Constrained least-squares estimation in Python - python

I'm trying to perform a constrained least-squares estimation using Scipy such that all of the coefficients are in the range (0,1) and sum to 1 (this functionality is implemented in Matlab's LSQLIN function).
Does anybody have tips for setting up this calculation using Python/Scipy. I believe I should be using scipy.optimize.fmin_slsqp(), but am not entirely sure what parameters I should be passing to it.[1]
Many thanks for the help,
Nick
[1] The one example in the documentation for fmin_slsqp is a bit difficult for me to parse without the referenced text -- and I'm new to using Scipy.

scipy-optimize-leastsq-with-bound-constraints on SO givesleastsq_bounds, which is
leastsq
with bound constraints such as 0 <= x_i <= 1.
The constraint that they sum to 1 can be added in the same way.
(I've found leastsq_bounds / MINPACK to be good on synthetic test functions in 5d, 10d, 20d;
how many variables do you have ?)

Have a look at this tutorial, it seems pretty clear.

Since MATLAB's lsqlin is a bounded linear least squares solver, you would want to check out scipy.optimize.lsq_linear.

Non-negative least squares optimization using scipy.optimize.nnls is a robust way of doing it. Note that, if the coefficients are constrained to be positive and sum to unity, they are automatically limited to interval [0,1], that is one need not additionally constrain them from above.
scipy.optimize.nnls automatically makes variables positive using Lawson and Hanson algorithm, whereas the sum constraint can be taken care of as discussed in this thread and this one.
Scipy nnls uses an old fortran backend, which is apparently widely used in equivalent implementations of nnls by other software.

Related

SciPy rootfinding algorithm 'gives up' too fast

Is there any way to force 'hybr' method of scipy.optimize 'root' to keep working even after it finds that convergence its too slow? In my problem, the solver nearly reaches desired precision, but right before it, the algorithm terminates because of slow convergence... Is it possible to make 'hybr' more 'self-confident'?
I use the root-finding algorithm root from scipy.optimize module to solve a system of two algebraic, non-linear equations. Since the equations have to be solved many times for various parameter values it is important to find a numerical method that would be most stable for this problem.
I have compared the performance of all the methods provided by scipy.optimize module. To visualize their performance I have used the following procedure:
The algebraic equations were rearranged so that they have zero on the R.H.S.
Then, at each step made by the algorithm, the sum of the L.H.S. squared of all the equations was computed and printed.
In my case, the most efficient method is the default "hybr". Other build-in methods either do not converge at all or are significantly slower. Unfortunately, in some cases the desired method gives up too fast. Lowering the precision and/or providing additional options to the functions did not help.

Regularizing viscosity with scipy's ode solvers

Consider for the sake of simplicity the following equation (Burgers equation):
Let's solve it using scipy (in my case scipy.integrate.ode.set_integrator("zvode", ..).integrate(T)) with a variable time-step solver.
The issue is the following: if we use the naïve implementation in Fourier space
then the viscosity term nu * d2x(u[t]) can cause an overshoot if the time step is too big. This can lead to a fair amount of noise in the solutions, or even to (fake) diverging solutions (even with stiff solvers, on slightly more complex version of this equation).
One way to regularize this is to evaluate the viscosity term at step t+dt, and the update step becomes
This solution works well when programmed explicitly. How can I use scipy's variable-step ode solver to implement it ? To my surprise I haven't found any documentation on this fairly elementary thorny issue...
You actually can't, or on the other extreme, odeint or ode->zvode already does that to any given problem.
To the first, you would need to give the two parts of the equation separately. Obviously, that is not part of the solver interface. Look at DDE and SDE solvers where such a partition of the equation is actually required.
To the second, odeint and ode->zvode use implicit multi-step methods, which means that the values of u(t+dt) and the right side there enter the computation and the underlying local approximation.
You could still try to hack your original approach into the solver by providing a Jacobian function that only contains the second derivative term, but quite probably you will not achieve an improvement.
You could operator-partition the ODE and solve the linear part separately introducing
vhat(k,t) = exp(nu*k^2*t)*uhat(k,t)
so that
d/dt vhat(k,t) = -i*k*exp(nu*k^2*t)*conv(uhat(.,t),uhat(.,t))(k)

When searching for minimum of a function, how to set minimum change in variables for finite-difference gradients?

I want to find the minimum of a function in python y = f(x)
Problem : the solver tries to compute the gradient with super close x values (delta x around 1e-8), and my function f is not sensitive to such a small step (ie we can see y vary when delta x around 1e-1).
Hence gradient is 0 to the solver, and can not find the proper solution.
I've tried following solvers from scipy, I can't find the option I'm looking for..
scipy.optimize.minimize
scipy.optimize.fmin
In Matlab fmincon , there is an option that does the job 'DiffMinChange' : Minimum change in variables for finite-difference gradients (a positive scalar).
You may want to try and use L-BFGS-B from scipy:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html
And provide the “epsilon” parameter to be around 0.1/0.05 and see if it makes it better. I am of course assuming that you will let the solver compute the gradient for you by numerical differentiation (I.e., you pass fprime=None and approx_grad=True) to the routine.
I personally despise the “minimize” interface to various solvers so I prefer to deal with the actual solvers themselves.

Alternatives to fmincon in python for constrained non-linear optimisation problems

I am having trouble solving an optimisation problem in python, involving ~20,000 decision variables. The problem is non-linear and I wish to apply both bounds and constraints to the problem. In addition to this, the gradient with respect to each of the decision variables may be calculated.
The bounds are simply that each decision variable must lie in the interval [0, 1] and there is a monotonic constraint placed upon the variables, i.e each decision variable must be greater than the previous one.
I initially intended to use the L-BFGS-B method provided by the scipy.optimize package however I found out that, while it supports bounds, it does not support constraints.
I then tried using the SQLSP method which does support both constraints and bounds. However, because it requires more memory than L-BFGS-B and I have a large number of decision variables, I ran into memory errors fairly quickly.
The paper which this problem comes from used the fmincon solver in Matlab to optimise the function, which, to my knowledge, supports the application of both bounds and constraints in addition to being more memory efficient than the SQLSP method provided by scipy. I do not have access to Matlab however.
Does anyone know of an alternative I could use to solve this problem?
Any help would be much appreciated.

parameter within an interval while optimizing

Usually I use Mathematica, but now trying to shift to python, so this question might be a trivial one, so I am sorry about that.
Anyways, is there any built-in function in python which is similar to the function named Interval[{min,max}] in Mathematica ? link is : http://reference.wolfram.com/language/ref/Interval.html
What I am trying to do is, I have a function and I am trying to minimize it, but it is a constrained minimization, by that I mean, the parameters of the function are only allowed within some particular interval.
For a very simple example, lets say f(x) is a function with parameter x and I am looking for the value of x which minimizes the function but x is constrained within an interval (min,max) . [ Obviously the actual problem is just not one-dimensional rather multi-dimensional optimization, so different paramters may have different intervals. ]
Since it is an optimization problem, so ofcourse I do not want to pick the paramter randomly from an interval.
Any help will be highly appreciated , thanks!
If it's a highly non-linear problem, you'll need to use an algorithm such as the Generalized Reduced Gradient (GRG) Method.
The idea of the generalized reduced gradient algorithm (GRG) is to solve a sequence of subproblems, each of which uses a linear approximation of the constraints. (Ref)
You'll need to ensure that certain conditions known as the KKT conditions are met, etc. but for most continuous problems with reasonable constraints, you'll be able to apply this algorithm.
This is a good reference for such problems with a few examples provided. Ref. pg. 104.
Regarding implementation:
While I am not familiar with Python, I have built solver libraries in C++ using templates as well as using function pointers so you can pass on functions (for the objective as well as constraints) as arguments to the solver and you'll get your result - hopefully in polynomial time for convex problems or in cases where the initial values are reasonable.
If an ability to do that exists in Python, it shouldn't be difficult to build a generalized GRG solver.
The Python Solution:
Edit: Here is the python solution to your problem: Python constrained non-linear optimization

Categories

Resources