Is there a Python equivalent of range(n) for multidimensional ranges? - python

On Python, range(3) will return [0,1,2]. Is there an equivalent for multidimensional ranges?
range((3,2)) # [(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)]
So, for example, looping though the tiles of a rectangular area on a tile-based game could be written as:
for x,y in range((3,2)):
Note I'm not asking for an implementation. I would like to know if this is a recognized pattern and if there is a built-in function on Python or it's standard/common libraries.

In numpy, it's numpy.ndindex. Also have a look at numpy.ndenumerate.
E.g.
import numpy as np
for x, y in np.ndindex((3,2)):
print(x, y)
This yields:
0 0
0 1
1 0
1 1
2 0
2 1

You could use itertools.product():
>>> import itertools
>>> for (i,j,k) in itertools.product(xrange(3),xrange(3),xrange(3)):
... print i,j,k
The multiple repeated xrange() statements could be expressed like so, if you want to scale this up to a ten-dimensional loop or something similarly ridiculous:
>>> for combination in itertools.product( xrange(3), repeat=10 ):
... print combination
Which loops over ten variables, varying from (0,0,0,0,0,0,0,0,0,0) to (2,2,2,2,2,2,2,2,2,2).
In general itertools is an insanely awesome module. In the same way regexps are vastly more expressive than "plain" string methods, itertools is a very elegant way of expressing complex loops. You owe it to yourself to read the itertools module documentation. It will make your life more fun.

There actually is a simple syntax for this. You just need to have two fors:
>>> [(x,y) for x in range(3) for y in range(2)]
[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)]

That is the cartesian product of two lists therefore:
import itertools
for element in itertools.product(range(3),range(2)):
print element
gives this output:
(0, 0)
(0, 1)
(1, 0)
(1, 1)
(2, 0)
(2, 1)

You can use product from itertools module.
itertools.product(range(3), range(2))

I would take a look at numpy.meshgrid:
http://docs.scipy.org/doc/numpy-1.6.0/reference/generated/numpy.meshgrid.html
which will give you the X and Y grid values at each position in a mesh/grid. Then you could do something like:
import numpy as np
X,Y = np.meshgrid(xrange(3),xrange(2))
zip(X.ravel(),Y.ravel())
#[(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)]
or
zip(X.ravel(order='F'),Y.ravel(order='F'))
# [(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)]

Numpy's ndindex() works for the example you gave, but it doesn't serve all use cases. Unlike Python's built-in range(), which permits both an arbitrary start, stop, and step, numpy's np.ndindex() only accepts a stop. (The start is presumed to be (0,0,...), and the step is (1,1,...).)
Here's an implementation that acts more like the built-in range() function. That is, it permits arbitrary start/stop/step arguments, but it works on tuples instead of mere integers.
import sys
from itertools import product, starmap
# Python 2/3 compatibility
if sys.version_info.major < 3:
from itertools import izip
else:
izip = zip
xrange = range
def ndrange(start, stop=None, step=None):
if stop is None:
stop = start
start = (0,)*len(stop)
if step is None:
step = (1,)*len(stop)
assert len(start) == len(stop) == len(step)
for index in product(*starmap(xrange, izip(start, stop, step))):
yield index
Example:
In [7]: for index in ndrange((1,2,3), (10,20,30), step=(5,10,15)):
...: print(index)
...:
(1, 2, 3)
(1, 2, 18)
(1, 12, 3)
(1, 12, 18)
(6, 2, 3)
(6, 2, 18)
(6, 12, 3)
(6, 12, 18)

Related

Generating all possible combinations of n-sized vector that follow certain conditions on each element

I have a list d of length r such that d = (d_1, d_2,..., d_r).
I would like to generate all possible vectors of length r such that for any i (from 0 to r), v_i is between 0 and d_i.
For example,
if r =2 and d= (1,2), v_1 can be 0 or 1 and v_2 can be 0,1 or 2.
Hence there are 6 possible vectors:
[0,0] , [0,1], [0,2], [1,0] , [1,1], [1,2]
I have looked into Itertools and combinations and I have a feeling I will have to use recursion however I have not managed to solve it yet and was hoping for some help or advice into the right direction.
Edit:
I have written the following code for my problem and it works however I did it in a very inefficient way by disregarding the condition and generating all possible vectors then pruning the invalid ones. I took the largest d_i and generated all vectors of size r from (0,0,...0) all the way to (max_d_i,max_d_i,....max_d_i) and then eliminated those that were invalid.
Code:
import itertools
import copy
def main(d):
arr = []
correct_list =[]
curr = []
r= len(d)
greatest = max(d)
for i in range(0,greatest+1):
arr = arr + [i]
#all_poss_arr is a list that holds all possible vectors of length r from (0,0,...,0) to (max,max,...,max)
# for example if greatest was 3 and r= 4, all_poss_arr would have (0,0,0,0), then (0,0,0,1) and so on,
#all the way to (3,3,3,3)
all_poss_arr = list(itertools.product(arr,repeat = r))
#Now I am going to remove all the vectors that dont follow the v_i is between 0 and d_i
for i in range(0,len(all_poss_arr)):
curr = all_poss_arr[i]
cnt = 0
for j in range(0,len(curr)):
if curr[j] <= d[j]:
cnt = cnt +1
if cnt == r:
curr = list(curr)
currcopy = copy.copy(curr)
correct_list = correct_list + [currcopy]
cnt =0
return correct_list
If anyone knows a better way, let me know, it is much appreciated.
You basically want a Cartesian product. I'll demonstrate a basic, functional and iterative approach.
Given
import operator as op
import functools as ft
import itertools as it
def compose(f, g):
"""Return a function composed of two functions."""
def h(*args, **kwargs):
return f(g(*args, **kwargs))
return h
d = (1, 2)
Code
Option 1: Basic - Manual Unpacking
list(it.product(range(d[0] + 1), range(d[1] + 1)))
# [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
Option 2: Functional - Automated Mapping
def vector_combs(v):
"""Return a Cartesian product of unpacked elements from `v`."""
plus_one = ft.partial(op.add, 1)
range_plus_one = compose(range, plus_one)
res = list(it.product(*map(range_plus_one, v)))
return res
vector_combs(d)
# [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
Option 3: Iterative - Range Replication (Recommended)
list(it.product(*[range(x + 1) for x in d]))
# [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
Details
Option 1
The basic idea is illustrated in Option 1:
Make a Cartesian product using a series of modified ranges.
Note, each range is manually incremented and passed in as an index from d. We automate these limitations in with the last options.
Option 2
We apply a functional approach to handle the various arguments and functions:
Partial the 1 argument to the add() function. This returns a function that will increment any number.
Let's pass this function into range through composition. This allows us to have a modified range function that auto increments the integer passed in.
Finally we map the latter function to each element in tuple d. Now d works with any length r.
Example (d = (1, 2, 1), r = 3):
vector_combs((1, 2, 1))
# [(0, 0, 0),
# (0, 0, 1),
# (0, 1, 0),
# (0, 1, 1),
# (0, 2, 0),
# (0, 2, 1),
# (1, 0, 0),
# (1, 0, 1),
# (1, 1, 0),
# (1, 1, 1),
# (1, 2, 0),
# (1, 2, 1)]
Option 3
Perhaps most elegantly, just use a list comprehension to create r ranges. ;)

Weed out combinations with certain condition

I am a newbee in python and programing, I am trying to come up with combinations and weed out combinations with certain conditions.
So in the case below, I have tried to generate all possible combinations between 1-100. But I don't know where to go after this.
import itertools
i_list = []
for i in range (1, 101):
i_list.append(i)
comb = itertools.combinations(i_list,2)
for combinations in list(comb):
print (combinations)
This runs fine and will generate a list from 1-100, and give me an output of
(1,2) (1,3).........(98,99) (98,100) (99,100)
Now my goal is to weed out the combinations with a difference < 5, so for example: (1,2) the difference is less than 5, so it should not be outputted. (1,8) the difference is greater than 5, so it should be outputted. I hope that make sense.
Can anyone guide me through the thought process and suggest an easy approach?
You can use itertools.filterfalse for this and then iterate over the result.
Also, with iterators, you want to wait until you really need a list before you convert to a list with list(). There's no reason to ever do that in this case because you are always iterating. This allows you to work with very large sets without taking up the memory and time of running through the iterator just to make a list to then iterate the list:
from itertools import combinations, filterfalse
comb = combinations(range(1, 101),2)
filtered = filterfalse(lambda x: abs(x[0] - x[1]) < 5, comb)
for combinations in filtered:
print (combinations)
The iterators produced by range(), combinations and fitleredfalse are all lazy, so they never start evaluating until you start looping over them. This allows you to defer any work until it needs to be done or to iterate over part of a large set without calculating the entire thing.
You can use a list comprehension to restrict the generated values to be kept inside the list:
from itertools import combinations
comb = [ x for x in combinations(range(1,101),2) if x[1]-x[0]>4 ]
print (comb)
Output:
[(1, 6), (1, 7), (1, 8), ... snipp ..., (93, 99), (93, 100), (94, 99), (94, 100), (95, 100)]
combinations respects the order of numbers so no abs() around x[1]-x[0] needed - range itself is a sequence and your resulting list weeds out all numbers you do not want due to the if x[1]-x[0]>4 condition.
This should accomplish what you are asking:
>>> import itertools
>>> combinations = itertools.combinations(range(1, 101), 2)
>>> generator = ((a, b) for a, b in combinations if b - a >= 5)
>>> for pair in generator:
print(pair, end=' ')
(1, 6) (1, 7) (1, 8) (1, 9) (1, 10) (1, 11) (1, 12) (1, 13) (1, 14) (1, 15) ...
Alternatively, you can try this instead to do the exact same thing:
>>> generator = ((a, b) for a in range(1, 96) for b in range(a + 5, 101))
>>> for pair in generator:
print(pair, end=' ')
(1, 6) (1, 7) (1, 8) (1, 9) (1, 10) (1, 11) (1, 12) (1, 13) (1, 14) (1, 15) ...

create list of adjacent elements of another list in Python

I am looking to take as input a list and then create another list which contains tuples (or sub-lists) of adjacent elements from the original list, wrapping around for the beginning and ending elements. The input/output would look like this:
l_in = [0, 1, 2, 3]
l_out = [(3, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, 0)]
My question is closely related to another titled getting successive adjacent elements of a list, but this other question does not take into account wrapping around for the end elements and only handles pairs of elements rather than triplets.
I have a somewhat longer approach to do this involving rotating deques and zipping them together:
from collections import deque
l_in = [0, 1, 2, 3]
deq = deque(l_in)
deq.rotate(1)
deq_prev = deque(deq)
deq.rotate(-2)
deq_next = deque(deq)
deq.rotate(1)
l_out = list(zip(deq_prev, deq, deq_next))
# l_out is [(3, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, 0)]
However, I feel like there is probably a more elegant (and/or efficient) way to do this using other built-in Python functionality. If, for instance, the rotate() function of deque returned the rotated list instead of modifying it in place, this could be a one- or two-liner (though this approach of zipping together rotated lists is perhaps not the most efficient). How can I accomplish this more elegantly and/or efficiently?
One approach may be to use itertools combined with more_itertools.windowed:
import itertools as it
import more_itertools as mit
l_in = [0, 1, 2, 3]
n = len(l_in)
list(it.islice(mit.windowed(it.cycle(l_in), 3), n-1, 2*n-1))
# [(3, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, 0)]
Here we generated an infinite cycle of sliding windows and sliced the desired subset.
FWIW, here is an abstraction of the latter code for a general, flexible solution given any iterable input e.g. range(5), "abcde", iter([0, 1, 2, 3]), etc.:
def get_windows(iterable, size=3, offset=-1):
"""Return an iterable of windows including an optional offset."""
it1, it2 = it.tee(iterable)
n = mit.ilen(it1)
return it.islice(mit.windowed(it.cycle(it2), size), n+offset, 2*n+offset)
list(get_windows(l_in))
# [(3, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, 0)]
list(get_windows("abc", size=2))
# [('c', 'a'), ('a', 'b'), ('b', 'c')]
list(get_windows(range(5), size=2, offset=-2))
# [(3, 4), (4, 0), (0, 1), (1, 2), (2, 3)]
Note: more-itertools is a separate library, easily installed via:
> pip install more_itertools
This can be done with slices:
l_in = [0, 1, 2, 3]
l_in = [l_in[-1]] + l_in + [l_in[0]]
l_out = [l_in[i:i+3] for i in range(len(l_in)-2)]
Well, or such a perversion:
div = len(l_in)
n = 3
l_out = [l_in[i % div: i % div + 3]
if len(l_in[i % div: i % div + 3]) == 3
else l_in[i % div: i % div + 3] + l_in[:3 - len(l_in[i % div: i % div + 3])]
for i in range(3, len(l_in) + 3 * n + 2)]
You can specify the number of iterations.
Well I figured out a better solution as I was writing the question, but I already went through the work of writing it, so here goes. This solution is at least much more concise:
l_out = list(zip(l_in[-1:] + l_in[:-1], l_in, l_in[1:] + l_in[:1]))
See this post for different answers on how to rotate lists in Python.
The one-line solution above should be at least as efficient as the solution in the question (based on my understanding) since the slicing should not be more expensive than the rotating and copying of the deques (see https://wiki.python.org/moin/TimeComplexity).
Other answers with more efficient (or elegant) solutions are still welcome though.
as you found there is a list rotation slicing based idiom lst[i:] + lst[:i]
using it inside a comprehension taking a variable n for the number of adjacent elements wanted is more general [lst[i:] + lst[:i] for i in range(n)]
so everything can be parameterized, the number of adjacent elements n in the cyclic rotation and the 'phase' p, the starting point if not the 'natural' 0 base index, although the default p=-1 is set to -1 to fit the apparant desired output
tst = list(range(4))
def rot(lst, n, p=-1):
return list(zip(*([lst[i+p:] + lst[:i+p] for i in range(n)])))
rot(tst, 3)
Out[2]: [(3, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, 0)]
showing the shortend code as per the comment

Pairwise circular Python 'for' loop

Is there a nice Pythonic way to loop over a list, retuning a pair of elements? The last element should be paired with the first.
So for instance, if I have the list [1, 2, 3], I would like to get the following pairs:
1 - 2
2 - 3
3 - 1
A Pythonic way to access a list pairwise is: zip(L, L[1:]). To connect the last item to the first one:
>>> L = [1, 2, 3]
>>> zip(L, L[1:] + L[:1])
[(1, 2), (2, 3), (3, 1)]
I would use a deque with zip to achieve this.
>>> from collections import deque
>>>
>>> l = [1,2,3]
>>> d = deque(l)
>>> d.rotate(-1)
>>> zip(l, d)
[(1, 2), (2, 3), (3, 1)]
I'd use a slight modification to the pairwise recipe from the itertools documentation:
def pairwise_circle(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ... (s<last>,s0)"
a, b = itertools.tee(iterable)
first_value = next(b, None)
return itertools.zip_longest(a, b,fillvalue=first_value)
This will simply keep a reference to the first value and when the second iterator is exhausted, zip_longest will fill the last place with the first value.
(Also note that it works with iterators like generators as well as iterables like lists/tuples.)
Note that #Barry's solution is very similar to this but a bit easier to understand in my opinion and easier to extend beyond one element.
I would pair itertools.cycle with zip:
import itertools
def circular_pairwise(l):
second = itertools.cycle(l)
next(second)
return zip(l, second)
cycle returns an iterable that yields the values of its argument in order, looping from the last value to the first.
We skip the first value, so it starts at position 1 (rather than 0).
Next, we zip it with the original, unmutated list. zip is good, because it stops when any of its argument iterables are exhausted.
Doing it this way avoids the creation of any intermediate lists: cycle holds a reference to the original, but doesn't copy it. zip operates in the same way.
It's important to note that this will break if the input is an iterator, such as a file, (or a map or zip in python-3), as advancing in one place (through next(second)) will automatically advance the iterator in all the others. This is easily solved using itertools.tee, which produces two independently operating iterators over the original iterable:
def circular_pairwise(it):
first, snd = itertools.tee(it)
second = itertools.cycle(snd)
next(second)
return zip(first, second)
tee can use large amounts of additional storage, for example, if one of the returned iterators is used up before the other is touched, but as we only ever have one step difference, the additional storage is minimal.
There are more efficient ways (that don't built temporary lists), but I think this is the most concise:
> l = [1,2,3]
> zip(l, (l+l)[1:])
[(1, 2), (2, 3), (3, 1)]
Pairwise circular Python 'for' loop
If you like the accepted answer,
zip(L, L[1:] + L[:1])
you can go much more memory light with semantically the same code using itertools:
from itertools import islice, chain #, izip as zip # uncomment if Python 2
And this barely materializes anything in memory beyond the original list (assuming the list is relatively large):
zip(l, chain(islice(l, 1, None), islice(l, None, 1)))
To use, just consume (for example, with a list):
>>> list(zip(l, chain(islice(l, 1, None), islice(l, None, 1))))
[(1, 2), (2, 3), (3, 1)]
This can be made extensible to any width:
def cyclical_window(l, width=2):
return zip(*[chain(islice(l, i, None), islice(l, None, i)) for i in range(width)])
and usage:
>>> l = [1, 2, 3, 4, 5]
>>> cyclical_window(l)
<itertools.izip object at 0x112E7D28>
>>> list(cyclical_window(l))
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)]
>>> list(cyclical_window(l, 4))
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 1), (4, 5, 1, 2), (5, 1, 2, 3)]
Unlimited generation with itertools.tee with cycle
You can also use tee to avoid making a redundant cycle object:
from itertools import cycle, tee
ic1, ic2 = tee(cycle(l))
next(ic2) # must still queue up the next item
and now:
>>> [(next(ic1), next(ic2)) for _ in range(10)]
[(1, 2), (2, 3), (3, 1), (1, 2), (2, 3), (3, 1), (1, 2), (2, 3), (3, 1), (1, 2)]
This is incredibly efficient, an expected usage of iter with next, and elegant usage of cycle, tee, and zip.
Don't pass cycle directly to list unless you have saved your work and have time for your computer to creep to a halt as you max out its memory - if you're lucky, after a while your OS will kill the process before it crashes your computer.
Pure Python Builtin Functions
Finally, no standard lib imports, but this only works for up to the length of original list (IndexError otherwise.)
>>> [(l[i], l[i - len(l) + 1]) for i in range(len(l))]
[(1, 2), (2, 3), (3, 1)]
You can continue this with modulo:
>>> len_l = len(l)
>>> [(l[i % len_l], l[(i + 1) % len_l]) for i in range(10)]
[(1, 2), (2, 3), (3, 1), (1, 2), (2, 3), (3, 1), (1, 2), (2, 3), (3, 1), (1, 2)]
I would use a list comprehension, and take advantage of the fact that l[-1] is the last element.
>>> l = [1,2,3]
>>> [(l[i-1],l[i]) for i in range(len(l))]
[(3, 1), (1, 2), (2, 3)]
You don't need a temporary list that way.
Amazing how many different ways there are to solve this problem.
Here's one more. You can use the pairwise recipe but instead of zipping with b, chain it with the first element that you already popped off. Don't need to cycle when we just need a single extra value:
from itertools import chain, izip, tee
def pairwise_circle(iterable):
a, b = tee(iterable)
first = next(b, None)
return izip(a, chain(b, (first,)))
I like a solution that does not modify the original list and does not copy the list to temporary storage:
def circular(a_list):
for index in range(len(a_list) - 1):
yield a_list[index], a_list[index + 1]
yield a_list[-1], a_list[0]
for x in circular([1, 2, 3]):
print x
Output:
(1, 2)
(2, 3)
(3, 1)
I can imagine this being used on some very large in-memory data.
This one will work even if the list l has consumed most of the system's memory. (If something guarantees this case to be impossible, then zip as posted by chepner is fine)
l.append( l[0] )
for i in range( len(l)-1):
pair = l[i],l[i+1]
# stuff involving pair
del l[-1]
or more generalizably (works for any offset n i.e. l[ (i+n)%len(l) ] )
for i in range( len(l)):
pair = l[i], l[ (i+1)%len(l) ]
# stuff
provided you are on a system with decently fast modulo division (i.e. not some pea-brained embedded system).
There seems to be a often-held belief that indexing a list with an integer subscript is un-pythonic and best avoided. Why?
This is my solution, and it looks Pythonic enough to me:
l = [1,2,3]
for n,v in enumerate(l):
try:
print(v,l[n+1])
except IndexError:
print(v,l[0])
prints:
1 2
2 3
3 1
The generator function version:
def f(iterable):
for n,v in enumerate(iterable):
try:
yield(v,iterable[n+1])
except IndexError:
yield(v,iterable[0])
>>> list(f([1,2,3]))
[(1, 2), (2, 3), (3, 1)]
How about this?
li = li+[li[0]]
pairwise = [(li[i],li[i+1]) for i in range(len(li)-1)]
from itertools import izip, chain, islice
itr = izip(l, chain(islice(l, 1, None), islice(l, 1)))
(As above with #j-f-sebastian's "zip" answer, but using itertools.)
NB: EDITED given helpful nudge from #200_success. previously was:
itr = izip(l, chain(l[1:], l[:1]))
If you don't want to consume too much memory, you can try my solution:
[(l[i], l[(i+1) % len(l)]) for i, v in enumerate(l)]
It's a little slower, but consume less memory.
Starting in Python 3.10, the new pairwise function provides a way to create sliding pairs of consecutive elements:
from itertools import pairwise
# l = [1, 2, 3]
list(pairwise(l + l[:1]))
# [(1, 2), (2, 3), (3, 1)]
or simply pairwise(l + l[:1]) if you don't need the result as a list.
Note that we pairwise on the list appended with its head (l + l[:1]) so that rolling pairs are circular (i.e. so that we also include the (3, 1) pair):
list(pairwise(l)) # [(1, 2), (2, 3)]
l + l[:1] # [1, 2, 3, 1]
Just another try
>>> L = [1,2,3]
>>> zip(L,L[1:]) + [(L[-1],L[0])]
[(1, 2), (2, 3), (3, 1)]
L = [1, 2, 3]
a = zip(L, L[1:]+L[:1])
for i in a:
b = list(i)
print b
this seems like combinations would do the job.
from itertools import combinations
x=combinations([1,2,3],2)
this would yield a generator. this can then be iterated over as such
for i in x:
print i
the results would look something like
(1, 2)
(1, 3)
(2, 3)

All possible combination of 3 numbers in a set in Python

I want to print all possible combination of 3 numbers from the set (0 ... n-1), while each one of those combinations is unique. I get the variable n via this code:
n = raw_input("Please enter n: ")
But I'm stuck at coming up with the algorithm. Any help please?
from itertools import combinations
list(combinations(range(n),3))
This would work as long as you are using later than Python 2.6
If you want all the possible combinations with repetition in values and differ in position you need to use product like this:
from itertools import product
t = range(n)
print set(product(set(t),repeat = 3))
for example, if n = 3, the output will be:
set([(0, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1), (0, 0, 0), (0, 1, 0), (1, 1, 1)])
hope this helps
itertools is your friend here, specifically permutations.
Demo:
from itertools import permutations
for item in permutations(range(n), 3):
print item
This is assuming you have Python 2.6 or newer.
combos = []
for x in xrange(n):
for y in xrange(n):
for z in xrange(n):
combos.append([x,y,z])

Categories

Resources