor", "product", "version", "changelog", "advisory", 'others']
title = '{http://cpe.mitre.org/dictionary/2.0}title'
ref = '{http://cpe.mitre.org/dictionary/2.0}references'
cpe_item = '{http://scap.nist.gov/schema/cpe-extension/2.3}cpe23-item'
p_cpe = None
p_text = None
p_vend = None
p_prod = None
p_vers = None
p_chan = None
p_advi = None
p_othe = None
rows = []
i = 0
while i < len(xroot):
for elm in xroot[i]:
if elm.tag == title:
p_text = elm.text
#assign p_text
elif elm.tag == ref:
for nn in elm:
s = nn.text.lower()
#check the lower text in refs
if 'version' in s:
p_vers = nn.attrib.get('href')
#assign p_vers
elif 'advisor' in s:
p_advi = nn.attrib.get('href')
#assign p_advi
elif 'product' in s:
p_prod = nn.attrib.get('href')
#assign p_prod
elif 'vendor' in s:
p_vend = nn.attrib.get('href')
#assign p_vend
elif 'change' in s:
p_chan = nn.attrib.get('href')
#assign p_vend
else:
p_othe = nn.attrib.get('href')
elif elm.tag == cpe_item:
p_cpe = elm.attrib.get("name")
#assign p_cpe
else:
print(elm.tag)
row = [p_cpe, p_text, p_vend, p_prod, p_vers, p_chan, p_advi, p_othe]
rows.append(row)
p_cpe = None
p_text = None
p_vend = None
p_prod = None
p_vers = None
p_chan = None
p_advi = None
p_othe = None
print(len(rows)) #this shows how far I got during the running time
i+=1
out_df1 = pd.DataFrame(rows, columns = df_cols)# move this part outside the loop by removing the indent
print("---853k rows take %s seconds ---" % (time.time() - start_time))
updated: the faster way is to move the 2nd last row out side the loop. Since 'rows' already get info in each loop, there is no need to make a new dataframe every time.
the running time now is 136.0491042137146 seconds. yay!
Since your XML is fairly flat, consider the recently added IO module, pandas.read_xml introduced in v1.3. Given XML uses a default namespace, to reference elements in xpath use namespaces argument:
url = "https://nvd.nist.gov/feeds/xml/cpe/dictionary/official-cpe-dictionary_v2.3.xml.zip"
df = pd.read_xml(
url, xpath=".//doc:cpe-item", namespaces={'doc': 'http://cpe.mitre.org/dictionary/2.0'}
)
If you do not have the default parser, lxml, installed, use the etree parser:
df = pd.read_xml(
url, xpath=".//doc:cpe-item", namespaces={'doc': 'http://cpe.mitre.org/dictionary/2.0'}, parser="etree"
)
for row in soup.find_all('tr'):
cells = row.find_all('td')
if len(cells)==10: #Only extract table body not heading
A.append(cells[0].find(text=True))
B.append(cells[1].find(text=True))
C.append(cells[2].find('div').get('title'))
D.append(cells[3].find('a', href=True).get_text())
E.append(cells[4].find('a', href=True).get_text())
if cells[5].find(text=True) is None or cells[5].find('a', href=True) is None:
F.append(cells[5].find(text=True))
else:
Output = '-'.join([item.get_text() for item in cells[5].find_all('a')])
F.append(Output)
if cells[6].find(text=True) is None or cells[6].find('a', href=True) is None:
G.append(cells[6].find(text=True))
else:
G.append(cells[6].find('a', href=True).get_text())
if cells[7].find(text=True) is None or cells[7].find('a', href=True) is None:
H.append(cells[7].find(text=True))
else:
H.append(cells[7].find('a', href=True).get_text())
I.append(cells[8].find('span').get_text())
J.append(cells[9].find(Title=True))
The problem is that at cells 5,6 and 7 the desired output is sometimes inside a ahref tag and sometimes inside a td tag. The code works but the List F f.e. looks something like this:
0
T-001
1
TD-U1B
2 BMA-D2-USA
3 BMU-D3-USA
4
Position 2 and 3 are correct. These are the outputs from:
else:
Output = '-'.join([item.get_text() for item in cells[5].find_all('a')])
F.append(Output)
Position 0 and 1 are incorrect. These are the outputs from:
F.append(cells[5].find(text=True))
I want to scrape all the subcategories and pages under the category header of the Category page: "Category:Computer science". The link for the same is as follows: http://en.wikipedia.org/wiki/Category:Computer_science.
I have got an idea regarding the above mentioned problem, from the following stack overflow answer which is specified in the following link.
Pythonic beautifulSoup4 : How to get remaining titles from the next page link of a wikipedia category
and
How to scrape Subcategories and pages in categories of a Category wikipedia page using Python
However, the answer do not fully solves the problem. It only scrapes the Pages in category "Computer science". But, I want to extract all the subcategories names and its associated pages. I want the process should report the results in BFS manner with a depth of 10. Is there exist any way to do this?
I found the following code from this linked post:
from pprint import pprint
from urllib.parse import urljoin
from bs4 import BeautifulSoup
import requests
base_url = 'https://en.wikipedia.org/wiki/Category:Computer science'
def get_next_link(soup):
return soup.find("a", text="next page")
def extract_links(soup):
return [a['title'] for a in soup.select("#mw-pages li a")]
with requests.Session() as session:
content = session.get(base_url).content
soup = BeautifulSoup(content, 'lxml')
links = extract_links(soup)
next_link = get_next_link(soup)
while next_link is not None: # while there is a Next Page link
url = urljoin(base_url, next_link['href'])
content = session.get(url).content
soup = BeautifulSoup(content, 'lxml')
links += extract_links(soup)
next_link = get_next_link(soup)
pprint(links)
To scrape the subcategories, you will have to use selenium to interact with the dropdowns. A simple traversal over the second category of links will yield the pages, however, to find all the subcategories, recursion is needed to properly group the data. The code below utilizes a simple variant of the breadth-first search to determine when to stop looping over the dropdown toggle objects generated at each iteration of the while loop:
from selenium import webdriver
import time
from bs4 import BeautifulSoup as soup
def block_data(_d):
return {_d.find('h3').text:[[i.a.attrs.get('title'), i.a.attrs.get('href')] for i in _d.find('ul').find_all('li')]}
def get_pages(source:str) -> dict:
return [block_data(i) for i in soup(source, 'html.parser').find('div', {'id':'mw-pages'}).find_all('div', {'class':'mw-category-group'})]
d = webdriver.Chrome('/path/to/chromedriver')
d.get('https://en.wikipedia.org/wiki/Category:Computer_science')
all_pages = get_pages(d.page_source)
_seen_categories = []
def get_categories(source):
return [[i['href'], i.text] for i in soup(source, 'html.parser').find_all('a', {'class':'CategoryTreeLabel'})]
def total_depth(c):
return sum(1 if len(b) ==1 and not b[0] else sum([total_depth(i) for i in b]) for a, b in c.items())
def group_categories(source) -> dict:
return {i.find('div', {'class':'CategoryTreeItem'}).a.text:(lambda x:None if not x else [group_categories(c) for c in x])(i.find_all('div', {'class':'CategoryTreeChildren'})) for i in source.find_all('div', {'class':'CategoryTreeSection'})}
while True:
full_dict = group_categories(soup(d.page_source, 'html.parser'))
flag = False
for i in d.find_elements_by_class_name('CategoryTreeToggle'):
try:
if i.get_attribute('data-ct-title') not in _seen_categories:
i.click()
flag = True
time.sleep(1)
except:
pass
else:
_seen_categories.append(i.get_attribute('data-ct-title'))
if not flag:
break
Output:
all_pages:
[{'\xa0': [['Computer science', '/wiki/Computer_science'], ['Glossary of computer science', '/wiki/Glossary_of_computer_science'], ['Outline of computer science', '/wiki/Outline_of_computer_science']]},
{'B': [['Patrick Baudisch', '/wiki/Patrick_Baudisch'], ['Boolean', '/wiki/Boolean'], ['Business software', '/wiki/Business_software']]},
{'C': [['Nigel A. L. Clarke', '/wiki/Nigel_A._L._Clarke'], ['CLEVER score', '/wiki/CLEVER_score'], ['Computational human modeling', '/wiki/Computational_human_modeling'], ['Computational social choice', '/wiki/Computational_social_choice'], ['Computer engineering', '/wiki/Computer_engineering'], ['Critical code studies', '/wiki/Critical_code_studies']]},
{'I': [['Information and computer science', '/wiki/Information_and_computer_science'], ['Instance selection', '/wiki/Instance_selection'], ['Internet Research (journal)', '/wiki/Internet_Research_(journal)']]},
{'J': [['Jaro–Winkler distance', '/wiki/Jaro%E2%80%93Winkler_distance'], ['User:JUehV/sandbox', '/wiki/User:JUehV/sandbox']]},
{'K': [['Krauss matching wildcards algorithm', '/wiki/Krauss_matching_wildcards_algorithm']]},
{'L': [['Lempel-Ziv complexity', '/wiki/Lempel-Ziv_complexity'], ['Literal (computer programming)', '/wiki/Literal_(computer_programming)']]},
{'M': [['Machine learning in bioinformatics', '/wiki/Machine_learning_in_bioinformatics'], ['Matching wildcards', '/wiki/Matching_wildcards'], ['Sidney Michaelson', '/wiki/Sidney_Michaelson']]},
{'N': [['Nuclear computation', '/wiki/Nuclear_computation']]}, {'O': [['OpenCV', '/wiki/OpenCV']]},
{'P': [['Philosophy of computer science', '/wiki/Philosophy_of_computer_science'], ['Prefetching', '/wiki/Prefetching'], ['Programmer', '/wiki/Programmer']]},
{'Q': [['Quaject', '/wiki/Quaject'], ['Quantum image processing', '/wiki/Quantum_image_processing']]},
{'R': [['Reduction Operator', '/wiki/Reduction_Operator']]}, {'S': [['Social cloud computing', '/wiki/Social_cloud_computing'], ['Software', '/wiki/Software'], ['Computer science in sport', '/wiki/Computer_science_in_sport'], ['Supnick matrix', '/wiki/Supnick_matrix'], ['Symbolic execution', '/wiki/Symbolic_execution']]},
{'T': [['Technology transfer in computer science', '/wiki/Technology_transfer_in_computer_science'], ['Trace Cache', '/wiki/Trace_Cache'], ['Transition (computer science)', '/wiki/Transition_(computer_science)']]},
{'V': [['Viola–Jones object detection framework', '/wiki/Viola%E2%80%93Jones_object_detection_framework'], ['Virtual environment', '/wiki/Virtual_environment'], ['Visual computing', '/wiki/Visual_computing']]},
{'W': [['Wiener connector', '/wiki/Wiener_connector']]},
{'Z': [['Wojciech Zaremba', '/wiki/Wojciech_Zaremba']]},
{'Ρ': [['Portal:Computer science', '/wiki/Portal:Computer_science']]}]
full_dict is quite large, and due to its size I am unable to post it entirely here, however, below is an implementation of a function to traverse the structure and select all the elements down to a depth of ten:
def trim_data(d, depth, count):
return {a:None if count == depth else [trim_data(i, depth, count+1) for i in b] for a, b in d.items()}
final_subcategories = trim_data(full_dict, 10, 0)
Edit: script to remove leaves from tree:
def remove_empty_children(d):
return {a:None if len(b) == 1 and not b[0] else
[remove_empty_children(i) for i in b if i] for a, b in d.items()}
When running the above:
c = {'Areas of computer science': [{'Algorithms and data structures': [{'Abstract data types': [{'Priority queues': [{'Heaps (data structures)': [{}]}, {}], 'Heaps (data structures)': [{}]}]}]}]}
d = remove_empty_children(c)
Output:
{'Areas of computer science': [{'Algorithms and data structures': [{'Abstract data types': [{'Priority queues': [{'Heaps (data structures)': None}], 'Heaps (data structures)': None}]}]}]}
Edit 2: flattening the entire structure:
def flatten_groups(d):
for a, b in d.items():
yield a
if b is not None:
for i in map(flatten_groups, b):
yield from i
print(list(flatten_groups(remove_empty_children(c))))
Output:
['Areas of computer science', 'Algorithms and data structures', 'Abstract data types', 'Priority queues', 'Heaps (data structures)', 'Heaps (data structures)']
Edit 3:
To access all the pages for every subcategory to a certain level, the original get_pages function can be utilized and a slightly different version of the group_categories method
def _group_categories(source) -> dict:
return {i.find('div', {'class':'CategoryTreeItem'}).find('a')['href']:(lambda x:None if not x else [group_categories(c) for c in x])(i.find_all('div', {'class':'CategoryTreeChildren'})) for i in source.find_all('div', {'class':'CategoryTreeSection'})}
from collections import namedtuple
page = namedtuple('page', ['pages', 'children'])
def subcategory_pages(d, depth, current = 0):
r = {}
for a, b in d.items():
all_pages_listing = get_pages(requests.get(f'https://en.wikipedia.org{a}').text)
print(f'page number for {a}: {len(all_pages_listing)}')
r[a] = page(all_pages_listing, None if current==depth else [subcategory_pages(i, depth, current+1) for i in b])
return r
print(subcategory_pages(full_dict, 2))
Please note that in order to utilize subcategory_pages, _group_categories must be used in place of group_categories.
I need insert all html tags and attributes into database
el.driver.get(url_page)
txthtml = el.driver.page_source
soup = BeautifulSoup(txthtml, "html.parser")
body = soup.find('html')
html_parse(body, el, url_page_id, 0, 0, 0,url_page)
def html_parse(html, el, url_page_id, level, i, parent_id, url_page):
txt = ""
if len(html.text) > 0:
txt = html.text.replace("\n","").replace("\t","").replace("\r","")
ta = tag_list()
ta.p_id = el.id
ta.page_id = url_page_id
ta.level = level
ta.number = i
ta.txt = txt
ta.name = html.name
ta.parent_id = parent_id
ta.html = str(html)
ta.save()
insert_attr(html, el.id, url_page_id, ta.id, url_page)
children = list(html.children)
j = 0
for child in children:
if child.name is None:
continue
j = j + 1
html_parse(child, el, url_page_id, level + 1, j, ta.id, url_page)
When I have recursive function html_parse
html - current html object
el - driver class
url_page_id - id of page
level - level in DOM
i - childe number
parent_id - id of parent
url_page - current URL
tag_list - insert current tag
insert_attr - insert into database attrs of tag
Every html_parse function run fast, but full html parsing run about 4-5 minutes per big html page.
How I can speed up the code?