Plone version control, how? - python

I'm trying to get into Python and, more specifically, Zope and Plone. I read the book Professional Plone Development and one thing it says is that one MUST use version control. But the book did not expand on that topic any further. This leads to two questions.
First: SVN or git? (My research points to git, if only to learn it. I've only used SVN so far.)
And second: Which files should be handled by version control? Settings and my own code? The whole Zope directory? Not the data.fs, surely? Not the .pyc files, I'm sure of that. I've taken a break from Plone for that reason these days, and I couldn't find a good guide for that. In short, so far, when I synchronised the data between my local PC and my web server, things broke. Badly. And I'm not sure why. Either some updates were missing, or some platform-specific files were updated. My home PC is 64 bit Ubuntu and my distant web server is 32 bit RHEL. It felt like such a mess, and like such a dangerous mess, that I'm a bit apprehensive of going back near it.
Is there a way to know which files should be handled by a version control system and which should not?
Thanks.

No, no. Never make changes to the Zope/Plone system code. Create an add-on and make your customisations there. Of course you must keep backups, but version control is not a good fit for this.
You should ensure that any production buildout is repeatable. That means pinning all versions to your release (see http://pypi.python.org/pypi/buildout.dumppickedversions for a handy extension to record your picked versions) and keeping a backup of any source distributions locally, i.e. backing up your buildout downloads-cache.

I put only my buildout files into svn (dir: project/buildout/trunk). Buildout fetches all Plone/Zope files in the right versions.
Additionally i put my eggs in svn (dir: project/eggs/trunk). My eggs hold all the modifications into Plone.
My buildout uses mr.developer to auto fetches my eggs.
You ca check http://toutpt.wordpress.com/2010/07/07/nantes-developpement-com-a-new-plone-website-by-makina-corpus/
its a big buildout and uses all kind of mods and extensions.

It's quite hard to find a conclusive answer for this. The best reference I've found is this Plone project, which is checked into version control already:
https://github.com/Plone-Conference-Devs/ploneconfbuildout

Related

What's going on with Go applications on PyPI?

Rather by accident I found myself in a situation in a previous role where the previous admin apparently installed "Python bindings" of InfluxDB and Docker-Compose and magically both applications where available on the systems while I was sure that they where written in Go.
I had a few issues with that:
It's incomprehensible what happens here, there should be some go binary belonging to the application but I can't find it by name, I doubt that docker-compose and influxdb have been rewritten in Python just to have one more option available while at least docker-compose static binaries are available on Github for direct download. It doesn't make a lot of sense to me.
Undermining security guidelines set by the organization and best practices for systems administration.
Dependency Confusion
Links to the packages on PyPI:
https://pypi.org/project/influxdb/
https://pypi.org/project/docker-compose/
I haven't looked into Python wheels and packaging before beyond Debian packaging, I just got curious again the get to the bottom of this strange usage pattern.
Docker-Compose refers to https://github.com/docker/compose a project consisting of 95.5% Go code according to GitHub, which isn't really helpful since the source package and wheel package on PyPI look completely different and at first sight I'm overwhelmed by the amount of Python files. InfluxDB seems to be a better example but I would really appreciate help from a Python developer or package maintainer explaining to me what happening there. Thanks.
Edit 2022-09-10:
From the show notes of Security Now 887: https://www.grc.com/sn/sn-887-notes.pdf
a researcher at Checkmarx noted in a technical report they published last week that “A worrying
feature in pip/PyPI allows code to automatically run when developers are merely downloading a
package.” He added that the feature is alarming because “a great deal of the malicious packages
we are finding in the wild use this feature of code execution upon installation to achieve higher
infection rates.”
With my preexisting misconception about some PyPI packages like docker-compose, that sounded alarming to me.
The following article mentions that compiled libraries from C, Rust, Go and others can be bundled in packages, but no applications "hidden" as artifacts, which I assumed. https://realpython.com/python-wheels/

What are common strategies for updating python programs?

I have a Windows program that I made with python and py2exe. I'd like to create an updating feature so that the software can be readily updated.
What are common ways of going about this?
If you think your code might benefit others, you could put it up on PyPI. Then having different versions is just updating your package, or telling your clients to use easy_install to get the latest version. This doesn't push updates, though.
You can try Esky, which is an auto-update framework for managing different versions, including fetching new versions and rolling back partial updates. It can be found on PyPI.
That said, I haven't used Esky. If you wish to roll your own auto-update feature, you might want to look at Boxed Dice to see how they got around to it.
When you package an app with py2exe, the result is usually a single executable (perhaps with some data files). This is simplest to update by just proposing the user to download and install a new version every once in a while (how you check with a server that such new version exists is a different question).
If you want to reduce the download size the user has to do, application commonly resort to breaking themselves up into multiple DLLs and updating only the relevant DLLs. When you have a Python application you don't have DLLs but you have an even easier option - you can just keep most of your app's logic outside the exe in .pyc files, and update just some of these .pyc files.
Now, mind you, .pyc files are easily "decompilable" into Python (a somewhat obfuscated version of your original code), but having an exe made with py2exe isn't much safer, because py2exe is open-source software and packs all the same files inside the exe anyway.
To conclude, my suggestion is don't bother. How large can your application be? With today's fast connections, it's easier to just make the user download a whole new version than to invest a lot of time into building partial-update functionality into your program.

Organizing Python projects with shared packages

What is the best way to organize and develop a project composed of many small scripts sharing one (or more) larger Python libraries?
We have a bunch of programs in our repository that all use the same libraries stored in the same repository. So in other words, a layout like
trunk
libs
python
utilities
projects
projA
projB
When the official runs of our programs are done, we want to record what version of the code was used. For our C++ executables, things are simple because as long as the working copy is clean at compile time, everything is fine. (And since we get the version number programmatically, it must be a working copy, not an export.) For Python scripts, things are more complicated.
The problem is that, often one project (e.g. projA) will be running, and projB will need to be updated. This could cause the working copy revision to appear mixed to projA during runtime. (The code takes hours to run, and can be used as inputs for processes that take days to run, hence the strong traceability goal.)
My current workaround is, if necessary, check out another copy of the trunk to a different location, and run off there. But then I need to remember to change my PYTHONPATH to point to the second version of lib/python, not the one in the first tree.
There's not likely to be a perfect answer. But there must be a better way.
Should we be using subversion keywords to store the revision number, which would allow the data user to export files? Should we be using virtualenv? Should we be going more towards a packaging and installation mechanism? Setuptools is the standard, but I've read mixed things about it, and it seems designed for non-developer end users (of which we have none).
The much better solution involves not storing all your projects and their shared dependencies in the same repository.
Use one repository for each project, and externals for the shared libraries.
Make use of tags in the shared library repositories, so consumer projects may use exactly the version they need in their external.
Edit: (just copying this from my comment) use virtualenv if you need to provide isolated runtime environments for the different apps on the same server. Then each environment can contain a unique version of the library it needs.
If I'm understanding your question properly, then you definitely want virtualenv. Add in some virtualenvwrapper goodness to make it that much better.

How might I handle development versions of Python packages without relying on SCM?

One issue that comes up during Pinax development is dealing with development versions of external apps. I am trying to come up with a solution that doesn't involve bringing in the version control systems. Reason being I'd rather not have to install all the possible version control systems on my system (or force that upon contributors) and deal the problems that might arise during environment creation.
Take this situation (knowing how Pinax works will be beneficial to understanding):
We are beginning development on a new version of Pinax. The previous version has a pip requirements file with explicit versions set. A bug comes in for an external app that we'd like to get resolved. To get that bug fix in Pinax the current process is to simply make a minor release of the app assuming we have control of the app. Apps we don't have control we just deal with the release cycle of the app author or force them to make releases ;-) I am not too fond of constantly making minor releases for bug fixes as in some cases I'd like to be working on new features for apps as well. Of course branching the older version is what we do and then do backports as we need.
I'd love to hear some thoughts on this.
Could you handle this using the "==dev" version specifier? If the distribution's page on PyPI includes a link to a .tgz of the current dev version (such as both github and bitbucket provide automatically) and you append "#egg=project_name-dev" to the link, both easy_install and pip will use that .tgz if ==dev is requested.
This doesn't allow you to pin to anything more specific than "most recent tip/head", but in a lot of cases that might be good enough?
I meant to mention that the solution I had considered before asking was to put up a Pinax PyPI and make development releases on it. We could put up an instance of chishop. We are already using pip's --find-links to point at pypi.pinaxproject.com for packages we've had to release ourselves.
Most open source distributors (the Debians, Ubuntu's, MacPorts, et al) use some sort of patch management mechanism. So something like: import the base source code for each package as released, as a tar ball, or as a SCM snapshot. Then manage any necessary modifications on top of it using a patch manager, like quilt or Mercurial's Queues. Then bundle up each external package with any applied patches in a consistent format. Or have URLs to the base packages and URLs to the individual patches and have them applied during installation. That's essentially what MacPorts does.
EDIT: To take it one step further, you could then version control the set of patches across all of the external packages and make that available as a unit. That's quite easy to do with Mercurial Queues. Then you've simplified the problem to just publishing one set of patches using one SCM system, with the patches applied locally as above or available for developers to pull and apply to their copies of the base release packages.
EDIT: I am not sure I am reading your question correctly so the following may not answer your question directly.
Something I've considered, but haven't tested, is using pip's freeze bundle feature. Perhaps using that and distributing the bundle with Pinax would work? My only concern would be how different OS's are handled. For example, I've never used pip on Windows, so I wouldn't know how a bundle would interact there.
The full idea I hope to try is creating a paver script that controls management of the bundles, making it easy for users to upgrade to newer versions. This would require a bit of scaffolding though.
One other option may be you keeping a mirror of the apps you don't control, in a consistent vcs, and then distributing your mirrored versions. This would take away the need for "everyone" to have many different programs installed.
Other than that, it seems the only real solution is what you guys are doing, there isn't a hassle-free way that I've been able to find.

Are there any other good alternatives to zc.buildout and/or virtualenv for installing non-python dependencies?

I am a member of a team that is about to launch a beta of a python (Django specifically) based web site and accompanying suite of backend tools. The team itself has doubled in size from 2 to 4 over the past few weeks and we expect continued growth for the next couple of months at least. One issue that has started to plague us is getting everyone up to speed in terms of getting their development environment configured and having all the right eggs installed, etc.
I'm looking for ways to simplify this process and make it less error prone. Both zc.buildout and virtualenv look like they would be good tools for addressing this problem but both seem to concentrate primarily on the python-specific issues. We have a couple of small subprojects in other languages (Java and Ruby specifically) as well as numerous python extensions that have to be compiled natively (lxml, MySQL drivers, etc). In fact, one of the biggest thorns in our side has been getting some of these extensions compiled against appropriate versions of the shared libraries so as to avoid segfaults, malloc errors and all sorts of similar issues. It doesn't help that out of 4 people we have 4 different development environments -- 1 leopard on ppc, 1 leopard on intel, 1 ubuntu and 1 windows.
Ultimately what would be ideal would be something that works roughly like this, from the dos/unix prompt:
$ git clone [repository url]
...
$ python setup-env.py
...
that then does what zc.buildout/virtualenv does (copy/symlink the python interpreter, provide a clean space to install eggs) then installs all required eggs, including installing any native shared library dependencies, installs the ruby project, the java project, etc.
Obviously this would be useful for both getting development environments up as well as deploying on staging/production servers.
Ideally I would like for the tool that accomplishes this to be written in/extensible via python, since that is (and always will be) the lingua franca of our team, but I am open to solutions in other languages.
So, my question then is: does anyone have any suggestions for better alternatives or any experiences they can share using one of these solutions to handle larger/broader install bases?
Setuptools may be capable of more of what you're looking for than you realize -- if you need a custom version of lxml to work correctly on MacOS X, for instance, you can put a URL to an appropriate egg inside your setup.py and have setuptools download and install that inside your developers' environments as necessary; it also can be told to download and install a specific version of a dependency from revision control.
That said, I'd lean towards using a scriptably generated virtual environment. It's pretty straightforward to build a kickstart file which installs whichever packages you depend on and then boot virtual machines (or production hardware!) against it, with puppet or similar software doing other administration (adding users, setting up services [where's your database come from?], etc). This comes in particularly handy when your production environment includes multiple machines -- just script the generation of multiple VMs within their handy little sandboxed subnet (I use libvirt+kvm for this; while kvm isn't available on all the platforms you have developers working on, qemu certainly is, or you can do as I do and have a small number of beefy VM hosts shared by multiple developers).
This gets you out of the headaches of supporting N platforms -- you only have a single virtual platform to support -- and means that your deployment process, as defined by the kickstart file and puppet code used for setup, is source-controlled and run through your QA and review processes just like everything else.
I always create a develop.py file at the top level of the project, and have also a packages directory with all of the .tar.gz files from PyPI that I want to install, and also included an unpacked copy of virtualenv that is ready to run right from that file. All of this goes into version control. Every developer can simply check out the trunk, run develop.py, and a few moments later will have a virtual environment ready to use that includes all of our dependencies at exactly the versions the other developers are using. And it works even if PyPI is down, which is very helpful at this point in that service's history.
Basically, you're looking for a cross-platform software/package installer (on the lines of apt-get/yum/etc.) I'm not sure something like that exists?
An alternative might be specifying the list of packages that need to be installed via the OS-specific package management system such as Fink or DarwinPorts for Mac OS X and having a script that sets up the build environment for the in-house code?
I have continued to research this issue since I posted the question. It looks like there are some attempts to address some of the needs I outlined, e.g. Minitage and Puppet which take different approaches but both may accomplish what I want -- although Minitage does not explicitly state that it supports Windows. Lacking any better options I will try to make either one of these or just extensive customized use of zc.buildout work for our needs, but I still feel like there must be better options out there.
You might consider creating virtual machine appliances with whatever production OS you are running, and all of the software dependencies pre-built. Code can be edited either remotely, or with a shared folder. It worked pretty well for me in a past life that had a fairly complicated development environment.
Puppet doesn't (easily) support the Win32 world either. If you're looking for a deployment mechanism and not just a "dev setup" tool, you might consider looking into ControlTier (http://open.controltier.com/) which has a open-source cross-platform solution.
Beyond that you're looking at "enterprise" software such as BladeLogic or OpsWare and typically an outrageous pricetag for the functionality offered (my opinion, obviously).
A lot of folks have been aggressively using a combination of Puppet and Capistrano (even non-rails developers) for deployment automation tools to pretty good effect. Downside, again, is that it's expecting a somewhat homogeneous environment.

Categories

Resources