cProfile taking a lot of memory - python

I am attempting to profile my project in python, but I am running out of memory.
My project itself is fairly memory intensive, but even half-size runs are dieing with "MemoryError" when run under cProfile.
Doing smaller runs is not a good option, because we suspect that the run time is scaling super-linearly, and we are trying to discover which functions are dominating during large runs.
Why is cProfile taking so much memory? Can I make it take less? Is this normal?

Updated: Since cProfile is built into current versions of Python (the _lsprof extension) it should be using the main allocator. If this doesn't work for you, Python 2.7.1 has a --with-valgrind compiler option which causes it to switch to using malloc() at runtime. This is nice since it avoids having to use a suppressions file. You can build a version just for profiling, and then run your Python app under valgrind to look at all allocations made by the profiler as well as any C extensions which use custom allocation schemes.
(Rest of original answer follows):
Maybe try to see where the allocations are going. If you have a place in your code where you can periodically dump out the memory usage, you can use guppy to view the allocations:
import lxml.html
from guppy import hpy
hp = hpy()
trees = {}
for i in range(10):
# do something
trees[i] = lxml.html.fromstring("<html>")
print hp.heap()
# examine allocations for specific objects you suspect
print hp.iso(*trees.values())

Related

How to efficiently run multiple Pytorch Processes / Models at once ? Traceback: The paging file is too small for this operation to complete

Background
I have a very small network which I want to test with different random seeds.
The network barely uses 1% of my GPUs compute power so i could in theory run 50 processes at once to try many different seeds at once.
Problem
Unfortunately i can't even import pytorch in multiple processes. When the nr of processes exceeds 4 I get a Traceback regarding a too small paging file.
Minimal reproducable code§ - dispatcher.py
from subprocess import Popen
import sys
procs = []
for seed in range(50):
procs.append(Popen([sys.executable, "ml_model.py", str(seed)]))
for proc in procs:
proc.wait()
§I increased the number of seeds so people with better machines can also reproduce this.
Minimal reproducable code - ml_model.py
import torch
import time
time.sleep(10)
Traceback (most recent call last):
File "ml_model.py", line 1, in <module>
import torch
File "C:\Users\user\AppData\Local\Programs\Python\Python38\lib\site-packages\torch\__init__.py", line 117, in <module>
import torch
File "C:\Users\user\AppData\Local\Programs\Python\Python38\lib\site-packages\torch\__init__.py", line 117, in <module>
raise err
OSError: [WinError 1455] The paging file is too small for this operation to complete. Error loading "C:\Users\user\AppData\Local\Programs\Python\Python38\lib\site-packages\torch\lib\cudnn_cnn_infer64_8.dll" or one of its dependencies.
raise err
Further Investigation
I noticed that each process loads a lot of dll's into RAM. And when i close all other programs which use a lot of RAM i can get up to 10 procesess instead of 4. So it seems like a resource constraint.
Questions
Is there a workaround ?
What's the recommended way to train many small networks with pytorch on a single gpu ?
Should i write my own CUDA Kernel instead, or use a different framework to achieve this ?
My goal would be to run around 50 processes at once (on a 16GB RAM Machine, 8GB GPU RAM)
I've looked a bit into this tonight. I don't have a solution (edit: I have a mitigation, see the edit at end), but I have a bit more information.
It seems the issue is caused by NVidia fatbins (.nv_fatb) being loaded into memory. Several DLLs, such as cusolver64_xx.dll, torcha_cuda_cu.dll, and a few others, have .nv_fatb sections in them. These contain tons of different variations of CUDA code for different GPUs, so it ends up being several hundred megabytes to a couple gigabytes.
When Python imports 'torch' it loads these DLLs, and maps the .nv_fatb section into memory. For some reason, instead of just being a memory mapped file, it is actually taking up memory. The section is set as 'copy on write', so it's possible something writes into it? I don't know. But anyway, if you look at Python using VMMap ( https://learn.microsoft.com/en-us/sysinternals/downloads/vmmap ) you can see that these DLLs are committing huge amounts of committed memory for this .nv_fatb section. The frustrating part is it doesn't seem to be using the memory. For example, right now my Python.exe has 2.7GB committed, but the working set is only 148MB.
Every Python process that loads these DLLs will commit several GB of memory loading these DLLs. So if 1 Python process is wasting 2GB of memory, and you try running 8 workers, you need 16GB of memory to spare just to load the DLLs. It really doesn't seem like this memory is used, just committed.
I don't know enough about these fatbinaries to try to fix it, but from looking at this for the past 2 hours it really seems like they are the issue. Perhaps its an NVidia problem that these are committing memory?
edit: I made this python script: https://gist.github.com/cobryan05/7d1fe28dd370e110a372c4d268dcb2e5
Get it and install its pefile dependency ( python -m pip install pefile ).
Run it on your torch and cuda DLLs. In OPs case, command line might look like:
python fixNvPe.py --input=C:\Users\user\AppData\Local\Programs\Python\Python38\lib\site-packages\torch\lib\*.dll
(You also want to run this wherever your cusolver64_*.dll and friends are. This may be in your torch\lib folder, or it may be, eg, C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X\bin . If it is under Program Files, you will need to run the script with administrative privileges)
What this script is going to do is scan through all DLLs specified by the input glob, and if it finds an .nv_fatb section it will back up the DLL, disable ASLR, and mark the .nv_fatb section read-only.
ASLR is 'address space layout randomization.' It is a security feature that randomizes where a DLL is loaded in memory. We disable it for this DLL so that all Python processes will load the DLL into the same base virtual address. If all Python processes using the DLL load it at the same base address, they can all share the DLL. Otherwise each process needs its own copy.
Marking the section 'read-only' lets Windows know that the contents will not change in memory. If you map a file into memory read/write, Windows has to commit enough memory, backed by the pagefile, just in case you make a modification to it. If the section is read-only, there is no need to back it in the pagefile. We know there are no modifications to it, so it can always be found in the DLL.
The theory behind the script is that by changing these 2 flags that less memory will be committed for the .nv_fatb, and more memory will be shared between the Python processes. In practice, it works. Not quite as well as I'd hope (it still commits a lot more than it uses), so my understanding may be flawed, but it significantly decreases memory commit.
In my limited testing I haven't ran into any issues, but I can't guarantee there are no code paths that attempts to write to that section we marked 'read only.' If you start running into issues, though, you can just restore the backups.
edit 2022-01-20:
Per NVIDIA: "We have gone ahead and marked the nv_fatb section as read-only, this change will be targeting next major CUDA release 11.7 . We are not changing the ASLR, as that is considered a safety feature ."
This should certainly help. If it's not enough without ASLR as well then the script should still work
For my case system is already set to system managed size, yet I have same error, that is because I pass a big sized variable to multiple processes within a function. Likely I need to set a very large paging file as Windows cannot create it on the fly, but instead opt out to reduce number of processes as it is not an always to be used function.
If you are in Windows it may be better to use 1 (or more) core less than total number of pysical cores as multiprocessing module in python in Windows tends to get everything as possible if you use all and actually tries to get all logical cores.
import multiprocessing
multiprocessing.cpu_count()
12
# I actually have 6 pysical cores, if you use this as base it will likely hog system
import psutil
psutil.cpu_count(logical = False)
6 #actual number of pysical cores
psutil.cpu_count(logical = True)
12 #logical cores (e.g. hyperthreading)
Please refer to here for more detail:
Multiprocessing: use only the physical cores?
Well, i managed to resolve this.
open "advanced system setting". Go to the advanced tab then click settings related to performance.
Again click on advanced tab--> change --> unselect 'automatically......'. for all the drives, set 'system managed size'. Restart your pc.
Following up on #chris-obryan's answer (I would comment but have no reputation), I've found that memory utilisation drops pretty sharply some time in to training with their fix applied (in orders of roughly the mentioned 2GB per process).
To eek out some more performance it may be worth monitoring memory utilisation and spawning a new instance of the model when these drops in memory occur, leaving enough space (~3 or 4 GB to be safe) for a bit of overhead.
I was seeings ~28GB of RAM utilised during the setup phase, which dropped to about 14GB after iterating for a while.
(Note that my use case is a little different here as I'm bottlenecked by host<->device transfers due to optimising with a GA, as a reasonable amount of CPU bound processing needs to occur after each generation, so this could play in to it. I am also using concurrent.futures.ProcessPoolExecutor() rather than manually using subprocesses)
I have changed 'num_workers = 10' to 'num_workers = 1'. It helped me to solve the problem.
To fix this problem, I updated the CUDA 11.8.0 version and PyTorch to the 11.6 cudatoolkit version with PyTorch 1.9.1. Using conda:
conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge
Thanks to #chris-obryan I understood the problem and thought an update was available already. I measured the memory consumption before and after the updates, dropping sharply.
Since it seems that each import torch loads a bunch of fat DLLs (thanks #chris-obryan), I tried changing this:
import torch
if __name__ == "__main__":
# multiprocessing stuff, paging file errors
to this...
if __name__ == "__main__":
import torch
# multiprocessing stuff
And it worked well (because when the subprocesses are created __name__ is not "__main__").
Not an elegant solution, but perhaps useful to someone.

How to get peak memory usage of python script?

I'm doing some extensive scientific python calculations and whant to know execution time and memory footprint of python script.
So how to get peak memory usage of python script?
If it matters I'm on Windows and use python 2.7.
Sounds like you are looking for a memory profiler.
Memory_profiler is one that you can dive into which line is giving you the problems and with some querying you can figure out which area is the biggest in memory consumption.
https://pypi.python.org/pypi/memory_profiler
and since you are using windows it will also need this https://pypi.python.org/pypi/psutil
Good Luck!
The resource module can give you this. Works in both Python 2 and Python 3.
import resource
resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
This is peak memory in kilobytes. The user and system time is also included in the value from getrusage.
For the peak memory, as you are on Windows, you can use psutil and psutil.Process.memory_info, for example to get the peak working set size, in bytes:
>>> import psutil
>>> p = psutil.Process()
>>> p.memory_info().peak_wset
238530560L
As per the link above, you can get more details about some Windows specific fields on this page.

Using Python's pickle in Sage results in high memory usage

I am using the Python based Sage Mathematics software to create a very long list of vectors. The list contains roughly 100,000,000 elements and sys.getsizeof() tells me that it is of size a little less than 1GB.
This list I pickle into a file (which already takes a long time -- but fair enough). Only when I unpickle this list it gets annoying. The RAM usage increases from 1.15GB to 4.3GB, and I am wondering what's going on?
How can I find out in Sage what all the memory is used for? And do you have any ideas how to optimize this by maybe applying Python tricks?
This is a reply to the comment of kcrisman.
The exact code I cannot post since it would be too long. But here is a simple example where the phenomena can be observed. I am working on Linux 3.2.0-4-amd64 #1 SMP Debian 3.2.51-1 x86_64 GNU/Linux.
Start Sage and execute:
import pickle
L = [vector([1,2,3]) for k in range(1000000)]
f = open("mylist", 'w')
pickle.dump(L, f)
On my system the list is 8697472 bytes big, and the file I pickled into has roughly 130MB. Now close Sage and watch your memory (with htop, for example). Then execute the following lines:
import pickle
f = open("mylist", 'r')
pickle.load(f)
Without sage my Linux system uses 1035MB of memory, when Sage is running the usage increases to 1131MB. After I unpickled the file it uses 2535MB which I find odd.
It's probably better to not use python's pickle module directly. cPickle is already a bit better, but a lot of pickling in sage assumes protocol 2, which (c)Pickle doesn't default to. You can use sage's own wrappers of pickle. If I do your example with
sage: open("mylist",'w').write(dumps(L))
and then load it in a fresh session via
sage: L = loads(open("mylist",'r').read())
I observe no problems.
Note that the above interface is not the best one to pickle/unpickle in sage to a file. You'd be better off using save/load. I just did it that way to stay as close as possible to your example.

Python process consuming increasing amounts of system memory, but heapy shows roughly constant usage

I'm trying to identify a memory leak in a Python program I'm working on. I'm current'y running Python 2.7.4 on Mac OS 64bit. I installed heapy to hunt down the problem.
The program involves creating, storing, and reading large database using the shelve module. I am not using the writeback option, which I know can create memory problems.
Heapy usage shows during the program execution, the memory is roughly constant. Yet, my activity monitor shows rapidly increasing memory. Within 15 minutes, the process has consumed all my system memory (16gb), and I start seeing page outs. Any idea why heapy isn't tracking this properly?
Take a look at this fine article. You are, most likely, not seeing memory leaks but memory fragmentation. The best workaround I have found is to identify what the output of your large working set operation actually is, load the large dataset in a new process, calculate the output, and then return that output to the original process.
This answer has some great insight and an example, as well. I don't see anything in your question that seems like it would preclude the use of PyPy.

Huge memory usage of Python's json module?

When I load the file into json, pythons memory usage spikes to about 1.8GB and I can't seem to get that memory to be released. I put together a test case that's very simple:
with open("test_file.json", 'r') as f:
j = json.load(f)
I'm sorry that I can't provide a sample json file, my test file has a lot of sensitive information, but for context, I'm dealing with a file in the order of 240MB. After running the above 2 lines I have the previously mentioned 1.8GB of memory in use. If I then do del j memory usage doesn't drop at all. If I follow that with a gc.collect() it still doesn't drop. I even tried unloading the json module and running another gc.collect.
I'm trying to run some memory profiling but heapy has been churning 100% CPU for about an hour now and has yet to produce any output.
Does anyone have any ideas? I've also tried the above using cjson rather than the packaged json module. cjson used about 30% less memory but otherwise displayed exactly the same issues.
I'm running Python 2.7.2 on Ubuntu server 11.10.
I'm happy to load up any memory profiler and see if it does better then heapy and provide any diagnostics you might think are necessary. I'm hunting around for a large test json file that I can provide for anyone else to give it a go.
I think these two links address some interesting points about this not necessarily being a json issue, but rather just a "large object" issue and how memory works with python vs the operating system
See Why doesn't Python release the memory when I delete a large object? for why memory released from python is not necessarily reflected by the operating system:
If you create a large object and delete it again, Python has probably released the memory, but the memory allocators involved don’t necessarily return the memory to the operating system, so it may look as if the Python process uses a lot more virtual memory than it actually uses.
About running large object processes in a subprocess to let the OS deal with cleaning up:
The only really reliable way to ensure that a large but temporary use of memory DOES return all resources to the system when it's done, is to have that use happen in a subprocess, which does the memory-hungry work then terminates. Under such conditions, the operating system WILL do its job, and gladly recycle all the resources the subprocess may have gobbled up. Fortunately, the multiprocessing module makes this kind of operation (which used to be rather a pain) not too bad in modern versions of Python.

Categories

Resources