Adding borders to an image using python - python

I have a large number of images of a fixed size (say 500*500). I want to write a python script which will resize them to a fixed size (say 800*800) but will keep the original image at the center and fill the excess area with a fixed color (say black).
I am using PIL. I can resize the image using the resize function now, but that changes the aspect ratio. Is there any way to do this?

You can create a new image with the desired new size, and paste the old image in the center, then saving it. If you want, you can overwrite the original image (are you sure? ;o)
import Image
old_im = Image.open('someimage.jpg')
old_size = old_im.size
new_size = (800, 800)
new_im = Image.new("RGB", new_size) ## luckily, this is already black!
box = tuple((n - o) // 2 for n, o in zip(new_size, old_size))
new_im.paste(old_im, box)
new_im.show()
# new_im.save('someimage.jpg')
You can also set the color of the new border with a third argument of Image.new() (for example: Image.new("RGB", new_size, "White"))

Yes, there is.
Make something like this:
from PIL import Image, ImageOps
ImageOps.expand(Image.open('original-image.png'),border=300,fill='black').save('imaged-with-border.png')
You can write the same at several lines:
from PIL import Image, ImageOps
img = Image.open('original-image.png')
img_with_border = ImageOps.expand(img,border=300,fill='black')
img_with_border.save('imaged-with-border.png')
And you say that you have a list of images. Then you must use a cycle to process all of them:
from PIL import Image, ImageOps
for i in list-of-images:
img = Image.open(i)
img_with_border = ImageOps.expand(img,border=300,fill='black')
img_with_border.save('bordered-%s' % i)

Alternatively, if you are using OpenCV, they have a function called copyMakeBorder that allows you to add padding to any of the sides of an image. Beyond solid colors, they've also got some cool options for fancy borders like reflecting or extending the image.
import cv2
img = cv2.imread('image.jpg')
color = [101, 52, 152] # 'cause purple!
# border widths; I set them all to 150
top, bottom, left, right = [150]*4
img_with_border = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
Sources: OpenCV border tutorial and
OpenCV 3.1.0 Docs for copyMakeBorder

PIL's crop method can actually handle this for you by using numbers that are outside the bounding box of the original image, though it's not explicitly stated in the documentation. Negative numbers for left and top will add black pixels to those edges, while numbers greater than the original width and height for right and bottom will add black pixels to those edges.
This code accounts for odd pixel sizes:
from PIL import Image
with Image.open('/path/to/image.gif') as im:
old_size = im.size
new_size = (800, 800)
if new_size > old_size:
# Set number of pixels to expand to the left, top, right,
# and bottom, making sure to account for even or odd numbers
if old_size[0] % 2 == 0:
add_left = add_right = (new_size[0] - old_size[0]) // 2
else:
add_left = (new_size[0] - old_size[0]) // 2
add_right = ((new_size[0] - old_size[0]) // 2) + 1
if old_size[1] % 2 == 0:
add_top = add_bottom = (new_size[1] - old_size[1]) // 2
else:
add_top = (new_size[1] - old_size[1]) // 2
add_bottom = ((new_size[1] - old_size[1]) // 2) + 1
left = 0 - add_left
top = 0 - add_top
right = old_size[0] + add_right
bottom = old_size[1] + add_bottom
# By default, the added pixels are black
im = im.crop((left, top, right, bottom))
Instead of the 4-tuple, you could instead use a 2-tuple to add the same number of pixels on the left/right and top/bottom, or a 1-tuple to add the same number of pixels to all sides.

It is important to consider old dimension, new dimension and their difference here. If the difference is odd (not even), you will need to specify slightly different values for left, top, right and bottom borders.
Assume the old dimension is ow,oh and new one is nw,nh.
So, this would be the answer:
import Image, ImageOps
img = Image.open('original-image.png')
deltaw=nw-ow
deltah=nh-oh
ltrb_border=(deltaw/2,deltah/2,deltaw-(deltaw/2),deltah-(deltah/2))
img_with_border = ImageOps.expand(img,border=ltrb_border,fill='black')
img_with_border.save('imaged-with-border.png')

You can load the image with scipy.misc.imread as a numpy array. Then create an array with the desired background with numpy.zeros((height, width, channels)) and paste the image at the desired location:
import numpy as np
import scipy.misc
im = scipy.misc.imread('foo.jpg', mode='RGB')
height, width, channels = im.shape
# make canvas
im_bg = np.zeros((height, width, channels))
im_bg = (im_bg + 1) * 255 # e.g., make it white
# Your work: Compute where it should be
pad_left = ...
pad_top = ...
im_bg[pad_top:pad_top + height,
pad_left:pad_left + width,
:] = im
# im_bg is now the image with the background.

ximg = Image.open(qpath)
xwid,xhgt = func_ResizeImage(ximg)
qpanel_3 = tk.Frame(Body,width=xwid+10,height=xhgt+10,bg='white',bd=5)
ximg = ximg.resize((xwid,xhgt),Image.ANTIALIAS)
ximg = ImageTk.PhotoImage(ximg)
panel = tk.Label(qpanel_3,image=ximg)
panel.image = ximg
panel.grid(row = 2)

from PIL import Image
from PIL import ImageOps
img = Image.open("dem.jpg").convert("RGB")
This part will add black borders at the sides (10% of width)
img_side = ImageOps.expand(img, border=(int(0.1*img.size[0]),0,int(0.1*img.size[0]),0), fill=(0,0,0))
img_side.save("sunset-sides.jpg")
This part will add black borders at the bottom & top (10% of height)
img_updown = ImageOps.expand(img, border=(0,int(0.1*img.size[1]),0,int(0.1*img.size[1])), fill=(0,0,0))
img_updown.save("sunset-top_bottom.jpg")
This part will add black borders at the bottom,top & sides (10% of height-width)
img_updown_side = ImageOps.expand(img, border=(int(0.1*img.size[0]),int(0.1*img.size[1]),int(0.1*img.size[0]),int(0.1*img.size[1])), fill=(0,0,0))
img_updown_side.save("sunset-all_sides.jpg")
img.close()
img_side.close()
img_updown.close()
img_updown_side.close()

Related

Have padding white space between each image

In a previous question on the following link Concatenate muliple images with pillow in python, I got the following code that merges each four images together. The code is working very well and I appreciate that to #CrazyChucky
from pathlib import Path
from more_itertools import chunked
from PIL import Image
def concat_images(*images):
"""Generate composite of all supplied images."""
# Get the widest width.
width = max(image.width for image in images)
# Add up all the heights.
height = sum(image.height for image in images)
composite = Image.new('RGB', (width, height))
# Paste each image below the one before it.
y = 0
for image in images:
composite.paste(image, (0, y))
y += image.height
return composite
if __name__ == '__main__':
# Define the folder to operate on (currently set to the current
# working directory).
images_dir = Path('.')
# Define where to save the output (shown here, will be in `output`
# inside the images dir).
output_dir = images_dir / 'output'
# Create the output folder, if it doesn't already exist.
output_dir.mkdir(exist_ok=True)
# Iterate through the .png files in groups of four, using an index
# to name the resulting output.
png_paths = images_dir.glob('*.png')
for i, paths in enumerate(chunked(png_paths, 4), start=1):
images = [Image.open(path) for path in paths]
composite = concat_images(*images)
composite.save(output_dir / f'{i}.png')
My question is how to add padding white space between each image?
I have found this function that helps me a lot (I put it for others to make use of it)
def add_margin(pil_img, top, right, bottom, left, color):
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
This seems pretty clear. You just need to pad the height for the image.
def concat_images(*images):
"""Generate composite of all supplied images."""
# Get the widest width.
width = max(image.width for image in images)
# Add up all the heights.
padding = 10
height = sum(image.height+padding for image in images) - padding
composite = Image.new('RGB', (width, height))
# Paste each image below the one before it.
y = 0
for image in images:
composite.paste(image, (0, y))
y += image.height + padding
return composite

Crop image borders dynamically

How can I crop images that looks like this and save as 3 different images?
The issue is that images are different in size and non-proportional, so I want to make a code that dynamically cuts black borders but not the black part which is inside the picture.
Here is the desired outcome:
Below is the sample code I've made which works only for one specific image.
from PIL import Image
im = Image.open(r"image.jpg")
# Setting the points for cropped image1
# im1 = im.crop((left, top, right, bottom))
im1 = im.crop((...))
im2 = im.crop((...))
im3 = im.crop((...))
im1 = im1.save(r"image1.jpg")
im2 = im2.save(r"image2.jpg")
im3 = im3.save(r"image3.jpg")
Finally I've found the solution. Here is what I did:
from PIL import Image, ImageChops
def RemoveBlackBorders(img):
bg = Image.new(img.mode, img.size, img.getpixel((0,0)))
diff = ImageChops.difference(img, bg)
diff = ImageChops.add(diff, diff, 2.0, -100)
bbox = diff.getbbox()
if bbox:
return img.crop(bbox)
# Opens a image in RGB mode
im = Image.open(r"C:\Path\Image.jpg")
# removing borders
im = RemoveBlackBorders(im)
# getting midpoint from size
width, height = im.size
mwidth = width/2
# assign shape of figure from the midpoint
#crop((x,y of top left, x, y of bottom right))
im1 = im.crop((0, 0, mwidth-135, height))
im2 = im.crop((mwidth-78, 0, mwidth+84, height))
im3 = im.crop((mwidth+135, 0, width, height))
The function to remove borders I've found from here.
Although the solution is not completely dynamic, it still solves my problem with ~90% accuracy. But I believe there should be a more universal approach for this problem.
If the areas have always the same size and the same top and bottom coordinates the following should work:
The coordinates for the crops can be retrieved by calculating the sums per rows and per columns, then analyzing them.
import cv2
import numpy as np
im = cv2.imread(image_path)
sum_of_rows = np.sum(im, axis=(1,2))
sum_of_cols = np.sum(im, axis=(0,2))
The top and bottom can be calculated by calculating the sum for each row (each sum value being calculated R+G+B, the value should be zero for black). Then looking for the first value being different form zero and the last value being different than zero. Both indicating the top and bottom.
top = np.argmax(sum_of_rows > 0)
bottom = top + np.argmax(sum_of_rows[top:]==0)
The same can be done for the sum for each column, but here checking for multiple left and right values.

How to change the color of a pixel using PIL?

I was trying to change pixel of an image in python using this question. If mode is 0, it changes first pixel in top right corner of image to grey(#C8C8C8). But it doesn't change. There is not enough documentation about draw.point(). What is the problem with this code?
import random
from PIL import Image, ImageDraw
mode = 0
image = Image.open("dom.jpg")
draw = ImageDraw.Draw(image)
width = image.size[0]
height = image.size[1]
pix = image.load()
string = "kod"
n = 0
if (mode == 0):
draw.point((0, 0), (200, 200, 200))
if(mode == 1):
print(pix[0,0][0])
image.save("dom.jpg", "JPEG")
del draw
Is using PIL a must in your case? If not then consider using OpenCV (cv2) for altering particular pixels of image.
Code which alter (0,0) pixel to (200,200,200) looks following way in opencv:
import cv2
img = cv2.imread('yourimage.jpg')
height = img.shape[0]
width = img.shape[1]
img[0][0] = [200,200,200]
cv2.imwrite('newimage.bmp',img)
Note that this code saves image in .bmp format - cv2 can also write .jpg images, but as jpg is generally lossy format, some small details might be lost. Keep in mind that in cv2 [0][0] is left upper corner and first value is y-coordinate of pixel, while second is x-coordinate, additionally color are three values from 0 to 255 (inclusive) in BGR order rather than RGB.
For OpenCV tutorials, including installation see this.

Resize rectangular image to square, keeping ratio and fill background with black

I'm trying to resize a batch of grayscale images that are 256 x N pixels (N varies, but is always ≤256).
My intention is to downscale the images.
The resize would have to output a square (1:1) image, with:
resized image centered vertically
aspect ratio maintained
remaining pixels rendered black
Visually this would be the desired result:
I have tried creating a numpy zeroes matrix with the target size (e.g. 200 x 200) but have not been able to paste the resized image into its vertical center.
Any suggestions using cv2, PIL or numpy are welcome.
You can use Pillow to accomplish that:
Code:
from PIL import Image
def make_square(im, min_size=256, fill_color=(0, 0, 0, 0)):
x, y = im.size
size = max(min_size, x, y)
new_im = Image.new('RGBA', (size, size), fill_color)
new_im.paste(im, (int((size - x) / 2), int((size - y) / 2)))
return new_im
Test Code:
test_image = Image.open('hLarp.png')
new_image = make_square(test_image)
new_image.show()
For a white background you can do:
new_image = make_square(test_image, fill_color=(255, 255, 255, 0))
Result:
Here is a code that solve your question with OPENCV module (using NUMPY module too)
#Importing modules opencv + numpy
import cv2
import numpy as np
#Reading an image (you can use PNG or JPG)
img = cv2.imread("image.png")
#Getting the bigger side of the image
s = max(img.shape[0:2])
#Creating a dark square with NUMPY
f = np.zeros((s,s,3),np.uint8)
#Getting the centering position
ax,ay = (s - img.shape[1])//2,(s - img.shape[0])//2
#Pasting the 'image' in a centering position
f[ay:img.shape[0]+ay,ax:ax+img.shape[1]] = img
#Showing results (just in case)
cv2.imshow("IMG",f)
#A pause, waiting for any press in keyboard
cv2.waitKey(0)
#Saving the image
cv2.imwrite("img2square.png",f)
cv2.destroyAllWindows()
PIL.ImageOps.pad:
from PIL import Image, ImageOps
with Image.open('hLARP.png') as im:
im = ImageOps.pad(im, (200, 200), color='black')
im.save('result.png')
PIL has the thumbnail method which will scale keeping the aspect ratio. From there you just need to paste it centered onto your black background rectangle.
from PIL import Image
def black_background_thumbnail(path_to_image, thumbnail_size=(200,200)):
background = Image.new('RGBA', thumbnail_size, "black")
source_image = Image.open(path_to_image).convert("RGBA")
source_image.thumbnail(thumbnail_size)
(w, h) = source_image.size
background.paste(source_image, ((thumbnail_size[0] - w) / 2, (thumbnail_size[1] - h) / 2 ))
return background
if __name__ == '__main__':
img = black_background_thumbnail('hLARP.png')
img.save('tmp.jpg')
img.show()
from PIL import Image
def reshape(image):
'''
Reshapes the non-square image by pasting
it to the centre of a black canvas of size
n*n where n is the biggest dimension of
the non-square image.
'''
old_size = image.size
max_dimension, min_dimension = max(old_size), min(old_size)
desired_size = (max_dimension, max_dimension)
position = int(max_dimension/2) - int(min_dimension/2)
blank_image = Image.new("RGB", desired_size, color='black')
if image.height<image.width:
blank_image.paste(image, (0, position))
else:
blank_image.paste(image, (position, 0))
return blank_image
Behold! A greatly-overengineered version of #Stepeh Rauch's answer that contains an interactive element and accounts for odd-pixel padding.
Usage
# Note: PySide2 can also be replaced by PyQt5, PyQt6, PySide6
# Also note! Any of the above are >100MB
pip install utilitys pyside2 pillow
$ python <file.py> --help
usage: <file>.py [-h] [--folder FOLDER] [--ext EXT]
optional arguments:
-h, --help show this help message and exit
--folder FOLDER Folder of images allowed for viewing. Must have at least one image (default: .)
--ext EXT Image extension to look for (default: png)
$ python <file>.py --folder "./path/to/folder/of/your/image(s).png" --ext "jpg"
file.py contents
import argparse
from pathlib import Path
from typing import Tuple, Union, Any
import numpy as np
import pyqtgraph as pg
from PIL import Image
from utilitys import fns, widgets, RunOpts
def pad_to_size(
image: Image.Image,
size_wh: Union[int, Tuple[int, int]] = None,
fill_color: Any = 0,
**resize_kwargs,
) -> Image.Image:
"""
Keeps an image's aspect ratio by resizing until the largest side is constrained
by the specified output size. Then, the deficient dimension is padded until
the image is the specified size.
"""
if size_wh is None:
size_wh = max(image.size)
if isinstance(size_wh, int):
size_wh = (size_wh, size_wh)
im_size_wh = np.array(image.size)
ratios = im_size_wh / size_wh
# Resize until the largest side is constrained by the specified output size
im_size_wh = np.ceil(im_size_wh / ratios.max()).astype(int)
# Prefer 1-pixel difference in aspect ratio vs. odd padding
pad_amt = np.array(size_wh) - im_size_wh
use_ratio_idx = np.argmax(ratios)
unused_ratio_idx = 1 - use_ratio_idx
# Sanity check for floating point accuracy: At least one side must match
# user-requested dimension
if np.all(pad_amt != 0):
# Adjust dimension that is supposed to match
im_size_wh[use_ratio_idx] += pad_amt[use_ratio_idx]
# Prefer skewing aspect ratio by 1 pixel instead of odd padding
# If odd, 1 will be added. Otherwise, the dimension remains unchanged
im_size_wh[unused_ratio_idx] += pad_amt[unused_ratio_idx] % 2
image = image.resize(tuple(im_size_wh), **resize_kwargs)
new_im = Image.new("RGB", size_wh, fill_color)
width, height = image.size
new_im.paste(image, (int((size_wh[0] - width) / 2), int((size_wh[1] - height) / 2)))
return new_im
def main(folder=".", ext="png"):
"""
Parameters
----------
folder: str, Path
Folder of images allowed for viewing. Must have at least one image
ext: str, Path
Image extension to look for
"""
folder = Path(folder)
files = fns.naturalSorted(folder.glob(f"*.{ext}"))
err_msg = f"{folder} must have at least one image file with extension `{ext}`"
assert len(files), err_msg
pg.mkQApp()
viewer = widgets.ImageViewer()
def readim(file_index=0, try_pad=False, output_w=512, output_h=512):
if 0 > file_index > len(files):
return
image = Image.open(files[file_index])
if try_pad:
image = pad_to_size(image, (output_w, output_h), fill_color=(255, 255, 255))
viewer.setImage(np.array(image))
viewer.toolsEditor.registerFunc(readim, runOpts=RunOpts.ON_CHANGED)
wc = viewer.widgetContainer()
readim()
wc.show()
pg.exec()
if __name__ == "__main__":
# Print defaults in help signature
fmt = dict(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
cli = fns.makeCli(main, parserKwargs=fmt)
args = cli.parse_args()
main(**vars(args))

Make a thumbnail with PIL, enhanced way

I know there is a thumbnail method in PIL. What I want to make differently is how it resizes the original image. Assume I have a 300x360px vertical image. I want to resize it to a constrained box that is 150x100px horizontal image. So I need to find the smallest side of the original image, resize to it, and then crop the rest to the center from the largest side.
How can I do it?
from PIL import Image
width = 150
height = 100
infile = Image.open(in_filename)
im = infile.copy()
if im.size[0] >= im.size[1]:
im = im.resize((height * im.size[0]/im.size[1], height))
im = im.crop(((im.size[0] - width)/2, 0, (im.size[0] + width)/2, height))
else:
im = im.resize((width, width * im.size[1]/im.size[0]))
im = im.crop((0, (im.size[1] - height)/2, width, (im.size[1] + height)/2))
im.save(out_filename)
There might be a faster way to do this, but this should work.

Categories

Resources