Prefer one class in libsvm (python) - python

I just started playing a bit with libsvm in python and got some simple classification to work.
The problem is that I'm constructing a face detection system, and I want a very low false rejection rate. The svm on the other hand seems to optimize for equal false rejection and false acceptance. What options do I have here?
And as a said earlier, I'm very new to libsvm, so be kind. ;)

SVMs are not usually thought of as a probabilistic model, but a maximally-discriminant model. Thus I have a hard time formulating your question in the context of what I know of SVMs.
In addition, the Python bindings that come with libSVM are not terribly performant and don't expose all the options of libSVM.
That said, if you are willing to look at other bindings, the scikit-learn's svm bindings are richer and expose some parameters that may come in handy, such as weighted classes, or weighted samples. You might be able to put more emphasis on the class for which you do not want mis-classification.
In addition, the scikit's binding expose a posterior classification probability, but in the case of SVMs, I believe that it relies on a hack (as SVMs are not probabilistic) of libSVM that resamples the classification to have a confidence interval on the prediction.

I've been using the python wrapper for libSVM and found I could compute a confidence-measure using the margin... see the "predict_values_raw" function below. It returns a real value, with large positive values indicating high confidence that it IS a class member, large negative values indicating high confidence that it IS NOT a class member; values close to zero indicate that it is not confident about the classification. So instead of calling 'predict', call 'predict_values_raw' and apply a low threshold (e.g. -2) to ensure you don't reject any true faces
# Begin pseudo-code
import svm as svmlib
prob = svmlib.svm_problem(labels, data)
param = svmlib.svm_parameter(svm_type=svmlib.C_SVC, kernel_type = svmlib.RBF)
model = svmlib.svm_model(prob, param)
# get confidence
self.model.predict_values_raw(sample_to_classify)

Related

Determine the best classification threshold value for deep learning model

How to Determine the best threshold value for deep learning model. I am working on predicting seizure epilepsy using CNN. I want to determine the best threshold for my deep learning model in order to get best results.
I am trying for more than 2 weeks to find how I can do it.
Any help would be appreciated.
code
history=model.fit_generator(generate_arrays_for_training(indexPat, filesPath, end=75), #end=75),
validation_data=generate_arrays_for_training(indexPat, filesPath, start=75),#start=75),
steps_per_epoch=int((len(filesPath)-int(len(filesPath)/100*25))),#*25),
validation_steps=int((len(filesPath)-int(len(filesPath)/100*75))),#*75),
verbose=2,
epochs=50, max_queue_size=2, shuffle=True, callbacks=[callback,call])
In general, choosing right classification threshold depends on the use case. You should remember that choosing threshold is not a part of hyperparameters tuning. The value of classification threshold greatly impacts the behaviour of model after you train it.
If you increase it, you want your model to be very sure about prediction which means you will be filtering out false positives - you will be targeting precision. This might be the case when your model is a part of a mission-critical pipeline where decision made based on positive output of model is costly (in terms of money, time, human resources, computational resources etc...)
If you decrease it, your model will say that more examples are positives which will allow you to explore more examples that are potentially positive (you target recall. This is important when a false negative is disastrous e.g in medical cases (You would rather check whether low-probability patient has cancer rather than ignoring him and find out later that he was indeed sick)
For more examples please see When is precision more important over recall?
Now, choosing between recall and precision is a trade-off and you have to choose it based on you situation. Two tools to help you achieve this are ROC and Recall-Precision Curves How to Use ROC Curves and Precision-Recall Curves for Classification in Python which indicates how model handles false positives and false negatives depending on classification threshold
Many ML algorithms are capable of predicting a score for a class membership which needs to be interpreted before it can be plotted to a class label. And you achieve this by using a threshold, such as 0.5, whereby values >= than the threshold are mapped to one class and the rest mapped to another class.
Class 1 = Prediction < 0.5; Class 0 = Prediction => 0.5
It’s crucial to find the best threshold value for the kind of problem you're on and not just assume a classification threshold e.g. a 0.5;
Why? The default threshold can often result in pretty poor performance for classification problems with severe class imbalance.
See, ML thresholds are problem-specific and must be fine-tuned. Read a short article about it here
One of the best ways to determine the best threshold for your deep learning model in order to get the best results is to tune the threshold used to map probabilities to a class.
The best threshold for the CNN can be calculated directly using ROC Curves and Precision-Recall Curves. In some cases, you can use a grid search to fine-tune the threshold and find the optimal value.
The code below will help you check the option that will give the best results. GitHub link:
from deepchecks.checks.performance import PerformanceReport
check = PerformanceReport()
check.run(ds, clf)

Can someone give a good math/stats explanation as to what the parameter var_smoothing does for GaussianNB in scikit learn?

I am aware of this parameter var_smoothing and how to tune it, but I'd like an explanation from a math/stats aspect that explains what tuning it actually does - I haven't been able to find any good ones online.
A Gaussian curve can serve as a "low pass" filter, allowing only the samples close to its mean to "pass." In the context of Naive Bayes, assuming a Gaussian distribution is essentially giving more weights to the samples closer to the distribution mean. This might or might not be appropriate depending if what you want to predict follows a normal distribution.
The variable, var_smoothing, artificially adds a user-defined value to the distribution's variance (whose default value is derived from the training data set). This essentially widens (or "smooths") the curve and accounts for more samples that are further away from the distribution mean.
I have looked over the Scikit-learn repository and found the following code and statement:
# If the ratio of data variance between dimensions is too small, it
# will cause numerical errors. To address this, we artificially
# boost the variance by epsilon, a small fraction of the standard
# deviation of the largest dimension.
self.epsilon_ = self.var_smoothing * np.var(X, axis=0).max()
In Stats, probability distribution function such as Gaussian depends on sigma^2 (variance); and the more variance between two features the less correlational and better estimator since naive Bayes as the model used is a iid (basically, it assume the feature are independent).
However, in terms computation, it is very common in machine learning that high or low values vectors or float operations can bring some errors, such as, "ValueError: math domain error". Which this extra variable may serve its purpose as a adjustable limit in case some-type numerical error occurred.
Now, it will be interesting to explore if we can use this value for further control such as avoiding over-fitting since this new self-epsilon is added into the variance(sigma^2) or standard deviations(sigma).

NN: outputting a probability density function instead of a single value

This might sound silly but I'm just wondering about the possibility of modifying a neural network to obtain a probability density function rather than a single value when you are trying to predict a scalar. I know that when you are trying to classify images or words you can get a probability for each class, so I'm thinking there might be a way to do something similar with a continuous value and plot it. (Similar to the posterior plot with bayesian optimisation)
Such details could be interesting when deploying a model for prediction and could provide more flexibility than a single value.
Does anyone knows a way to obtain such an output?
Thanks!
Ok So I found a solution to this issue, though it adds a lot of overhead.
Initially I thought the keras callback could be of use but despite the fact that it provided the flexibility that I wanted i.e.: train only on test data or only a subset and not for every test. It seems that callbacks are only given summary data from the logs.
So the first step what to create a custom metric that would do the same calculation as any metric with the 2 arrays ( the true value and the predicted value) and once those calculations are done, output them to a file for later use.
Then once we found a way to gather all the data for every sample, the next step was to implement a method that could give a good measure of error. I'm currently implementing a handful of methods but the most fitting one seem to be bayesian bootstraping ( user lmc2179 has a great python implementation). I also implemented ensemble methods and gaussian process as alternatives or to use as other metrics and some other bayesian methods.
I'll try to find if there are internals in keras that are set during the training and testing phases to see if I can set a trigger for my metric. The main issue with using all the data is that you obtain a lot of unreliable data points at the start since the network is not optimized. Some data filtering could be useful to remove a good amount of those points to improve the results of the error predictors.
I'll update if I find anything interesting.

What is "The sum of true positives and false positives are equal to zero for some labels." mean?

I'm using scikit learn to perform cross validation using StratifiedKFold to compute the f1 score, but it says that some of my labels have the sum of true positives and false positives are equal to zero for some labels. I thought using StratifiedKFold should prevent this? Why am I getting this problem?
Also, is there a way to get the confusion matrix from the cross_val_score function?
Your classifier is probably classifying all data points as negative, so there are no positives. You can check that is the case by looking at the confusion matrix (docs and example here). It's hard to tell what is happening without information about your data and choice of classifier, but common causes include:
bug in your code. Check your training data contains negative data points, and that these data points contain non-zero features.
inappropriate classifier parameters. If using Naive Bayes, check your class biases. If using SVM, try using grid search over parameter values.
The sklearn classification_report function may come in handy (docs).
Re your second question: stratification ensures that each fold contains roughly the same proportion of data points from all classes. This does not mean your classifier will perform sensibly.
Update:
In a classification task (and especially when class imbalance is present) you are trading off precision for recall. Depending on your application, you can set your classifier so it does well most of the time (i.e. high accuracy) or so that it can detect the few points that you care about (i.e. high recall of the smaller classes). For example, if the task is to forward support emails to the right department, you want high accuracy. It is somewhat acceptable to misclassify the kind of email you get once a year, because you only upset one person. If your task is to detect posts by sexual predators on a children's forum, you definitely do not want to miss any of them, even if the price is that a few posts will get incorrectly flagged. Bottom line: you should optimise for your application.
Are you micro or macro averaging recall? In the former case, more weight will be given to the frequent classes (which is similar to optimising for accuracy), and in the latter all classes will have the same weight.

Does the SVM in sklearn support incremental (online) learning?

I am currently in the process of designing a recommender system for text articles (a binary case of 'interesting' or 'not interesting'). One of my specifications is that it should continuously update to changing trends.
From what I can tell, the best way to do this is to make use of machine learning algorithm that supports incremental/online learning.
Algorithms like the Perceptron and Winnow support online learning but I am not completely certain about Support Vector Machines. Does the scikit-learn python library support online learning and if so, is a support vector machine one of the algorithms that can make use of it?
I am obviously not completely tied down to using support vector machines, but they are usually the go to algorithm for binary classification due to their all round performance. I would be willing to change to whatever fits best in the end.
While online algorithms for SVMs do exist, it has become important to specify if you want kernel or linear SVMs, as many efficient algorithms have been developed for the special case of linear SVMs.
For the linear case, if you use the SGD classifier in scikit-learn with the hinge loss and L2 regularization you will get an SVM that can be updated online/incrementall. You can combine this with feature transforms that approximate a kernel to get similar to an online kernel SVM.
One of my specifications is that it should continuously update to changing trends.
This is referred to as concept drift, and will not be handled well by a simple online SVM. Using the PassiveAggresive classifier will likely give you better results, as it's learning rate does not decrease over time.
Assuming you get feedback while training / running, you can attempt to detect decreases in accuracy over time and begin training a new model when the accuracy starts to decrease (and switch to the new one when you believe that it has become more accurate). JSAT has 2 drift detection methods (see jsat.driftdetectors) that can be used to track accuracy and alert you when it has changed.
It also has more online linear and kernel methods.
(bias note: I'm the author of JSAT).
Maybe it's me being naive but I think it is worth mentioning how to actually update the sci-kit SGD classifier when you present your data incrementally:
clf = linear_model.SGDClassifier()
x1 = some_new_data
y1 = the_labels
clf.partial_fit(x1,y1)
x2 = some_newer_data
y2 = the_labels
clf.partial_fit(x2,y2)
Technical aspects
The short answer is no. Sklearn implementation (as well as most of the existing others) do not support online SVM training. It is possible to train SVM in an incremental way, but it is not so trivial task.
If you want to limit yourself to the linear case, than the answer is yes, as sklearn provides you with Stochastic Gradient Descent (SGD), which has option to minimize the SVM criterion.
You can also try out pegasos library instead, which supports online SVM training.
Theoretical aspects
The problem of trend adaptation is currently very popular in ML community. As #Raff stated, it is called concept drift, and has numerous approaches, which are often kinds of meta models, which analyze "how the trend is behaving" and change the underlying ML model (by for example forcing it to retrain on the subset of the data). So you have two independent problems here:
the online training issue, which is purely technical, and can be addressed by SGD or other libraries than sklearn
concept drift, which is currently a hot topic and has no just works answers There are many possibilities, hypothesis and proofes of concepts, while there is no one, generaly accepted way of dealing with this phenomena, in fact many phd dissertations in ML are currenlly based on this issue.
SGD for batch learning tasks normally has a decreasing learning rate and goes over training set multiple times. So, for purely online learning, make sure learning_rate is set to 'constant' in sklearn.linear_model.SGDClassifier() and eta0= 0.1 or any desired value. Therefore the process is as follows:
clf= sklearn.linear_model.SGDClassifier(learning_rate = 'constant', eta0 = 0.1, shuffle = False, n_iter = 1)
# get x1, y1 as a new instance
clf.partial_fit(x1, y1)
# get x2, y2
# update accuracy if needed
clf.partial_fit(x2, y2)
A way to scale SVM could be split your large dataset into batches that can be safely consumed by an SVM algorithm, then find support vectors for each batch separately, and then build a resulting SVM model on a dataset consisting of all the support vectors found in all the batches.
Updating to trends could be achieved by maintaining a time window each time you run your training pipeline. For example, if you do your training once a day and there is enough information in a month's historical data, create your traning dataset from the historical data obtained in the recent 30 days.
If interested in online learning with concept drift then here is some previous work
Learning under Concept Drift: an Overview
https://arxiv.org/pdf/1010.4784.pdf
The problem of concept drift: definitions and related work
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.9085&rep=rep1&type=pdf
A Survey on Concept Drift Adaptation
http://www.win.tue.nl/~mpechen/publications/pubs/Gama_ACMCS_AdaptationCD_accepted.pdf
MOA Concept Drift Active Learning Strategies for Streaming Data
http://videolectures.net/wapa2011_bifet_moa/
A Stream of Algorithms for Concept Drift
http://people.cs.georgetown.edu/~maloof/pubs/maloof.heilbronn12.handout.pdf
MINING DATA STREAMS WITH CONCEPT DRIFT
http://www.cs.put.poznan.pl/dbrzezinski/publications/ConceptDrift.pdf
Analyzing time series data with stream processing and machine learning
http://www.ibmbigdatahub.com/blog/analyzing-time-series-data-stream-processing-and-machine-learning

Categories

Resources