Neighbourhood of Scipy Labels - python

I've got an array of objects labeled with scipy.ndimage.measurements.label called Labels. I've got other array Data containing stuff related to Labels. How can I make a third array Neighbourhoods which could serve to map the nearest label to x,y is L
Given Labels and Data, how can I use python/numpy/scipy to get Neighbourhoods?
Labels = array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] )
Data = array([[1, 1, 1, 1, 1, 1, 2, 3, 4, 5],
[1, 0, 0, 0, 0, 1, 2, 3, 4, 5],
[1, 0, 0, 0, 0, 1, 2, 3, 4, 4],
[1, 0, 0, 0, 0, 1, 2, 3, 3, 3],
[1, 0, 0, 0, 0, 1, 2, 2, 2, 2],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 1, 0, 0, 0, 1],
[3, 3, 3, 3, 2, 1, 0, 0, 0, 1],
[4, 4, 4, 3, 2, 1, 0, 0, 0, 1],
[5, 5, 4, 3, 2, 1, 1, 1, 1, 1]] )
Neighbourhoods = array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 1, 1, 1, 0, 2],
[1, 0, 0, 0, 0, 1, 1, 0, 2, 2],
[1, 0, 0, 0, 0, 1, 0, 2, 2, 2],
[1, 1, 1, 1, 1, 0, 2, 2, 2, 2],
[1, 1, 1, 1, 0, 2, 0, 0, 0, 2],
[1, 1, 1, 0, 2, 2, 0, 0, 0, 2],
[1, 1, 0, 2, 2, 2, 0, 0, 0, 2],
[1, 1, 2, 2, 2, 2, 2, 2, 2, 2]] )
Note: I'm not sure what should happen with ties, so used zeros in the above Neighbourhoods

As suggested by David Zaslavsky, this is the job for a voroni diagram. Here is a numpy implementation: http://blancosilva.wordpress.com/2010/12/15/image-processing-with-numpy-scipy-and-matplotlibs-in-sage/
The relevant function is scipy.ndimage.distance_transform_edt. It has a return_indices option that can be exploited to do what you need (as well as calculate the raw distances (data in your example)).
As an example:
import numpy as np
from scipy.ndimage import distance_transform_edt
labels = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] )
i, j = distance_transform_edt(labels == 0, return_distances=False,
return_indices=True)
neighborhoods = labels[i,j]
print neighborhoods
This yields:
array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 2],
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 1, 1, 1, 2, 2, 2],
[1, 1, 1, 1, 1, 1, 2, 2, 2, 2],
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
[1, 1, 1, 1, 2, 2, 2, 2, 2, 2],
[1, 1, 1, 2, 2, 2, 2, 2, 2, 2],
[1, 1, 2, 2, 2, 2, 2, 2, 2, 2]])

Related

Why is memory not freed when reading files using `with as` in a loop?

I have several large files in a folder. Each single file fits in my RAM, but all of them not. I have the following loop processing each file:
for dataset_index,path in enumerate(file_paths_train):
with np.load(path) as dataset:
x_batch = dataset['data']
y_batch = dataset['labels']
for i in range(x_batch.shape[0]):
if y_batch[i] in INDICES:
# This selects a minimal subset of the data
data_list.append((y_batch[i], x_batch[i]))
# End loop
(the paths for all files are stored in the variable file_paths_train)
This answer stated that using with ... as ... would automatically delete the variable associated with the file once the program is out of the scope. Except it isn't, memory usage increases until the computer stops working and I need to restart.
Ideas?
Indexing a multidimensional array with a scalar creates a view. If that view is saved in a list, the original array remains, regardless of what happens to its variable references.
In [95]: alist = []
...: for i in range(3):
...: x = np.ones((10,10),int)*i
...: alist.append(x[0])
...:
In [96]: alist
Out[96]:
[array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2])]
In [97]: [item.base for item in alist]
Out[97]:
[array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]),
array([[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]])]
You have to append a copy if you want to truely 'throw-away' the original array.
In [98]: alist = []
...: for i in range(3):
...: x = np.ones((10,10),int)*i
...: alist.append(x[0].copy())
...:
...:
In [99]: alist
Out[99]:
[array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2])]
In [100]: [item.base for item in alist]
Out[100]: [None, None, None]

Need a recursive function to get all permutations of an array where each element is itself plus 0 to n

Sorry for the wording of the title as I am unsure how to phrase the question.
I am trying to get all permutations of an array where each element could be it's value plus 0 to n ('wild' value)
e.g.
The array [0, 1, 0, 2, 1] with the wild value equal to 1 would have the permutations:
[1, 1, 0, 2, 1]
[0, 2, 0, 2, 1]
[0, 1, 1, 2, 1]
[0, 1, 0, 3, 1]
[0, 1, 0, 2, 2]
The array [1, 2, 0, 0] with the wild value equal to 2 would have the permutations:
[3, 2, 0, 0]
[2, 3, 0, 0]
[2, 2, 1, 0]
[2, 2, 0, 1]
[1, 4, 0, 0]
[2, 3, 0, 0]
[1, 3, 1, 0]
[1, 3, 0, 1]
[1, 2, 2, 0]
[2, 2, 1, 0]
[1, 3, 1, 0]
[1, 2, 1, 1]
... and so on...
This is the code I have tried, but it is not producing the desired results:
def generateAllMatrices(length, buckets, ind, wild):
if ind == length:
# possible_buckets.append(buckets.copy())
print(buckets)
return
if wild != 0:
for i in range(1, wild + 1):
buckets[ind] += 1
generateAllMatrices(length, buckets, 0, wild - 1)
buckets[ind] -= wild
generateAllMatrices(length, buckets, ind + 1, wild)
An example result produced from the above code is:
Original = [1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 0, 0]
Wild = 1
Permutations:
[2, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 0, 0]
[1, 1, 0, 2, 0, 1, 0, 0, 0, 1, 1, 0, 0]
[1, 0, 1, 2, 0, 1, 0, 0, 0, 1, 1, 0, 0]
[1, 0, 0, 3, 0, 1, 0, 0, 0, 1, 1, 0, 0]
[1, 0, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0]
[1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 1, 0, 0]
[1, 0, 0, 2, 0, 1, 1, 0, 0, 1, 1, 0, 0]
[1, 0, 0, 2, 0, 1, 0, 1, 0, 1, 1, 0, 0]
[1, 0, 0, 2, 0, 1, 0, 0, 1, 1, 1, 0, 0]
[1, 0, 0, 2, 0, 1, 0, 0, 0, 2, 1, 0, 0]
[1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 2, 0, 0]
[1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 1, 0]
[1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 0, 1]
[1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 0, 0]
Are there any similar algorithms I could reference for this? Or what route should I take regarding developing something that will produce what I need.
Thanks!
You could do the following:
import itertools
def make_reps(l, wild):
for indices in itertools.product(range(len(l)), repeat=wild):
new_l = list(l)
for i in indices:
new_l[i] += 1
yield new_l
With your given examples:
In [12]: list(make_reps([0, 1, 0, 2, 1], 1))
Out[12]:
[[1, 1, 0, 2, 1],
[0, 2, 0, 2, 1],
[0, 1, 1, 2, 1],
[0, 1, 0, 3, 1],
[0, 1, 0, 2, 2]]
In [14]: list(make_reps([1, 2, 0, 0], 2))
Out[14]:
[[3, 2, 0, 0],
[2, 3, 0, 0],
[2, 2, 1, 0],
[2, 2, 0, 1],
[2, 3, 0, 0],
[1, 4, 0, 0],
[1, 3, 1, 0],
[1, 3, 0, 1],
[2, 2, 1, 0],
[1, 3, 1, 0],
[1, 2, 2, 0],
[1, 2, 1, 1],
[2, 2, 0, 1],
[1, 3, 0, 1],
[1, 2, 1, 1],
[1, 2, 0, 2]]

How to slice a list that contains two list for each?

I am trying to select the first list in each row and return them as list
using the slicing methods:
l = [[[0, 1, 1, 0, 0, 0, 2, 1, 2, 0, 1, 2], [0.0]],
[[1, 1, 0, 2, 0, 0, 0, 1, 2, 1, 2, 2], [0.0]],
[[0, 2, 2, 1, 2, 1, 0, 2, 2, 2, 1, 0], [0.0]],
[[1, 1, 0, 1, 2, 2, 2, 2, 0, 0, 2, 2], [0.0]],
[[1, 2, 2, 0, 0, 2, 1, 1, 1, 2, 1, 0], [0.0]],
[[0, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2], [0.0]],
[[0, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2], [0.0]],
[[0, 2, 1, 2, 2, 0, 0, 0, 0, 0, 1, 2], [0.0]],
[[1, 1, 1, 2, 1, 2, 2, 1, 0, 2, 0, 2], [0.0]],
[[0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 1, 0], [0.0]]]
# i want to get this
l1 = [[0, 1, 1, 0, 0, 0, 2, 1, 2, 0, 1, 2],
[1, 1, 0, 2, 0, 0, 0, 1, 2, 1, 2, 2],
[0, 2, 2, 1, 2, 1, 0, 2, 2, 2, 1, 0],
[1, 1, 0, 1, 2, 2, 2, 2, 0, 0, 2, 2],
[1, 2, 2, 0, 0, 2, 1, 1, 1, 2, 1, 0],
[0, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2],
[0, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2],
[0, 2, 1, 2, 2, 0, 0, 0, 0, 0, 1, 2],
[1, 1, 1, 2, 1, 2, 2, 1, 0, 2, 0, 2],
[0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 1, 0]]
This should work for you:
list(map(lambda x: x[0], l))
Output:
[[0, 1, 1, 0, 0, 0, 2, 1, 2, 0, 1, 2],
[1, 1, 0, 2, 0, 0, 0, 1, 2, 1, 2, 2],
[0, 2, 2, 1, 2, 1, 0, 2, 2, 2, 1, 0],
[1, 1, 0, 1, 2, 2, 2, 2, 0, 0, 2, 2],
[1, 2, 2, 0, 0, 2, 1, 1, 1, 2, 1, 0],
[0, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2],
[0, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2],
[0, 2, 1, 2, 2, 0, 0, 0, 0, 0, 1, 2],
[1, 1, 1, 2, 1, 2, 2, 1, 0, 2, 0, 2],
[0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 1, 0]]

Add 1 to an element inside a list and return a different list

I wrote the following code:
population = [[[0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1], [0]],
[[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1], [3], [1]],
[[0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [4], [2]],
[[1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0], [3], [3]]]
def ManipulateFitness(population):
mf=[]
populaion_m = population
for game in range (0, len(population)):
m = [f+1 for f in population[game][1]]
mf.append(m)
manipulted = [m for f in population[game][1] for m in mf
population_m.append(manipulated)
return (population_m)
What I am trying to do is just adding a 1 to the second element in the list (the third is just a counter)for each chromosome and return the same list with just this different values, but with a different name, since Ill need both later on. I was trying it like this but it didnt work, I managed to generate the values but I wasnt successfull in adding them to the list in the correct places. Any suggestions?
This answer assumes that you want to add an additional element 1 to the second item of each list:
population = [[[0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1], [0]], [[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1], [3], [1]], [[0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [4], [2]], [[1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0], [3], [3]]]
new_population = [[b+[1] if i == 1 else b for i, b in enumerate(a)] for a in population]
Output:
[[[0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 1], [0]], [[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1], [3, 1], [1]], [[0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [4, 1], [2]], [[1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0], [3, 1], [3]]]
However, if you merely wish to increment the element in the second list, you can try this:
new_population = [[[b[0]+1] if i == 1 else b for i, b in enumerate(a)] for a in population]
Output:
[[[0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1], [2], [0]], [[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1], [4], [1]], [[0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [5], [2]], [[1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0], [4], [3]]]

Label regions with unique combinations of values in two numpy arrays?

I have two labelled 2D numpy arrays a and b with identical shapes. I would like to re-label the array b by something similar to a GIS geometric union of the two arrays, such that cells with unique combination of values in array a and b are assigned new unique IDs:
I'm not concerned with the specific numbering of the regions in the output, so long as the values are all unique. I have attached sample arrays and desired outputs below: my real datasets are much larger, with both arrays having integer labels which range from "1" to "200000". So far I've experimented with concatenating the array IDs to form unique combinations of values, but ideally I would like to output a simple set of new IDs in the form of 1, 2, 3..., etc.
import numpy as np
import matplotlib.pyplot as plt
# Example labelled arrays a and b
input_a = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 0],
[0, 0, 3, 3, 3, 3, 2, 2, 2, 2, 0, 0],
[0, 0, 3, 3, 3, 3, 2, 2, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
input_b = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 3, 3, 3, 3, 3, 0, 0],
[0, 0, 1, 1, 1, 3, 3, 3, 3, 3, 0, 0],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
# Plot inputs
plt.imshow(input_a, cmap="spectral", interpolation='nearest')
plt.imshow(input_b, cmap="spectral", interpolation='nearest')
# Desired output, union of a and b
output = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 2, 3, 3, 3, 3, 0, 0],
[0, 0, 1, 1, 1, 2, 3, 3, 3, 3, 0, 0],
[0, 0, 1, 1, 1, 4, 7, 7, 7, 7, 0, 0],
[0, 0, 5, 5, 5, 6, 7, 7, 7, 7, 0, 0],
[0, 0, 5, 5, 5, 6, 7, 7, 7, 7, 0, 0],
[0, 0, 5, 5, 5, 6, 7, 7, 7, 7, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
# Plot desired output
plt.imshow(output, cmap="spectral", interpolation='nearest')
If I understood the circumstances correctly, you are looking to have unique pairings from a and b. So, 1 from a and 1 from b would have one unique tag in the output; 1 from a and 3 from b would have another unique tag in the output. Also looking at the desired output in the question, it seems that there is an additional conditional situation here that if b is zero, the output is to be zero as well irrespective of the unique pairings.
The following implementation tries to solve all of that -
c = a*(b.max()+1) + b
c[b==0] = 0
_,idx = np.unique(c,return_inverse= True)
out = idx.reshape(b.shape)
Sample run -
In [21]: a
Out[21]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0],
[0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 0],
[0, 0, 3, 3, 3, 3, 2, 2, 2, 2, 0, 0],
[0, 0, 3, 3, 3, 3, 2, 2, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
In [22]: b
Out[22]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 3, 3, 3, 3, 3, 0, 0],
[0, 0, 1, 1, 1, 3, 3, 3, 3, 3, 0, 0],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
In [23]: out
Out[23]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 3, 5, 5, 5, 5, 0, 0],
[0, 0, 1, 1, 1, 3, 5, 5, 5, 5, 0, 0],
[0, 0, 1, 1, 1, 2, 4, 4, 4, 4, 0, 0],
[0, 0, 6, 6, 6, 7, 4, 4, 4, 4, 0, 0],
[0, 0, 6, 6, 6, 7, 4, 4, 4, 4, 0, 0],
[0, 0, 6, 6, 6, 7, 4, 4, 4, 4, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
Sample plot -
# Plot inputs
plt.figure()
plt.imshow(a, cmap="spectral", interpolation='nearest')
plt.figure()
plt.imshow(b, cmap="spectral", interpolation='nearest')
# Plot output
plt.figure()
plt.imshow(out, cmap="spectral", interpolation='nearest')
Here is a way to do it conceptually in terms of set union, but not to GIS geometric union, since that was mentioned after I answered.
Make a list of all possible unique 2-tuples of values with one from a and the other from b in that order. Map each tuple in that list to its index in it. Create the union array using that map.
For example say a and b are arrays each containing values in range(4) and assume for simplicity they have the same shape. Then:
v = range(4)
from itertools import permutations
p = list(permutations(v,2))
m = {}
for i,x in enumerate(p):
m[x] = i
union = np.empty_like(a)
for i,x in np.ndenumerate(a):
union[i] = m[(x,b[i])]
For demonstration, generating a and b with
np.random.randint(4, size=(3, 3))
produced:
a = array([[3, 0, 3],
[1, 3, 2],
[0, 0, 3]])
b = array([[1, 3, 1],
[0, 0, 1],
[2, 3, 0]])
m = {(0, 1): 0,
(0, 2): 1,
(0, 3): 2,
(1, 0): 3,
(1, 2): 4,
(1, 3): 5,
(2, 0): 6,
(2, 1): 7,
(2, 3): 8,
(3, 0): 9,
(3, 1): 10,
(3, 2): 11}
union = array([[10, 2, 10],
[ 3, 9, 7],
[ 1, 2, 9]])
In this case the property that a union should be bigger or equal to its composits is reflected in increased numerical values rather than increase in number of elements.
An issue with using itertools permutations is that the number of permutations could be much larger than needed. It would be much larger if the number of overlaps per area is much smaller than the number of areas.
The question uses Union but the picture shows an Intersection. Divakar's answer replicates the pictured Intersection, and is more elegant than my solution below, which produces the Union.
One could make a dictionary of only the actual overlaps, and then work from that. Flattening the input arrays first makes this easier for me to see, I'm not sure if that is feasible for you:
shp = numpy.shape(input_a)
a = input_a.flatten()
b = input_b.flatten()
s = set(((i,j) for i,j in zip(a,b))) # unique pairings
d = {p:i for i,p in enumerate(sorted(list(s))} # dict{pair:index}
output_c = numpy.array([d[i,j] for i,j in zip(a,b)]).reshape(shp)
array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 0],
[ 0, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 0],
[ 0, 1, 2, 2, 2, 4, 7, 7, 7, 7, 5, 0],
[ 0, 1, 2, 2, 2, 4, 7, 7, 7, 7, 5, 0],
[ 0, 1, 2, 2, 2, 3, 6, 6, 6, 6, 5, 0],
[ 0, 8, 9, 9, 9, 10, 6, 6, 6, 6, 5, 0],
[ 0, 0, 9, 9, 9, 10, 6, 6, 6, 6, 0, 0],
[ 0, 0, 9, 9, 9, 10, 6, 6, 6, 6, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

Categories

Resources