Customize x-axis in matplotlib - python

In the figure below, each unit in the x-axis represents a 10mins interval. I would like to customize the labels of x-axis, so that it shows hours, i.e. it displays a ticker every 6 units (60mins). I am new to matplotlib. Could someone help me? Thanks~
Here is the code for the above figure.
x = arange(0, size_x, dx)
y = arange(0, size_y, dy)
X,Y = meshgrid(x, y)
Z = foo(x,y)
pcolor(X, Y, Z, cmap=cm.Reds)
colorbar()
axis([0,size_x-1,0,size_y-1])
show()

There's more than one way to do this.
Let's start out with an example plot:
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
# Generate some data...
x, y = np.mgrid[:141, :101]
z = np.cos(np.hypot(x, y))
# Plot the figure...
plt.pcolormesh(x, y, z, cmap=mpl.cm.Reds)
plt.show()
The simple way to do what you want would be something like this:
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
# Generate some data...
x, y = np.mgrid[:141, :101]
z = np.cos(np.hypot(x, y))
# Plot the figure...
plt.pcolormesh(x, y, z, cmap=mpl.cm.Reds)
# Set the ticks and labels...
ticks = np.arange(x.min(), x.max(), 6)
labels = range(ticks.size)
plt.xticks(ticks, labels)
plt.xlabel('Hours')
plt.show()
The other way involves subclassing matplotlib's locators and tickers.
For your purposes, the example above is fine.
The advantage of making new locators and tickers is that the axis will automatically be scaled into reasonable intervals of the "dx" units you specify. If you're using it as a part of a larger application, it can be worthwhile. For a single plot, it's more trouble than it's worth.
If you really wanted to go that route, though, you'd do something like this:
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
def main():
# Generate some data...
x, y = np.mgrid[:141, :101]
z = np.cos(np.hypot(x, y))
# Plot the figure...
fig, ax = plt.subplots()
ax.pcolormesh(x, y, z, cmap=mpl.cm.Reds)
ax.set_xlabel('Hours')
ax.xaxis.set_major_locator(ScaledLocator(dx=6))
ax.xaxis.set_major_formatter(ScaledFormatter(dx=6))
plt.show()
class ScaledLocator(mpl.ticker.MaxNLocator):
"""
Locates regular intervals along an axis scaled by *dx* and shifted by
*x0*. For example, this would locate minutes on an axis plotted in seconds
if dx=60. This differs from MultipleLocator in that an approriate interval
of dx units will be chosen similar to the default MaxNLocator.
"""
def __init__(self, dx=1.0, x0=0.0):
self.dx = dx
self.x0 = x0
mpl.ticker.MaxNLocator.__init__(self, nbins=9, steps=[1, 2, 5, 10])
def rescale(self, x):
return x / self.dx + self.x0
def inv_rescale(self, x):
return (x - self.x0) * self.dx
def __call__(self):
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = self.rescale(vmin), self.rescale(vmax)
vmin, vmax = mpl.transforms.nonsingular(vmin, vmax, expander = 0.05)
locs = self.bin_boundaries(vmin, vmax)
locs = self.inv_rescale(locs)
prune = self._prune
if prune=='lower':
locs = locs[1:]
elif prune=='upper':
locs = locs[:-1]
elif prune=='both':
locs = locs[1:-1]
return self.raise_if_exceeds(locs)
class ScaledFormatter(mpl.ticker.OldScalarFormatter):
"""Formats tick labels scaled by *dx* and shifted by *x0*."""
def __init__(self, dx=1.0, x0=0.0, **kwargs):
self.dx, self.x0 = dx, x0
def rescale(self, x):
return x / self.dx + self.x0
def __call__(self, x, pos=None):
xmin, xmax = self.axis.get_view_interval()
xmin, xmax = self.rescale(xmin), self.rescale(xmax)
d = abs(xmax - xmin)
x = self.rescale(x)
s = self.pprint_val(x, d)
return s
if __name__ == '__main__':
main()

Related

3D surface plot with section plan in Matplotlib

Basically I have a surface plot consisting of a set of time series, and I would like to add a section plan at a specific height, to better understand the period of the year when values are higher than the selected threshold.
From this:
where the plan is shown but not as a section
To This:
Any suggestion?
Plying with alpha and camera elevation did not solve the issue
the plan still seems to be in front of the figure, not as a section
Drawing in 3 steps
As others pointed out, matplotlib's 3D capabilities are somewhat limited. To hide objects behind other objects, it uses the painter's algorithm. So, the objects are simply drawn back to front, and no objects are put partly before and partly behind some plane. Matplotlib calculates some average depth of each object to define the order. You can overwrite this order via ax.computed_zorder = False, as the automatic calculation is not always what is wished.
You could draw the "layers" yourself:
the 3D surface
then the plane
then the part of the 3D surface that should be visible on top
An example:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from scipy.ndimage.filters import gaussian_filter
x = np.linspace(-10, 10, 51)
y = np.linspace(-10, 10, 51)
X, Y = np.meshgrid(x, y)
np.random.seed(20220201)
Z = np.random.rand(*X.shape) ** 5
Z[X ** 2 + Y ** 2 > 30] = 0
Z = gaussian_filter(Z, sigma=2) * 100
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.computed_zorder = False
ax.plot_surface(X, Y, Z, cmap='turbo')
special_z = 16
ax.plot_surface(X, Y, np.full_like(Z, special_z), color='blue', alpha=0.4)
ax.plot_surface(X, Y, np.where(Z >= special_z, Z, np.nan), cmap='turbo', vmin=0)
plt.show()
Drawing layer by layer
An alternative way could be to draw the surface one layer at a time.
The example at the left shows the surface divided into 30 layers, the example at the right stops at a given height, visualizing the intersection.
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from scipy.ndimage.filters import gaussian_filter
x = np.linspace(-10, 10, 51)
y = np.linspace(-10, 10, 51)
X, Y = np.meshgrid(x, y)
np.random.seed(20220201)
Z = np.random.rand(*X.shape) ** 5
Z[X ** 2 + Y ** 2 > 30] = 0
Z = gaussian_filter(Z, sigma=2) * 100
fig = plt.figure()
for which in ['left', 'right']:
ax = fig.add_subplot(121 + (which == 'right'), projection="3d")
ax.computed_zorder = False
layers = np.linspace(Z.min(), Z.max(), 32)[1:-1]
colors = plt.get_cmap('turbo', len(layers)).colors
special_z = 16
plane_drawn = False
for layer, color in zip(layers, colors):
if layer >= special_z and not plane_drawn:
ax.plot_surface(X, Y, np.full_like(Z, special_z), color='blue', alpha=0.5, zorder=2)
plane_drawn = True
ax.contour(X, Y, Z, levels=[layer], offset=layer, colors=[color])
if plane_drawn and which == 'right':
break
plt.show()

Square root scale using matplotlib/python

I want to make a plot with square root scale using Python:
However, I have no idea how to make it. Matplotlib allows to make log scale but in this case I need something like power function scale.
You can make your own ScaleBase class to do this. I have modified the example from here (which made a square-scale, not a square-root-scale) for your purposes. Also, see the documentation here.
Note that to do this properly, you should probably also create your own custom tick locator; I haven't done that here though; I just manually set the major and minor ticks using ax.set_yticks().
import matplotlib.scale as mscale
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
import matplotlib.ticker as ticker
import numpy as np
class SquareRootScale(mscale.ScaleBase):
"""
ScaleBase class for generating square root scale.
"""
name = 'squareroot'
def __init__(self, axis, **kwargs):
# note in older versions of matplotlib (<3.1), this worked fine.
# mscale.ScaleBase.__init__(self)
# In newer versions (>=3.1), you also need to pass in `axis` as an arg
mscale.ScaleBase.__init__(self, axis)
def set_default_locators_and_formatters(self, axis):
axis.set_major_locator(ticker.AutoLocator())
axis.set_major_formatter(ticker.ScalarFormatter())
axis.set_minor_locator(ticker.NullLocator())
axis.set_minor_formatter(ticker.NullFormatter())
def limit_range_for_scale(self, vmin, vmax, minpos):
return max(0., vmin), vmax
class SquareRootTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform_non_affine(self, a):
return np.array(a)**0.5
def inverted(self):
return SquareRootScale.InvertedSquareRootTransform()
class InvertedSquareRootTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform(self, a):
return np.array(a)**2
def inverted(self):
return SquareRootScale.SquareRootTransform()
def get_transform(self):
return self.SquareRootTransform()
mscale.register_scale(SquareRootScale)
fig, ax = plt.subplots(1)
ax.plot(np.arange(0, 9)**2, label='$y=x^2$')
ax.legend()
ax.set_yscale('squareroot')
ax.set_yticks(np.arange(0,9,2)**2)
ax.set_yticks(np.arange(0,8.5,0.5)**2, minor=True)
plt.show()
This is old, but I made a quick-fix because i didn't want to bother with creating a custom tick-locator. If you are making a lot of plots with custom scales that is probably the way to go. Just plotting the function with the scale you want, then setting the ticks and changing the labels is quicker if you just need a plot or two.
Nx = 100
x = np.linspace(0,50,Nx)
y = np.sqrt(x)
fig, ax = plt.subplots(1, 1)
plt.plot(np.sqrt(x), y)
ax.set_xticks([np.sqrt(x[i]) for i in range(0, Nx, Nx // 10)])
ax.set_xticklabels([str(round(x[i],0))[:-2] for i in range(0, Nx, Nx // 10)])
plt.xlabel('x')
plt.ylabel(r'y = $\sqrt{x}$')
plt.grid()
plt.show()
produces the plot
I like lolopop's comment and tom's answer, a more quick and dirty solution would be using set_yticks and set_yticklabels as in the following:
x = np.arange(2, 15, 2)
y = x * x
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.plot(x,y)
ax2.plot(x, np.sqrt(y))
ax2.set_yticks([2,4,6,8,10,12,14])
ax2.set_yticklabels(['4','16','36','64','100','144','196'])
Matplotlib now offers a powlaw norm. Thus setting power to 0.5 should do the trick!
C.f. Matplotlib Powerlaw norm
And their example:
"""
Demonstration of using norm to map colormaps onto data in non-linear ways.
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from matplotlib.mlab import bivariate_normal
N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
'''
PowerNorm: Here a power-law trend in X partially obscures a rectified
sine wave in Y. We can remove gamma to 0.5 should do the trick using PowerNorm.
'''
X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)]
Z1 = (1 + np.sin(Y * 10.)) * X**(2.)
fig, ax = plt.subplots(2, 1)
pcm = ax[0].pcolormesh(X, Y, Z1, norm=colors.PowerNorm(gamma=1./2.),
cmap='PuBu_r')
fig.colorbar(pcm, ax=ax[0], extend='max')
pcm = ax[1].pcolormesh(X, Y, Z1, cmap='PuBu_r')
fig.colorbar(pcm, ax=ax[1], extend='max')
fig.show()
This a simple way to graph
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams["figure.dpi"] = 140
fig, ax = plt.subplots()
ax.spines["left"].set_position("zero")
ax.spines["bottom"].set_position("zero")
ax.spines["right"].set_color("none")
ax.spines["top"].set_color("none")
ax.xaxis.set_ticks_position("bottom")
ax.yaxis.set_ticks_position("left")
origin = [0, 0]
# 45
plt.plot(
np.linspace(0, 1, 1000),
np.sqrt(np.linspace(0, 1, 1000)),
color="k",
)
ax.set_aspect("equal")
plt.xlim(-0.25, 1)
plt.ylim(0, 1)
plt.yticks(ticks=np.linspace(0, 1, 6))
plt.show()

Arrow on a line plot with matplotlib

I'd like to add an arrow to a line plot with matplotlib like in the plot below (drawn with pgfplots).
How can I do (position and direction of the arrow should be parameters ideally)?
Here is some code to experiment.
from matplotlib import pyplot
import numpy as np
t = np.linspace(-2, 2, 100)
plt.plot(t, np.sin(t))
plt.show()
Thanks.
In my experience this works best by using annotate. Thereby you avoid the weird warping you get with ax.arrow which is somehow hard to control.
EDIT: I've wrapped it into a little function.
from matplotlib import pyplot as plt
import numpy as np
def add_arrow(line, position=None, direction='right', size=15, color=None):
"""
add an arrow to a line.
line: Line2D object
position: x-position of the arrow. If None, mean of xdata is taken
direction: 'left' or 'right'
size: size of the arrow in fontsize points
color: if None, line color is taken.
"""
if color is None:
color = line.get_color()
xdata = line.get_xdata()
ydata = line.get_ydata()
if position is None:
position = xdata.mean()
# find closest index
start_ind = np.argmin(np.absolute(xdata - position))
if direction == 'right':
end_ind = start_ind + 1
else:
end_ind = start_ind - 1
line.axes.annotate('',
xytext=(xdata[start_ind], ydata[start_ind]),
xy=(xdata[end_ind], ydata[end_ind]),
arrowprops=dict(arrowstyle="->", color=color),
size=size
)
t = np.linspace(-2, 2, 100)
y = np.sin(t)
# return the handle of the line
line = plt.plot(t, y)[0]
add_arrow(line)
plt.show()
It's not very intuitive but it works. You can then fiddle with the arrowprops dictionary until it looks right.
Just add a plt.arrow():
from matplotlib import pyplot as plt
import numpy as np
# your function
def f(t): return np.sin(t)
t = np.linspace(-2, 2, 100)
plt.plot(t, f(t))
plt.arrow(0, f(0), 0.01, f(0.01)-f(0), shape='full', lw=0, length_includes_head=True, head_width=.05)
plt.show()
EDIT: Changed parameters of arrow to include position & direction of function to draw.
Not the nicest solution, but should work:
import matplotlib.pyplot as plt
import numpy as np
def makeArrow(ax,pos,function,direction):
delta = 0.0001 if direction >= 0 else -0.0001
ax.arrow(pos,function(pos),pos+delta,function(pos+delta),head_width=0.05,head_length=0.1)
fun = np.sin
t = np.linspace(-2, 2, 100)
ax = plt.axes()
ax.plot(t, fun(t))
makeArrow(ax,0,fun,+1)
plt.show()
I know this doesn't exactly answer the question as asked, but I thought this could be useful to other people landing here. I wanted to include the arrow in my plot's legend, but the solutions here don't mention how. There may be an easier way to do this, but here is my solution:
To include the arrow in your legend, you need to make a custom patch handler and use the matplotlib.patches.FancyArrow object. Here is a minimal working solution. This solution piggybacks off of the existing solutions in this thread.
First, the imports...
import matplotlib.pyplot as plt
from matplotlib.legend_handler import HandlerPatch
import matplotlib.patches as patches
from matplotlib.lines import Line2D
import numpy as np
Now, we make a custom legend handler. This handler can create legend artists for any line-patch combination, granted that the line has no markers.
class HandlerLinePatch(HandlerPatch):
def __init__(self, linehandle=None, **kw):
HandlerPatch.__init__(self, **kw)
self.linehandle=linehandle
def create_artists(self, legend, orig_handle,
xdescent, ydescent, width,
height, fontsize, trans):
p = super().create_artists(legend, orig_handle,
xdescent, descent,
width, height, fontsize,
trans)
line = Line2D([0,width],[height/2.,height/2.])
if self.linehandle is None:
line.set_linestyle('-')
line._color = orig_handle._edgecolor
else:
self.update_prop(line, self.linehandle, legend)
line.set_drawstyle('default')
line.set_marker('')
line.set_transform(trans)
return [p[0],line]
Next, we write a function that specifies the type of patch we want to include in the legend - an arrow in our case. This is courtesy of Javier's answer here.
def make_legend_arrow(legend, orig_handle,
xdescent, ydescent,
width, height, fontsize):
p = patches.FancyArrow(width/2., height/2., width/5., 0,
length_includes_head=True, width=0,
head_width=height, head_length=height,
overhang=0.2)
return p
Next, a modified version of the add_arrow function from Thomas' answer that uses the FancyArrow patch rather than annotations. This solution might cause weird wrapping like Thomas warned against, but I couldn't figure out how to put the arrow in the legend if the arrow is an annotation.
def add_arrow(line, ax, position=None, direction='right', color=None, label=''):
"""
add an arrow to a line.
line: Line2D object
position: x-position of the arrow. If None, mean of xdata is taken
direction: 'left' or 'right'
color: if None, line color is taken.
label: label for arrow
"""
if color is None:
color = line.get_color()
xdata = line.get_xdata()
ydata = line.get_ydata()
if position is None:
position = xdata.mean()
# find closest index
start_ind = np.argmin(np.absolute(xdata - position))
if direction == 'right':
end_ind = start_ind + 1
else:
end_ind = start_ind - 1
dx = xdata[end_ind] - xdata[start_ind]
dy = ydata[end_ind] - ydata[start_ind]
size = abs(dx) * 5.
x = xdata[start_ind] + (np.sign(dx) * size/2.)
y = ydata[start_ind] + (np.sign(dy) * size/2.)
arrow = patches.FancyArrow(x, y, dx, dy, color=color, width=0,
head_width=size, head_length=size,
label=label,length_includes_head=True,
overhang=0.3, zorder=10)
ax.add_patch(arrow)
Now, a helper function to plot both the arrow and the line. It returns a Line2D object, which is needed for the legend handler we wrote in the first code block
def plot_line_with_arrow(x,y,ax=None,label='',**kw):
if ax is None:
ax = plt.gca()
line = ax.plot(x,y,**kw)[0]
add_arrow(line, ax, label=label)
return line
Finally, we make the plot and update the legend's handler_map with our custom handler.
t = np.linspace(-2, 2, 100)
y = np.sin(t)
line = plot_line_with_arrow(t,y,label='Path', linestyle=':')
plt.gca().set_aspect('equal')
plt.legend(handler_map={patches.FancyArrow :
HandlerLinePatch(patch_func=make_legend_arrow,
linehandle=line)})
plt.show()
Here is the output:
I've found that quiver() works better than arrow() or annotate() when the x and y axes have very different scales. Here's my helper function for plotting a line with arrows:
def plot_with_arrows(ax, x, y, color="g", label="", n_arrows=2):
ax.plot(x, y, rasterized=True, color=color, label=label)
x_range = x.max() - x.min()
y_range = y.max() - y.min()
for i in np.linspace(x.keys().min(), x.keys().max(), n_arrows * 2 + 1).astype(np.int32)[1::2]:
direction = np.array([(x[i+5] - x[i]), (y[i+5] - y[i])])
direction = direction / (np.sqrt(np.sum(np.power(direction, 2)))) * 0.05
direction[0] /= x_range
direction[1] /= y_range
ax.quiver(x[i], y[i], direction[0], direction[1], color=color)

Matplotlib curve with arrow ticks

I was wondering if it is possible to plot a curve in matplotlib with arrow ticks.
Something like:
from pylab import *
y = linspace(0,10,0.01)
x = cos(y)
plot(x, y, '->')
which should come out with a curve made like this --->---->----> when x increases and like this ---<----<----< whenit decreases (and for y as well, of course).
EDIT:
Furthermore, the arrows should be inclined in the curve's direction (for example, 45 degrees for the y=x function)
It is possible to use the same strategy as in matplotlib streamplot function. Based on the example already given by hitzg:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
def add_arrow_to_line2D(
axes, line, arrow_locs=[0.2, 0.4, 0.6, 0.8],
arrowstyle='-|>', arrowsize=1, transform=None):
"""
Add arrows to a matplotlib.lines.Line2D at selected locations.
Parameters:
-----------
axes:
line: Line2D object as returned by plot command
arrow_locs: list of locations where to insert arrows, % of total length
arrowstyle: style of the arrow
arrowsize: size of the arrow
transform: a matplotlib transform instance, default to data coordinates
Returns:
--------
arrows: list of arrows
"""
if not isinstance(line, mlines.Line2D):
raise ValueError("expected a matplotlib.lines.Line2D object")
x, y = line.get_xdata(), line.get_ydata()
arrow_kw = {
"arrowstyle": arrowstyle,
"mutation_scale": 10 * arrowsize,
}
color = line.get_color()
use_multicolor_lines = isinstance(color, np.ndarray)
if use_multicolor_lines:
raise NotImplementedError("multicolor lines not supported")
else:
arrow_kw['color'] = color
linewidth = line.get_linewidth()
if isinstance(linewidth, np.ndarray):
raise NotImplementedError("multiwidth lines not supported")
else:
arrow_kw['linewidth'] = linewidth
if transform is None:
transform = axes.transData
arrows = []
for loc in arrow_locs:
s = np.cumsum(np.sqrt(np.diff(x) ** 2 + np.diff(y) ** 2))
n = np.searchsorted(s, s[-1] * loc)
arrow_tail = (x[n], y[n])
arrow_head = (np.mean(x[n:n + 2]), np.mean(y[n:n + 2]))
p = mpatches.FancyArrowPatch(
arrow_tail, arrow_head, transform=transform,
**arrow_kw)
axes.add_patch(p)
arrows.append(p)
return arrows
y = np.linspace(0, 100, 200)
x = np.cos(y/5.)
fig, ax = plt.subplots(1, 1)
# print the line and the markers in seperate steps
line, = ax.plot(x, y, 'k-')
add_arrow_to_line2D(ax, line, arrow_locs=np.linspace(0., 1., 200),
arrowstyle='->')
plt.show()
Also refer to this answer.
Try this:
import numpy as np
import matplotlib.pyplot as plt
y = np.linspace(0,100,100)
x = np.cos(y/5.)
# use masked arrays
x1 = np.ma.masked_array(x[:-1], np.diff(x)>=0)
x2 = np.ma.masked_array(x[:-1], np.diff(x)<=0)
# print the line and the markers in seperate steps
plt.plot(x, y, 'k-')
plt.plot(x1, y[:-1], 'k<')
plt.plot(x2, y[:-1], 'k>')
plt.show()

matplotlib contourf: get Z value under cursor

When I plot something with contourf, I see at the bottom of the plot window the current x and y values under the mouse cursor.
Is there a way to see also the z value?
Here an example contourf:
import matplotlib.pyplot as plt
import numpy as hp
plt.contourf(np.arange(16).reshape(-1,4))
The text that shows the position of the cursor is generated by ax.format_coord. You can override the method to also display a z-value. For instance,
import matplotlib.pyplot as plt
import numpy as np
import scipy.interpolate as si
data = np.arange(16).reshape(-1, 4)
X, Y = np.mgrid[:data.shape[0], :data.shape[1]]
cs = plt.contourf(X, Y, data)
func = si.interp2d(X, Y, data)
def fmt(x, y):
z = np.take(func(x, y), 0)
return 'x={x:.5f} y={y:.5f} z={z:.5f}'.format(x=x, y=y, z=z)
plt.gca().format_coord = fmt
plt.show()
The documentation example shows how you can insert z-value labels into your plot
Script: http://matplotlib.sourceforge.net/mpl_examples/pylab_examples/contour_demo.py
Basically, it's
plt.figure()
CS = plt.contour(X, Y, Z)
plt.clabel(CS, inline=1, fontsize=10)
plt.title('Simplest default with labels')
Just a variant of wilywampa's answer. If you already have a pre-computed grid of interpolated contour values because your data is sparse or if you have a huge data matrix, this might be suitable for you.
import matplotlib.pyplot as plt
import numpy as np
resolution = 100
Z = np.arange(resolution**2).reshape(-1, resolution)
X, Y = np.mgrid[:Z.shape[0], :Z.shape[1]]
cs = plt.contourf(X, Y, Z)
Xflat, Yflat, Zflat = X.flatten(), Y.flatten(), Z.flatten()
def fmt(x, y):
# get closest point with known data
dist = np.linalg.norm(np.vstack([Xflat - x, Yflat - y]), axis=0)
idx = np.argmin(dist)
z = Zflat[idx]
return 'x={x:.5f} y={y:.5f} z={z:.5f}'.format(x=x, y=y, z=z)
plt.colorbar()
plt.gca().format_coord = fmt
plt.show()
Ex:

Categories

Resources