Save Naive Bayes Trained Classifier in NLTK - python

I'm slightly confused in regard to how I save a trained classifier. As in, re-training a classifier each time I want to use it is obviously really bad and slow, how do I save it and the load it again when I need it? Code is below, thanks in advance for your help. I'm using Python with NLTK Naive Bayes Classifier.
classifier = nltk.NaiveBayesClassifier.train(training_set)
# look inside the classifier train method in the source code of the NLTK library
def train(labeled_featuresets, estimator=nltk.probability.ELEProbDist):
# Create the P(label) distribution
label_probdist = estimator(label_freqdist)
# Create the P(fval|label, fname) distribution
feature_probdist = {}
return NaiveBayesClassifier(label_probdist, feature_probdist)

To save:
import pickle
f = open('my_classifier.pickle', 'wb')
pickle.dump(classifier, f)
f.close()
To load later:
import pickle
f = open('my_classifier.pickle', 'rb')
classifier = pickle.load(f)
f.close()

I went thru the same problem, and you cannot save the object since is a ELEFreqDistr NLTK class. Anyhow NLTK is hell slow. Training took 45 mins on a decent set and I decided to implement my own version of the algorithm (run it with pypy or rename it .pyx and install cython). It takes about 3 minutes with the same set and it can simply save data as json (I'll implement pickle which is faster/better).
I started a simple github project, check out the code here

To Retrain the Pickled Classifer :
f = open('originalnaivebayes5k.pickle','rb')
classifier = pickle.load(f)
classifier.train(training_set)
print('Accuracy:',nltk.classify.accuracy(classifier,testing_set)*100)
f.close()

Related

How to serialize a large randomforest classifier

I am using sklearn's randomforestclassifier to predict a set of classes. I have over 26000 classes and therefore the size of classifier is exceeding over 30 GBs. I am running it on linux with 64 GB of RAM and 20 GB storage.
I am trying to pickle my model by using joblib but it is not working as i don't have enough secondary storage (i guess). Is there any way by which this could be done?? Maybe some kind of compression technique or something else??
You could try to gzip the pickle
compressed_pickle = StringIO.StringIO()
with gzip.GzipFile(fileobj=compressed_pickle, mode='w') as f:
f.write(pickle.dumps(classifier))
Then you can write the compressed_pickle to a file.
To read it back:
with open('rf_classifier.pickle', 'rb') as f:
compressed_pickle = f.read()
rf_classifier = pickle.loads(zlib.decompress(compressed_pickle, 16 + zlib.MAX_WBITS))
EDIT
It appears Python versions prior to 3.4 used to have a hard limit of 4GB on the serialized object size. The latest version of the pickle protocol (version 4.0) does not have this limit, just specify the protocol version:
pickle.dumps(obj, protocol=4)
For older versions of Python please refer this answer:
_pickle in python3 doesn't work for large data saving
A possible workaround is to dump the individual trees into a folder:
path = '/folder/tree_{}'
import _pickle as cPickle
i = 0
for tree in model.estimators_:
with open(path.format(i), 'wb') as f:
cPickle.dump(tree, f)
i+=1
In sklearn's implementation of Random Forest, the attribute "estimators_" is a list containing the individual trees. You could consider serializing all trees indivually into a folder.
To generate predictions you can average the tree's predictions
# load the trees
path = '/folder/tree_{}'
import _pickle as cPickle
trees = []
i = 0
for i in range(num_trees):
with open(path.format(i), 'rb') as f:
trees.append(cPickle.load(f))
i+=1
# generate predictions
predictions = []
for tree in trees:
predictions.append(tree.predict(X))
predictions = np.asarray(predictions).T
# average predictions as in a RF
y_pred = predictions.mean(axis=0)

Visualize Gensim Word2vec Embeddings in Tensorboard Projector

I've only seen a few questions that ask this, and none of them have an answer yet, so I thought I might as well try. I've been using gensim's word2vec model to create some vectors. I exported them into text, and tried importing it on tensorflow's live model of the embedding projector. One problem. It didn't work. It told me that the tensors were improperly formatted. So, being a beginner, I thought I would ask some people with more experience about possible solutions.
Equivalent to my code:
import gensim
corpus = [["words","in","sentence","one"],["words","in","sentence","two"]]
model = gensim.models.Word2Vec(iter = 5,size = 64)
model.build_vocab(corpus)
# save memory
vectors = model.wv
del model
vectors.save_word2vec_format("vect.txt",binary = False)
That creates the model, saves the vectors, and then prints the results out nice and pretty in a tab delimited file with values for all of the dimensions. I understand how to do what I'm doing, I just can't figure out what's wrong with the way I put it in tensorflow, as the documentation regarding that is pretty scarce as far as I can tell.
One idea that has been presented to me is implementing the appropriate tensorflow code, but I don’t know how to code that, just import files in the live demo.
Edit: I have a new problem now. The object I have my vectors in is non-iterable because gensim apparently decided to make its own data structures that are non-compatible with what I'm trying to do.
Ok. Done with that too! Thanks for your help!
What you are describing is possible. What you have to keep in mind is that Tensorboard reads from saved tensorflow binaries which represent your variables on disk.
More information on saving and restoring tensorflow graph and variables here
The main task is therefore to get the embeddings as saved tf variables.
Assumptions:
in the following code embeddings is a python dict {word:np.array (np.shape==[embedding_size])}
python version is 3.5+
used libraries are numpy as np, tensorflow as tf
the directory to store the tf variables is model_dir/
Step 1: Stack the embeddings to get a single np.array
embeddings_vectors = np.stack(list(embeddings.values(), axis=0))
# shape [n_words, embedding_size]
Step 2: Save the tf.Variable on disk
# Create some variables.
emb = tf.Variable(embeddings_vectors, name='word_embeddings')
# Add an op to initialize the variable.
init_op = tf.global_variables_initializer()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables and save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
# Save the variables to disk.
save_path = saver.save(sess, "model_dir/model.ckpt")
print("Model saved in path: %s" % save_path)
model_dir should contain files checkpoint, model.ckpt-1.data-00000-of-00001, model.ckpt-1.index, model.ckpt-1.meta
Step 3: Generate a metadata.tsv
To have a beautiful labeled cloud of embeddings, you can provide tensorboard with metadata as Tab-Separated Values (tsv) (cf. here).
words = '\n'.join(list(embeddings.keys()))
with open(os.path.join('model_dir', 'metadata.tsv'), 'w') as f:
f.write(words)
# .tsv file written in model_dir/metadata.tsv
Step 4: Visualize
Run $ tensorboard --logdir model_dir -> Projector.
To load metadata, the magic happens here:
As a reminder, some word2vec embedding projections are also available on http://projector.tensorflow.org/
Gensim actually has the official way to do this.
Documentation about it
The above answers didn't work for me. What I found out pretty useful was this script (will be added to gensim in the future) Source
To transform the data to metadata:
model = gensim.models.Word2Vec.load_word2vec_format(model_path, binary=True)
with open( tensorsfp, 'w+') as tensors:
with open( metadatafp, 'w+') as metadata:
for word in model.index2word:
encoded=word.encode('utf-8')
metadata.write(encoded + '\n')
vector_row = '\t'.join(map(str, model[word]))
tensors.write(vector_row + '\n')
Or follow this gist
the gemsim provide convert method word2vec to tf projector file
python -m gensim.scripts.word2vec2tensor -i ~w2v_model_file -o output_folder
add in projector wesite, upload the metadata

SpaCy: how to load Google news word2vec vectors?

I've tried several methods of loading the google news word2vec vectors (https://code.google.com/archive/p/word2vec/):
en_nlp = spacy.load('en',vector=False)
en_nlp.vocab.load_vectors_from_bin_loc('GoogleNews-vectors-negative300.bin')
The above gives:
MemoryError: Error assigning 18446744072820359357 bytes
I've also tried with the .gz packed vectors; or by loading and saving them with gensim to a new format:
from gensim.models.word2vec import Word2Vec
model = Word2Vec.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
model.save_word2vec_format('googlenews2.txt')
This file then contains the words and their word vectors on each line.
I tried to load them with:
en_nlp.vocab.load_vectors('googlenews2.txt')
but it returns "0".
What is the correct way to do this?
Update:
I can load my own created file into spacy.
I use a test.txt file with "string 0.0 0.0 ...." on each line. Then zip this txt with .bzip2 to test.txt.bz2.
Then I create a spacy compatible binary file:
spacy.vocab.write_binary_vectors('test.txt.bz2', 'test.bin')
That I can load into spacy:
nlp.vocab.load_vectors_from_bin_loc('test.bin')
This works!
However, when I do the same process for the googlenews2.txt, I get the following error:
lib/python3.6/site-packages/spacy/cfile.pyx in spacy.cfile.CFile.read_into (spacy/cfile.cpp:1279)()
OSError:
For spacy 1.x, load Google news vectors into gensim and convert to a new format (each line in .txt contains a single vector: string, vec):
from gensim.models.word2vec import Word2Vec
from gensim.models import KeyedVectors
model = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
model.wv.save_word2vec_format('googlenews.txt')
Remove the first line of the .txt:
tail -n +2 googlenews.txt > googlenews.new && mv -f googlenews.new googlenews.txt
Compress the txt as .bz2:
bzip2 googlenews.txt
Create a SpaCy compatible binary file:
spacy.vocab.write_binary_vectors('googlenews.txt.bz2','googlenews.bin')
Move the googlenews.bin to /lib/python/site-packages/spacy/data/en_google-1.0.0/vocab/googlenews.bin of your python environment.
Then load the wordvectors:
import spacy
nlp = spacy.load('en',vectors='en_google')
or load them after later:
nlp.vocab.load_vectors_from_bin_loc('googlenews.bin')
I know that this question has already been answered, but I am going to offer a simpler solution. This solution will load google news vectors into a blank spacy nlp object.
import gensim
import spacy
# Path to google news vectors
google_news_path = "path\to\google\news\\GoogleNews-vectors-negative300.bin.gz"
# Load google news vecs in gensim
model = gensim.models.KeyedVectors.load_word2vec_format(gn_path, binary=True)
# Init blank english spacy nlp object
nlp = spacy.blank('en')
# Loop through range of all indexes, get words associated with each index.
# The words in the keys list will correspond to the order of the google embed matrix
keys = []
for idx in range(3000000):
keys.append(model.index2word[idx])
# Set the vectors for our nlp object to the google news vectors
nlp.vocab.vectors = spacy.vocab.Vectors(data=model.syn0, keys=keys)
>>> nlp.vocab.vectors.shape
(3000000, 300)
I am using spaCy v2.0.10.
Create a SpaCy compatible binary file:
spacy.vocab.write_binary_vectors('googlenews.txt.bz2','googlenews.bin')
I want to highlight that the specific code in the accepted answer is not working now. I encountered "AttributeError: ..." when I run the code.
This has changed in spaCy v2. write_binary_vectors was removed in v2. From spaCy documentations, the current way to do this is as follows:
$ python -m spacy init-model en /path/to/output -v /path/to/vectors.bin.tar.gz
it is much easier to use the gensim api for dowloading the word2vec compressed model by google, it will be stored in /home/"your_username"/gensim-data/word2vec-google-news-300/ . Load the vectors and play ball. I have 16GB of RAM which is more than enough to handle the model
import gensim.downloader as api
model = api.load("word2vec-google-news-300") # download the model and return as object ready for use
word_vectors = model.wv #load the vectors from the model

How to save a randomforest in scikit-learn?

Actually there is a lot of question about persistence,but i have tried a lot using pickle or joblib.dumps . but when i use it to save my random forest i got this:
ValueError: ("Buffer dtype mismatch, expected 'SIZE_t' but got 'long'", <type 'sklearn.tree._tree.ClassificationCriterion'>, (1, array([10])))
Can any one tell me why?
some code for review
forest = RandomForestClassifier()
forest.fit(data[:n_samples], target[:n_samples ])
import cPickle
with open('rf.pkl', 'wb') as f:
cPickle.dump(forest, f)
with open('rf.pkl', 'rb') as f:
forest = cPickle.load(f)
or
from sklearn.externals import joblib
joblib.dump(forest,'rf.pkl')
from sklearn.externals import joblib
forest = joblib.load('rf.pkl')
It is caused by using different 32/64 bit version of python to save/load, as Scikits-Learn RandomForrest trained on 64bit python wont open on 32bit python suggests.
Try to import the joblib package directly:
import joblib
# ...
# save
joblib.dump(rf, "some_path")
# load
rf2 = joblib.load("some_path")
I've put the full working example with the code and comments here.

training data format for NLTK punkt

I would like to run nltk Punkt to split sentences. There is no training model so I train model separately, but I am not sure if the training data format I am using is correct.
My training data is one sentence per line. I wasn't able to find any documentation about this, only this thread (https://groups.google.com/forum/#!topic/nltk-users/bxIEnmgeCSM) sheds some light about training data format.
What is the correct training data format for NLTK Punkt sentence tokenizer?
Ah yes, Punkt tokenizer is the magical unsupervised sentence boundary detection. And the author's last name is pretty cool too, Kiss and Strunk (2006). The idea is to use NO annotation to train a sentence boundary detector, hence the input will be ANY sort of plaintext (as long as the encoding is consistent).
To train a new model, simply use:
import nltk.tokenize.punkt
import pickle
import codecs
tokenizer = nltk.tokenize.punkt.PunktSentenceTokenizer()
text = codecs.open("someplain.txt","r","utf8").read()
tokenizer.train(text)
out = open("someplain.pk","wb")
pickle.dump(tokenizer, out)
out.close()
To achieve higher precision and allow you to stop training at any time and still save a proper pickle for your tokenizer, do look at this code snippet for training a German sentence tokenizer, https://github.com/alvations/DLTK/blob/master/dltk/tokenize/tokenizer.py :
def train_punktsent(trainfile, modelfile):
""" Trains an unsupervised NLTK punkt sentence tokenizer. """
punkt = PunktTrainer()
try:
with codecs.open(trainfile, 'r','utf8') as fin:
punkt.train(fin.read(), finalize=False, verbose=False)
except KeyboardInterrupt:
print 'KeyboardInterrupt: Stopping the reading of the dump early!'
##HACK: Adds abbreviations from rb_tokenizer.
abbrv_sent = " ".join([i.strip() for i in \
codecs.open('abbrev.lex','r','utf8').readlines()])
abbrv_sent = "Start"+abbrv_sent+"End."
punkt.train(abbrv_sent,finalize=False, verbose=False)
# Finalize and outputs trained model.
punkt.finalize_training(verbose=True)
model = PunktSentenceTokenizer(punkt.get_params())
with open(modelfile, mode='wb') as fout:
pickle.dump(model, fout, protocol=pickle.HIGHEST_PROTOCOL)
return model
However do note that the period detection is very sensitive to the latin fullstop, question mark and exclamation mark. If you're going to train a punkt tokenizer for other languages that doesn't use latin orthography, you'll need to somehow hack the code to use the appropriate sentence boundary punctuation. If you're using NLTK's implementation of punkt, edit the sent_end_chars variable.
There are pre-trained models available other than the 'default' English tokenizer using nltk.tokenize.sent_tokenize(). Here they are: https://github.com/evandrix/nltk_data/tree/master/tokenizers/punkt
Edited
Note the pre-trained models are currently not available because the nltk_data github repo listed above has been removed.

Categories

Resources