Python regex to extract data from C header file - python

I have a C header file with a lot of enums, typedefs and function prototypes. I want to extract this data using Python regex (re). I really need help with the syntax, because I constantly seem to forget it every time I learn.
ENUMS
-----
enum
{
(tab character)(stuff to be extracted - multiple lines)
};
TYPES
-----
typedef struct (extract1) (extract2)
FUNCTIONS
---------
(return type)
(name)
(
(tab character)(arguments - multiple lines)
);
If anyone could point me in the right direction, I would be grateful.

I imagine something like this is what you're after?
>>> re.findall('enum\s*{\s*([^}]*)};', 'enum {A,B,C};')
['A,B,C']
>>> re.findall("typedef\s+struct\s+(\w+)\s+(\w+);", "typedef struct blah blah;")
[('blah', 'blah')]
There are of course numerous variations on the syntax, and functions are much more complicated, so I'll leave those for you, as frankly these regexps are already fragile and inelegant enough. I would urge you to use an actual parser unless this is just a one-off project where robustness is totally unimportant and you can be sure of the format of your inputs.

Related

General algorithm/pattern for processing text files

Is there a general algorithm/pattern for reading multiline text files, where some lines are dependent on preceding ones? I'm referring to data in a form like:
H0 //start header
HEADER1
H9 //end header
R0 RECORD1
R0 RECORD2
H0 //start header
HEADER2
H9 //end header
R0 RECORD3
R0 RECORD4
Where one needs to associate the current "header" info with each following record.
I realise there are countless solutions to this sort of task, but are there tried and tested patterns that more experienced developers converge on?
EDIT:
My intuition is that one should use some sort of state machine, with states like "reading header", "reading records" etc. Am I on the right path?
EDIT:
Although the example is simple, something that can handle higher degrees of nesting would be preferable
This can be looked at as a parsing problem, although the grammar of the language is very simple. It is indeed regular, and thus FSM, as you correctly noted, will work. Generally speaking, any established parsing technique will work; you would avoid explicit state if using recursive descent parsing, which becomes not really recursive in case of a regular language. The following is pseudocode:
function accept_file:
while not_eof
read_line;
case prefix of
"H0": accept_header;
"R0": accept_record;
otherwise: syntax_error;
function accept_record:
make_record from substring of current_line from position 3;
function accept_header:
read_line;
while current_line does not start with "H9"
add line to accumulated_lines
create header from accumulated_lines
I agree with kkm, depending on how "complex" is your grammar, you may consider using some kind of parsing lib like ply

Port C's fread(&struct,....) to Python

Hey, I'm really struggling with this one. I'am trying to port a small piece of someone else's code to Python and this is what I have:
typedef struct
{
uint8_t Y[LUMA_HEIGHT][LUMA_WIDTH];
uint8_t Cb[CHROMA_HEIGHT][CHROMA_WIDTH];
uint8_t Cr[CHROMA_HEIGHT][CHROMA_WIDTH];
} __attribute__((__packed__)) frame_t;
frame_t frame;
while (! feof(stdin))
{
fread(&frame, 1, sizeof(frame), stdin);
// DO SOME STUFF
}
Later I need to access the data like so: frame.Y[x][y]
So I made a Class 'frame' in Python and inserted the corresponding variables(frame.Y, frame.Cb, frame.Cr).
I have tried to sequentially map the data from Y[0][0] to Cr[MAX][MAX], even printed out the C struct in action but didn't manage to wrap my head around the method used to put the data in there. I've been struggling overnight with this and have to get back to the army tonight, so any immediate help is very welcome and appreciated.
Thanks
You have to use struct python standard module.
From its documentation (emphasys added):
This module performs conversions
between Python values and C structs
represented as Python strings. It uses
format strings (explained below) as
compact descriptions of the lay-out of
the C structs and the intended
conversion to/from Python values. This
can be used in handling binary data
stored in files or from network
connections, among other sources.
Note: as the data you are reading in the end is of a uniform format, you could also use the array module and then "restructure" the data in Python, but I think the best way to go is by using struct.

Haskell equivalent of Python's "Construct"

Construct is a DSL implemented in Python used to describe data structures (binary and textual). Once you have the data structure described, construct can parse and build it for you. Which is good ("DRY", "Declarative", "Denotational-Semantics"...)
Usage example:
# code from construct.formats.graphics.png
itxt_info = Struct("itxt_info",
CString("keyword"),
UBInt8("compression_flag"),
compression_method,
CString("language_tag"),
CString("translated_keyword"),
OnDemand(
Field("text",
lambda ctx: ctx._.length - (len(ctx.keyword) +
len(ctx.language_tag) + len(ctx.translated_keyword) + 5),
),
),
)
I am in need for such a tool for Haskell and
I wonder if something like this exists.
I know of:
Data.Binary: User implements parsing and building seperately
Parsec: Only for parsing? Only for text?
I guess one must use Template Haskell to achieve this?
I'd say it depends what you want to do, and if you need to comply with any existing format.
Data.Binary will (surprise!) help you with binary data, both reading and writing.
You can either write the code to read/write yourself, or let go of the details and generate the required code for your data structures using some additional tools like DrIFT or Derive. DrIFT works as a preprocessor, while Derive can work as a preprocessor and with TemplateHaskell.
Parsec will only help you with parsing text. No binary data (as easily), and no writing. Work is done with regular Strings. There are ByteString equivalents on hackage.
For your example above I'd use Data.Binary and write custom put/geters myself.
Have a look at the parser category at hackage for more options.
Currently (afaik) there is no equivalent to Construct in Haskell.
One can be implemented using Template Haskell.
I don't know anything about Python or Construct, so this is probably not what you are searching for, but for simple data structures you can always just derive read:
data Test a = I Int | S a deriving (Read,Show)
Now, for the expression
read "S 123" :: Test Double
GHCi will emit: S 123.0
For anything more complex, you can make an instance of Read using Parsec.

Pythonic way to implement a tokenizer

I'm going to implement a tokenizer in Python and I was wondering if you could offer some style advice?
I've implemented a tokenizer before in C and in Java so I'm fine with the theory, I'd just like to ensure I'm following pythonic styles and best practices.
Listing Token Types:
In Java, for example, I would have a list of fields like so:
public static final int TOKEN_INTEGER = 0
But, obviously, there's no way (I think) to declare a constant variable in Python, so I could just replace this with normal variable declarations but that doesn't strike me as a great solution since the declarations could be altered.
Returning Tokens From The Tokenizer:
Is there a better alternative to just simply returning a list of tuples e.g.
[ (TOKEN_INTEGER, 17), (TOKEN_STRING, "Sixteen")]?
Cheers,
Pete
There's an undocumented class in the re module called re.Scanner. It's very straightforward to use for a tokenizer:
import re
scanner=re.Scanner([
(r"[0-9]+", lambda scanner,token:("INTEGER", token)),
(r"[a-z_]+", lambda scanner,token:("IDENTIFIER", token)),
(r"[,.]+", lambda scanner,token:("PUNCTUATION", token)),
(r"\s+", None), # None == skip token.
])
results, remainder=scanner.scan("45 pigeons, 23 cows, 11 spiders.")
print results
will result in
[('INTEGER', '45'),
('IDENTIFIER', 'pigeons'),
('PUNCTUATION', ','),
('INTEGER', '23'),
('IDENTIFIER', 'cows'),
('PUNCTUATION', ','),
('INTEGER', '11'),
('IDENTIFIER', 'spiders'),
('PUNCTUATION', '.')]
I used re.Scanner to write a pretty nifty configuration/structured data format parser in only a couple hundred lines.
Python takes a "we're all consenting adults" approach to information hiding. It's OK to use variables as though they were constants, and trust that users of your code won't do something stupid.
In many situations, exp. when parsing long input streams, you may find it more useful to implement you tokenizer as a generator function. This way you can easily iterate over all the tokens without the need for lots of memory to build the list of tokens first.
For generator see the original proposal or other online docs
Thanks for your help, I've started to bring these ideas together, and I've come up with the following. Is there anything terribly wrong with this implementation (particularly I'm concerned about passing a file object to the tokenizer):
class Tokenizer(object):
def __init__(self,file):
self.file = file
def __get_next_character(self):
return self.file.read(1)
def __peek_next_character(self):
character = self.file.read(1)
self.file.seek(self.file.tell()-1,0)
return character
def __read_number(self):
value = ""
while self.__peek_next_character().isdigit():
value += self.__get_next_character()
return value
def next_token(self):
character = self.__peek_next_character()
if character.isdigit():
return self.__read_number()
"Is there a better alternative to just simply returning a list of tuples?"
Nope. It works really well.
"Is there a better alternative to just simply returning a list of tuples?"
That's the approach used by the "tokenize" module for parsing Python source code. Returning a simple list of tuples can work very well.
I have recently built a tokenizer, too, and passed through some of your issues.
Token types are declared as "constants", i.e. variables with ALL_CAPS names, at the module level. For example,
_INTEGER = 0x0007
_FLOAT = 0x0008
_VARIABLE = 0x0009
and so on. I have used an underscore in front of the name to point out that somehow those fields are "private" for the module, but I really don't know if this is typical or advisable, not even how much Pythonic. (Also, I'll probably ditch numbers in favour of strings, because during debugging they are much more readable.)
Tokens are returned as named tuples.
from collections import namedtuple
Token = namedtuple('Token', ['value', 'type'])
# so that e.g. somewhere in a function/method I can write...
t = Token(n, _INTEGER)
# ...and return it properly
I have used named tuples because the tokenizer's client code (e.g. the parser) seems a little clearer while using names (e.g. token.value) instead of indexes (e.g. token[0]).
Finally, I've noticed that sometimes, especially writing tests, I prefer to pass a string to the tokenizer instead of a file object. I call it a "reader", and have a specific method to open it and let the tokenizer access it through the same interface.
def open_reader(self, source):
"""
Produces a file object from source.
The source can be either a file object already, or a string.
"""
if hasattr(source, 'read'):
return source
else:
from io import StringIO
return StringIO(source)
When I start something new in Python I usually look first at some modules or libraries to use. There's 90%+ chance that there already is somthing available.
For tokenizers and parsers this is certainly so. Have you looked at PyParsing ?
I've implemented a tokenizer for a C-like programming language. What I did was to split up the creation of tokens into two layers:
a surface scanner: This one actually reads the text and uses regular expression to split it up into only the most primitve tokens (operators, identifiers, numbers,...); this one yields tuples (tokenname, scannedstring, startpos, endpos).
a tokenizer: This consumes the tuples from the first layer, turning them into token objects (named tuples would do as well, I think). Its purpose is to detect some long-range dependencies in the token stream, particularly strings (with their opening and closing quotes) and comments (with their opening an closing lexems; - yes, I wanted to retain comments!) and coerce them into single tokens. The resulting stream of token objects is then returned to a consuming parser.
Both are generators. The benefits of this approach were:
Reading of the raw text is done only in the most primitive way, with simple regexps - fast and clean.
The second layer is already implemented as a primitive parser, to detect string literals and comments - re-use of parser technology.
You don't have to strain the surface scanner with complex detections.
But the real parser gets tokens on the semantic level of the language to be parsed (again strings, comments).
I feel quite happy with this layered approach.
I'd turn to the excellent Text Processing in Python by David Mertz
This being a late answer, there is now something in the official documentation: Writing a tokenizer with the re standard library. This is content in the Python 3 documentation that isn't in the Py 2.7 docs. But it is still applicable to older Pythons.
This includes both short code, easy setup, and writing a generator as several answers here have proposed.
If the docs are not Pythonic, I don't know what is :-)
"Is there a better alternative to just simply returning a list of tuples"
I had to implement a tokenizer, but it required a more complex approach than a list of tuples, therefore I implemented a class for each token. You can then return a list of class instances, or if you want to save resources, you can return something implementing the iterator interface and generate the next token while you progress in the parsing.

Hashtable/dictionary/map lookup with regular expressions

I'm trying to figure out if there's a reasonably efficient way to perform a lookup in a dictionary (or a hash, or a map, or whatever your favorite language calls it) where the keys are regular expressions and strings are looked up against the set of keys. For example (in Python syntax):
>>> regex_dict = { re.compile(r'foo.') : 12, re.compile(r'^FileN.*$') : 35 }
>>> regex_dict['food']
12
>>> regex_dict['foot in my mouth']
12
>>> regex_dict['FileNotFoundException: file.x does not exist']
35
(Obviously the above example won't work as written in Python, but that's the sort of thing I'd like to be able to do.)
I can think of a naive way to implement this, in which I iterate over all of the keys in the dictionary and try to match the passed in string against them, but then I lose the O(1) lookup time of a hash map and instead have O(n), where n is the number of keys in my dictionary. This is potentially a big deal, as I expect this dictionary to grow very large, and I will need to search it over and over again (actually I'll need to iterate over it for every line I read in a text file, and the files can be hundreds of megabytes in size).
Is there a way to accomplish this, without resorting to O(n) efficiency?
Alternatively, if you know of a way to accomplish this sort of a lookup in a database, that would be great, too.
(Any programming language is fine -- I'm using Python, but I'm more interested in the data structures and algorithms here.)
Someone pointed out that more than one match is possible, and that's absolutely correct. Ideally in this situation I'd like to return a list or tuple containing all of the matches. I'd settle for the first match, though.
I can't see O(1) being possible in that scenario; I'd settle for anything less than O(n), though. Also, the underlying data structure could be anything, but the basic behavior I'd like is what I've written above: lookup a string, and return the value(s) that match the regular expression keys.
What you want to do is very similar to what is supported by xrdb. They only support a fairly minimal notion of globbing however.
Internally you can implement a larger family of regular languages than theirs by storing your regular expressions as a character trie.
single characters just become trie nodes.
.'s become wildcard insertions covering all children of the current trie node.
*'s become back links in the trie to node at the start of the previous item.
[a-z] ranges insert the same subsequent child nodes repeatedly under each of the characters in the range. With care, while inserts/updates may be somewhat expensive the search can be linear in the size of the string. With some placeholder stuff the common combinatorial explosion cases can be kept under control.
(foo)|(bar) nodes become multiple insertions
This doesn't handle regexes that occur at arbitrary points in the string, but that can be modeled by wrapping your regex with .* on either side.
Perl has a couple of Text::Trie -like modules you can raid for ideas. (Heck I think I even wrote one of them way back when)
This is not possible to do with a regular hash table in any language. You'll either have to iterate through the entire keyset, attempting to match the key to your regex, or use a different data structure.
You should choose a data structure that is appropriate to the problem you're trying to solve. If you have to match against any arbitrary regular expression, I don't know of a good solution. If the class of regular expressions you'll be using is more restrictive, you might be able to use a data structure such as a trie or suffix tree.
In the general case, what you need is a lexer generator. It takes a bunch of regular expressions and compiles them into a recognizer. "lex" will work if you are using C. I have never used a lexer generator in Python, but there seem to be a few to choose from. Google shows PLY, PyGgy and PyLexer.
If the regular expressions all resemble each other in some way, then you may be able to take some shortcuts. We would need to know more about the ultimate problem that you are trying to solve in order to come up with any suggestions. Can you share some sample regular expressions and some sample data?
Also, how many regular expressions are you dealing with here? Are you sure that the naive approach won't work? As Rob Pike once said, "Fancy algorithms are slow when n is small, and n is usually small." Unless you have thousands of regular expressions, and thousands of things to match against them, and this is an interactive application where a user is waiting for you, you may be best off just doing it the easy way and looping through the regular expressions.
This is definitely possible, as long as you're using 'real' regular expressions. A textbook regular expression is something that can be recognized by a deterministic finite state machine, which primarily means you can't have back-references in there.
There's a property of regular languages that "the union of two regular languages is regular", meaning that you can recognize an arbitrary number of regular expressions at once with a single state machine. The state machine runs in O(1) time with respect to the number of expressions (it runs in O(n) time with respect to the length of the input string, but hash tables do too).
Once the state machine completes you'll know which expressions matched, and from there it's easy to look up values in O(1) time.
What happens if you have a dictionary such as
regex_dict = { re.compile("foo.*"): 5, re.compile("f.*"): 6 }
In this case regex_dict["food"] could legitimately return either 5 or 6.
Even ignoring that problem, there's probably no way to do this efficiently with the regex module. Instead, what you'd need is an internal directed graph or tree structure.
What about the following:
class redict(dict):
def __init__(self, d):
dict.__init__(self, d)
def __getitem__(self, regex):
r = re.compile(regex)
mkeys = filter(r.match, self.keys())
for i in mkeys:
yield dict.__getitem__(self, i)
It's basically a subclass of the dict type in Python. With this you can supply a regular expression as a key, and the values of all keys that match this regex are returned in an iterable fashion using yield.
With this you can do the following:
>>> keys = ["a", "b", "c", "ab", "ce", "de"]
>>> vals = range(0,len(keys))
>>> red = redict(zip(keys, vals))
>>> for i in red[r"^.e$"]:
... print i
...
5
4
>>>
Here's an efficient way to do it by combining the keys into a single compiled regexp, and so not requiring any looping over key patterns. It abuses the lastindex to find out which key matched. (It's a shame regexp libraries don't let you tag the terminal state of the DFA that a regexp is compiled to, or this would be less of a hack.)
The expression is compiled once, and will produce a fast matcher that doesn't have to search sequentially. Common prefixes are compiled together in the DFA, so each character in the key is matched once, not many times, unlike some of the other suggested solutions. You're effectively compiling a mini lexer for your keyspace.
This map isn't extensible (can't define new keys) without recompiling the regexp, but it can be handy for some situations.
# Regular expression map
# Abuses match.lastindex to figure out which key was matched
# (i.e. to emulate extracting the terminal state of the DFA of the regexp engine)
# Mostly for amusement.
# Richard Brooksby, Ravenbrook Limited, 2013-06-01
import re
class ReMap(object):
def __init__(self, items):
if not items:
items = [(r'epsilon^', None)] # Match nothing
key_patterns = []
self.lookup = {}
index = 1
for key, value in items:
# Ensure there are no capturing parens in the key, because
# that would mess up match.lastindex
key_patterns.append('(' + re.sub(r'\((?!\?:)', '(?:', key) + ')')
self.lookup[index] = value
index += 1
self.keys_re = re.compile('|'.join(key_patterns))
def __getitem__(self, key):
m = self.keys_re.match(key)
if m:
return self.lookup[m.lastindex]
raise KeyError(key)
if __name__ == '__main__':
remap = ReMap([(r'foo.', 12), (r'FileN.*', 35)])
print remap['food']
print remap['foot in my mouth']
print remap['FileNotFoundException: file.x does not exist']
There is a Perl module that does just this Tie::Hash::Regex.
use Tie::Hash::Regex;
my %h;
tie %h, 'Tie::Hash::Regex';
$h{key} = 'value';
$h{key2} = 'another value';
$h{stuff} = 'something else';
print $h{key}; # prints 'value'
print $h{2}; # prints 'another value'
print $h{'^s'}; # prints 'something else'
print tied(%h)->FETCH(k); # prints 'value' and 'another value'
delete $h{k}; # deletes $h{key} and $h{key2};
#rptb1 you don't have to avoid capturing groups, because you can use re.groups to count them. Like this:
# Regular expression map
# Abuses match.lastindex to figure out which key was matched
# (i.e. to emulate extracting the terminal state of the DFA of the regexp engine)
# Mostly for amusement.
# Richard Brooksby, Ravenbrook Limited, 2013-06-01
import re
class ReMap(object):
def __init__(self, items):
if not items:
items = [(r'epsilon^', None)] # Match nothing
self.re = re.compile('|'.join('('+k+')' for (k,v) in items))
self.lookup = {}
index = 1
for key, value in items:
self.lookup[index] = value
index += re.compile(key).groups + 1
def __getitem__(self, key):
m = self.re.match(key)
if m:
return self.lookup[m.lastindex]
raise KeyError(key)
def test():
remap = ReMap([(r'foo.', 12),
(r'.*([0-9]+)', 99),
(r'FileN.*', 35),
])
print remap['food']
print remap['foot in my mouth']
print remap['FileNotFoundException: file.x does not exist']
print remap['there were 99 trombones']
print remap['food costs $18']
print remap['bar']
if __name__ == '__main__':
test()
Sadly very few RE engines actually compile the regexps down to machine code, although it's not especially hard to do. I suspect there's an order of magnitude performance improvement waiting for someone to make a really good RE JIT library.
As other respondents have pointed out, it's not possible to do this with a hash table in constant time.
One approximation that might help is to use a technique called "n-grams". Create an inverted index from n-character chunks of a word to the entire word. When given a pattern, split it into n-character chunks, and use the index to compute a scored list of matching words.
Even if you can't accept an approximation, in most cases this would still provide an accurate filtering mechanism so that you don't have to apply the regex to every key.
A special case of this problem came up in the 70s AI languages oriented around deductive databases. The keys in these databases could be patterns with variables -- like regular expressions without the * or | operators. They tended to use fancy extensions of trie structures for indexes. See krep*.lisp in Norvig's Paradigms of AI Programming for the general idea.
If you have a small set of possible inputs, you can cache the matches as they appear in a second dict and get O(1) for the cached values.
If the set of possible inputs is too big to cache but not infinite, either, you can just keep the last N matches in the cache (check Google for "LRU maps" - least recently used).
If you can't do this, you can try to chop down the number of regexps you have to try by checking a prefix or somesuch.
I created this exact data structure for a project once. I implemented it naively, as you suggested. I did make two immensely helpful optimizations, which may or may not be feasible for you, depending on the size of your data:
Memoizing the hash lookups
Pre-seeding the the memoization table (not sure what to call this... warming up the cache?)
To avoid the problem of multiple keys matching the input, I gave each regex key a priority and the highest priority was used.
The fundamental assumption is flawed, I think. you can't map hashes to regular expressions.
I don't think it's even theoretically possible. What happens if someone passes in a string that matches more than 1 regular expression.
For example, what would happen if someone did:
>>> regex_dict['FileNfoo']
How can something like that possibly be O(1)?
It may be possible to get the regex compiler to do most of the work for you by concatenating the search expressions into one big regexp, separated by "|". A clever regex compiler might search for commonalities in the alternatives in such a case, and devise a more efficient search strategy than simply checking each one in turn. But I have no idea whether there are compilers which will do that.
It really depends on what these regexes look like. If you don't have a lot regexes that will match almost anything like '.*' or '\d+', and instead you have regexes that contains mostly words and phrases or any fixed patterns longer than 4 characters (e.g.'a*b*c' in ^\d+a\*b\*c:\s+\w+) , as in your examples. You can do this common trick that scales well to millions of regexes:
Build a inverted index for the regexes (rabin-karp-hash('fixed pattern') -> list of regexes containing 'fixed pattern'). Then at matching time, using Rabin-Karp hashing to compute sliding hashes and look up the inverted index, advancing one character at a time. You now have O(1) look-up for inverted-index non-matches and a reasonable O(k) time for matches, k is the average length of the lists of regexes in the inverted index. k can be quite small (less than 10) for many applications. The quality (false positive means bigger k, false negative means missed matches) of the inverted index depends on how well the indexer understands the regex syntax. If the regexes are generated by human experts, they can provide hints for contained fixed patterns as well.
Ok, I have a very similar requirements, I have a lot of lines of different syntax, basically remark lines and lines with some codes for to use in a process of smart-card format, also, descriptor lines of keys and secret codes, in every case, I think that the "model" pattern/action is the beast approach for to recognize and to process a lot of lines.
I'm using C++/CLI for to develop my assembly named LanguageProcessor.dll, the core of this library is a lex_rule class that basically contains :
a Regex member
an event member
The constructor loads the regex string and call the necessary codes for to build the event on the fly using DynamicMethod, Emit and Reflexion... also into the assembly exists other class like meta and object that constructs ans instantiates the objects by the simple names of the publisher and the receiver class, receiver class provides the action handlers for each rule matched.
Late, I have a class named fasterlex_engine that build a Dictionary<Regex, action_delegate>
that load the definitions from an array for to run.
The project is in advanced point but I'm still building, today. I will try to enhance the performance of running surrounding the sequential access to every pair foreach line input, thru using some mechanism of lookup the dictionary directly using the regexp like:
map_rule[gcnew Regex("[a-zA-Z]")];
Here, some of segments of my code:
public ref class lex_rule: ILexRule
{
private:
Exception ^m_exception;
Regex ^m_pattern;
//BACKSTORAGE delegates, esto me lo aprendi asiendo la huella.net de m*e*da JEJE
yy_lexical_action ^m_yy_lexical_action;
yy_user_action ^m_yy_user_action;
public:
virtual property String ^short_id;
private:
void init(String ^_short_id, String ^well_formed_regex);
public:
lex_rule();
lex_rule(String ^_short_id,String ^well_formed_regex);
virtual event yy_lexical_action ^YY_RULE_MATCHED
{
virtual void add(yy_lexical_action ^_delegateHandle)
{
if(nullptr==m_yy_lexical_action)
m_yy_lexical_action=_delegateHandle;
}
virtual void remove(yy_lexical_action ^)
{
m_yy_lexical_action=nullptr;
}
virtual long raise(String ^id_rule, String ^input_string, String ^match_string, int index)
{
long lReturn=-1L;
if(m_yy_lexical_action)
lReturn=m_yy_lexical_action(id_rule,input_string, match_string, index);
return lReturn;
}
}
};
Now the fasterlex_engine class that execute a lot of pattern/action pair:
public ref class fasterlex_engine
{
private:
Dictionary<String^,ILexRule^> ^m_map_rules;
public:
fasterlex_engine();
fasterlex_engine(array<String ^,2>^defs);
Dictionary<String ^,Exception ^> ^load_definitions(array<String ^,2> ^defs);
void run();
};
AND FOR TO DECORATE THIS TOPIC..some code of my cpp file:
this code creates a constructor invoker by parameter sign
inline Exception ^object::builder(ConstructorInfo ^target, array<Type^> ^args)
{
try
{
DynamicMethod ^dm=gcnew DynamicMethod(
"dyna_method_by_totem_motorist",
Object::typeid,
args,
target->DeclaringType);
ILGenerator ^il=dm->GetILGenerator();
il->Emit(OpCodes::Ldarg_0);
il->Emit(OpCodes::Call,Object::typeid->GetConstructor(Type::EmptyTypes)); //invoca a constructor base
il->Emit(OpCodes::Ldarg_0);
il->Emit(OpCodes::Ldarg_1);
il->Emit(OpCodes::Newobj, target); //NewObj crea el objeto e invoca al constructor definido en target
il->Emit(OpCodes::Ret);
method_handler=(method_invoker ^) dm->CreateDelegate(method_invoker::typeid);
}
catch (Exception ^e)
{
return e;
}
return nullptr;
}
This code attach an any handler function (static or not) for to deal with a callback raised by matching of a input string
Delegate ^connection_point::hook(String ^receiver_namespace,String ^receiver_class_name, String ^handler_name)
{
Delegate ^d=nullptr;
if(connection_point::waitfor_hook<=m_state) // si es 0,1,2 o mas => intenta hookear
{
try
{
Type ^tmp=meta::_class(receiver_namespace+"."+receiver_class_name);
m_handler=tmp->GetMethod(handler_name);
m_receiver_object=Activator::CreateInstance(tmp,false);
d=m_handler->IsStatic?
Delegate::CreateDelegate(m_tdelegate,m_handler):
Delegate::CreateDelegate(m_tdelegate,m_receiver_object,m_handler);
m_add_handler=m_connection_point->GetAddMethod();
array<Object^> ^add_handler_args={d};
m_add_handler->Invoke(m_publisher_object, add_handler_args);
++m_state;
m_exception_flag=false;
}
catch(Exception ^e)
{
m_exception_flag=true;
throw gcnew Exception(e->ToString()) ;
}
}
return d;
}
finally the code that call the lexer engine:
array<String ^,2> ^defs=gcnew array<String^,2> {/* shortID pattern namespc clase fun*/
{"LETRAS", "[A-Za-z]+" ,"prueba", "manejador", "procesa_directriz"},
{"INTS", "[0-9]+" ,"prueba", "manejador", "procesa_comentario"},
{"REM", "--[^\\n]*" ,"prueba", "manejador", "nullptr"}
}; //[3,5]
//USO EL IDENTIFICADOR ESPECIAL "nullptr" para que el sistema asigne el proceso del evento a un default que realice nada
fasterlex_engine ^lex=gcnew fasterlex_engine();
Dictionary<String ^,Exception ^> ^map_error_list=lex->load_definitions(defs);
lex->run();
The problem has nothing to do with regular expressions - you'd have the same problem with a dictionary with keys as functions of lambdas. So the problem you face is figuring is there a way of classifying your functions to figure which will return true or not and that isn't a search problem because f(x) is not known in general before hand.
Distributed programming or caching answer sets assuming there are common values of x may help.
-- DM

Categories

Resources