Which is the best driver in python to connect to postgresql?
There are a few possibilities, http://wiki.postgresql.org/wiki/Python but I don't know which is the best choice
Any idea?
psycopg2 is the one everyone uses with CPython. For PyPy though, you'd want to look at the pure Python ones.
I would recommend sqlalchemy - it offers great flexibility and has a sophisticated inteface.
Futhermore it's not bound to postgresql alone.
Shameless c&p from the tutorial:
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
# an Engine, which the Session will use for connection
# resources
some_engine = create_engine('postgresql://scott:tiger#localhost/')
# create a configured "Session" class
Session = sessionmaker(bind=some_engine)
# create a Session
session = Session()
# work with sess
myobject = MyObject('foo', 'bar')
session.add(myobject)
session.commit()
Clarifications due to comments (update):
sqlalchemy itself is not a driver, but a so called Object Relational Mapper. It does provide and include it's own drivers, which in the postgresql-case is libpq, which itself is wrapped in psycopg2.
Because the OP emphasized he wanted the "best driver" to "connect to postgresql" i pointed sqlalchemy out, even if it might be a false answer terminology-wise, but intention-wise i felt it to be the more useful one.
And even if i do not like the "hair-splitting" dance, i still ended up doing it nonetheless, due to the pressure felt coming from the comments to my answer.
I apologize for any irritations caused by my slander.
Related
Sqlalchemy's documentation says that one can create a session in two ways:
from sqlalchemy.orm import Session
session = Session(engine)
or with a sessionmaker
from sqlalchemy.orm import session_maker
Session = session_maker(engine)
session = Session()
Now in either case one needs a global object (either the engine, or the session_maker object). So I do not really see what the point of the session_maker is. Maybe I am misunderstanding something.
I could not find any advice when one should use one or the other. So the question is: In which situation would you want to use Session(engine) and in which situation would you prefer session_maker?
The docs describe the difference very well:
Session is a regular Python class which can be directly instantiated. However, to standardize how sessions are configured and acquired, the sessionmaker class is normally used to create a top level Session configuration which can then be used throughout an application without the need to repeat the configurational arguments.
I have a query that fetches a lot of data from my MySQL db, where loading all of the data into memory isn't an option. Luckily, SQLAlchemy lets me create an engine using MySQL's SSCursor, so the data is streamed and not fully loaded into memory. I can do this like so:
create_engine(connect_str, connect_args={'cursorclass': MySQLdb.cursors.SSCursor})
That's great, but I don't want to use SSCursor for all my queries including very small ones. I'd rather only use it where it's really necessary. I thought I'd be able to do this with the stream_results setting like so:
conn.execution_options(stream_results=True).execute(MyTable.__table__.select())
Unfortunately, when monitoring memory usage when using that, it seems to use the exact same amount of memory as if I don't do that, whereas using SSCursor, my memory usage goes down to nil as expected. What am I missing? Is there some other way to accomplish this?
From the docs:
stream_results – Available on: Connection, statement. Indicate to the
dialect that results should be “streamed” and not pre-buffered, if
possible. This is a limitation of many DBAPIs. The flag is currently
understood only by the psycopg2 dialect.
I think you just want to create multiple sessions one for streaming and one for normal queries, like:
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
def create_session(engine):
# configure Session class with desired options
Session = sessionmaker()
# associate it with our custom Session class
Session.configure(bind=engine)
# work with the session
session = Session()
return session
#streaming
stream_engine = create_engine(connect_str, connect_args={'cursorclass': MySQLdb.cursors.SSCursor})
stream_session = create_session(stream_engine)
stream_session.execute(MyTable.__table__.select())
#normal
normal_engine = create_engine(connect_str)
normal_session = create_session(normal_engine)
normal_session.execute(MyTable.__table__.select())
I have a Flask application with which I'd like to use SQLAlchemy Core (i.e. I explicitly do not want to use an ORM), similarly to this "fourth way" described in the Flask doc:
http://flask.pocoo.org/docs/patterns/sqlalchemy/#sql-abstraction-layer
I'd like to know what would be the recommended pattern in terms of:
How to connect to my database (can I simply store a connection instance in the g.db variable, in before_request?)
How to perform reflection to retrieve the structure of my existing database (if possible, I'd like to avoid having to explicitly create any "model/table classes")
Correct: You would create a connection once per thread and access it using a threadlocal variable. As usual, SQLAlchemy has thought of this use-case and provided you with a pattern: Using the Threadlocal Execution Strategy
db = create_engine('mysql://localhost/test', strategy='threadlocal')
db.execute('SELECT * FROM some_table')
Note: If I am not mistaken, the example seems to mix up the names db and engine (which should be db as well, I think).
I think you can safely disregard the Note posted in the documentation as this is explicitly what you want. As long as each transaction scope is linked to a thread (as is with the usual flask setup), you are safe to use this. Just don't start messing with threadless stuff (but flask chokes on that anyway).
Reflection is pretty easy as described in Reflecting Database Objects. Since you don't want to create all the tables manually, SQLAlchemy offers a nice way, too: Reflecting All Tables at Once
meta = MetaData()
meta.reflect(bind=someengine)
users_table = meta.tables['users']
addresses_table = meta.tables['addresses']
I suggest you check that complete chapter concerning reflection.
I have a caching problem when I use sqlalchemy.
I use sqlalchemy to insert data into a MySQL database. Then, I have another application process this data, and update it directly.
But sqlalchemy always returns the old data rather than the updated data. I think sqlalchemy cached my request ... so ... how should I disable it?
The usual cause for people thinking there's a "cache" at play, besides the usual SQLAlchemy identity map which is local to a transaction, is that they are observing the effects of transaction isolation. SQLAlchemy's session works by default in a transactional mode, meaning it waits until session.commit() is called in order to persist data to the database. During this time, other transactions in progress elsewhere will not see this data.
However, due to the isolated nature of transactions, there's an extra twist. Those other transactions in progress will not only not see your transaction's data until it is committed, they also can't see it in some cases until they are committed or rolled back also (which is the same effect your close() is having here). A transaction with an average degree of isolation will hold onto the state that it has loaded thus far, and keep giving you that same state local to the transaction even though the real data has changed - this is called repeatable reads in transaction isolation parlance.
http://en.wikipedia.org/wiki/Isolation_%28database_systems%29
This issue has been really frustrating for me, but I have finally figured it out.
I have a Flask/SQLAlchemy Application running alongside an older PHP site. The PHP site would write to the database and SQLAlchemy would not be aware of any changes.
I tried the sessionmaker setting autoflush=True unsuccessfully
I tried db_session.flush(), db_session.expire_all(), and db_session.commit() before querying and NONE worked. Still showed stale data.
Finally I came across this section of the SQLAlchemy docs: http://docs.sqlalchemy.org/en/latest/dialects/postgresql.html#transaction-isolation-level
Setting the isolation_level worked great. Now my Flask app is "talking" to the PHP app. Here's the code:
engine = create_engine(
"postgresql+pg8000://scott:tiger#localhost/test",
isolation_level="READ UNCOMMITTED"
)
When the SQLAlchemy engine is started with the "READ UNCOMMITED" isolation_level it will perform "dirty reads" which means it will read uncommited changes directly from the database.
Hope this helps
Here is a possible solution courtesy of AaronD in the comments
from flask.ext.sqlalchemy import SQLAlchemy
class UnlockedAlchemy(SQLAlchemy):
def apply_driver_hacks(self, app, info, options):
if "isolation_level" not in options:
options["isolation_level"] = "READ COMMITTED"
return super(UnlockedAlchemy, self).apply_driver_hacks(app, info, options)
Additionally to zzzeek excellent answer,
I had a similar issue. I solved the problem by using short living sessions.
with closing(new_session()) as sess:
# do your stuff
I used a fresh session per task, task group or request (in case of web app). That solved the "caching" problem for me.
This material was very useful for me:
When do I construct a Session, when do I commit it, and when do I close it
This was happening in my Flask application, and my solution was to expire all objects in the session after every request.
from flask.signals import request_finished
def expire_session(sender, response, **extra):
app.db.session.expire_all()
request_finished.connect(expire_session, flask_app)
Worked like a charm.
I have tried session.commit(), session.flush() none worked for me.
After going through sqlalchemy source code, I found the solution to disable caching.
Setting query_cache_size=0 in create_engine worked.
create_engine(connection_string, convert_unicode=True, echo=True, query_cache_size=0)
First, there is no cache for SQLAlchemy.
Based on your method to fetch data from DB, you should do some test after database is updated by others, see whether you can get new data.
(1) use connection:
connection = engine.connect()
result = connection.execute("select username from users")
for row in result:
print "username:", row['username']
connection.close()
(2) use Engine ...
(3) use MegaData...
please folowing the step in : http://docs.sqlalchemy.org/en/latest/core/connections.html
Another possible reason is your MySQL DB is not updated permanently. Restart MySQL service and have a check.
As i know SQLAlchemy does not store caches, so you need to looking at logging output.
There is a Java paradigm for database access implemented in the Java DataSource. This object create a useful abstraction around the creation of database connections. The DataSource object keeps database configuration, but will only create database connections on request. This is allows you to keep all database configuration and initialization code in one place, and makes it easy to change database implementation, or use a mock database for testing.
I currently working on a Python project which uses cx_Oracle. In cx_Oracle, one gets a connection directly from the module:
import cx_Oracle as dbapi
connection = dbapi.connect(connection_string)
# At this point I am assuming that a real connection has been made to the database.
# Is this true?
I am trying to find a parallel to the DataSource in cx_Oracle. I can easily create this by creating a new class and wrapping cx_Oracle, but I was wondering if this is the right way to do it in Python.
You'll find relevant information of how to access databases in Python by looking at PEP-249: Python Database API Specification v2.0. cx_Oracle conforms to this specification, as do many database drivers for Python.
In this specification a Connection object represents a database connection, but there is no built-in pooling. Tools such as SQLAlchemy do provide pooling facilities, and although SQLAlchemy is often billed as an ORM, it does not have to be used as such and offers nice abstractions for use on top of SQL engines.
If you do want to do object-relational-mapping, then SQLAlchemy does the business, and you can consider either its own declarative syntax or another layer such as Elixir which sits on top of SQLAlchemy and provides increased ease of use for more common use cases.
I don't think there is a "right" way to do this in Python, except maybe to go one step further and use another layer between yourself and the database.
Depending on the reason for wanting to use the DataSource concept (which I've only ever come across in Java), SQLAlchemy (or something similar) might solve the problems for you, without you having to write something from scratch.
If that doesn't fit the bill, writing your own wrapper sounds like a reasonable solution.
Yes, Python has a similar abstraction.
This is from our local build regression test, where we assure that we can talk to all of our databases whenever we build a new python.
if database == SYBASE:
import Sybase
conn = Sybase.connect('sybasetestdb','mh','secret')
elif database == POSTRESQL:
import pgdb
conn = pgdb.connect('pgtestdb:mh:secret')
elif database == ORACLE:
import cx_Oracle
conn = cx_Oracle.connect("mh/secret#oracletestdb")
curs=conn.cursor()
curs.execute('select a,b from testtable')
for row in curs.fetchall():
print row
(note, this is the simple version, in our multidb-aware code we have a dbconnection class that has this logic inside.)
I just sucked it up and wrote my own. It allowed me to add things like abstracting the database (Oracle/MySQL/Access/etc), adding logging, error handling with transaction rollbacks, etc.