I'm trying to write a decorator that provides method overloading functionality to python, similar to the one mentioned in PEP 3124.
The decorator I wrote works great for regular functions, but I can't get it to work for methods in a class.
Here is the decorator:
class Overload(object):
def __init__(self, default):
self.default_function = default
self.type_map = {}
self.pos = None
def __call__(self, *args, **kwargs):
print self
try:
if self.pos is None:
pos = kwargs.get("pos", 0)
else:
pos = self.pos
print args, kwargs
return self.type_map[type(args[pos])](*args, **kwargs)
except KeyError:
return self.default_function(*args, **kwargs)
except IndexError:
return self.default_function(*args, **kwargs)
def overload(self, *d_type):
def wrapper(f):
for dt in d_type:
self.type_map[dt] = f
return self
return wrapper
When I attempt to implement it like this:
class MyClass(object):
def __init__(self):
self.some_instance_var = 1
#Overload
def print_first_item(self, x):
return x[0], self.some_instance_var
#print_first_item.overload(str)
def print_first_item(self, x):
return x.split()[0], self.some_instance_var
I get a TypeError when I run it:
>>> m = MyClass()
>>> m.print_first_item(1)
<__main__.Overload object at 0x2> (1,) {}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "overload.py", line 17, in __call__
return self.default_function(*args, **kwargs)
TypeError: print_first_item() takes exactly 2 arguments (1 given)
>>>
My question is: How can I access the instance of MyClass (i.e. self) from within the decorated method?
Essentially, your Overload class needs a __get__ method:
def __get__(self, obj, cls):
# Called on access of MyClass.print_first_item.
# We return a wrapper which calls our
print "get", self, obj, cls
if obj is None:
# a function would do some checks here, but we leave that.
return self
else:
return lambda *a, **k: self(obj, *a, **k)
Why?
Well, you use your Overload object as a kind of function replacement. You want it, like a function, to represent itself in a method context with different signature.
Short explanation how method access works:
object.meth(1, 2)
gets translated to
object.__dict__['meth'].__get__(object, type(object))(1, 2)
A function's __get__() returns a method object which wraps the function by prepending the object to the parameter list (where it results in self):
realmethod = object.__dict__['meth'].__get__(object, type(object))
realmethod(1, 2)
where realmethod is a method object which knows the function to be called and the self to be given to it and calls the "real" function appropriately by transforming the call into
meth(object, 1, 2)
.
This behaviour we imitate in this new __get__ method.
as abarnert says as you are using a class as your decorator 'self' is an instance of Overload rather than MyClass as you hope/expect.
I couldn't find a simple solution. The best thing I could come up with is not using a class as a decorator and instead use a function but with a second argument with a default of a dictionary. Since this is an mutable type it will be the same dictionary every time the function is called. I use this to store my 'class variables'. The rests folows a similar pattern to your solution.
Example:
import inspect
def overload(funcOrType, map={}, type=None):
if not inspect.isclass(funcOrType):
# We have a function so we are dealing with "#overload"
if(type):
map[type] = funcOrType
else:
map['default_function'] = funcOrType
else:
def overloadWithType(func):
return overload(func, map, funcOrType)
return overloadWithType
def doOverload(*args, **kwargs):
for type in [t for t in map.keys() if t != 'default_function'] :
if isinstance(args[1], type): # Note args[0] is 'self' i.e. MyClass instance.
return map[type](*args, **kwargs)
return map['default_function'](*args, **kwargs)
return doOverload
Then:
from overload import *
class MyClass(object):
def __init__(self):
self.some_instance_var = 1
#overload
def print_first_item(self, x):
return x[0], self.some_instance_var
#overload(str)
def print_first_item(self, x):
return x.split()[0], self.some_instance_var
m = MyClass()
print (m.print_first_item(['a','b','c']))
print (m.print_first_item("One Two Three"))
Yeilds:
('a', 1)
('One', 1)
For reference, here is the working implementation, thanks to the detailed explanation by glglgl:
argtype_tuple = lambda args: tuple(type(a) for a in args)
class Overload(object):
def __init__(self, func):
self.default = func
self.map = {}
def __call__(self, *args, **kwargs):
key_tuple = argtype_tuple(args)
c_inst = kwargs.pop("c_inst", None)
if c_inst:
args = (c_inst,) + args
try:
return self.map[key_tuple](*args, **kwargs)
except KeyError:
return self.default(*args, **kwargs)
def __get__(self, obj, cls):
if obj:
return lambda *args, **kwargs: self(c_inst=obj, *args, **kwargs)
else:
return self
def overload(self, *types):
def wrapper(f):
for type_seq in types:
if type(type_seq) == tuple:
type_seq = tuple(type_seq)
else:
type_seq = (type_seq,)
self.map[type_seq] = f
return self
return wrapper
#Some tests/usage examples
class A(object):
#Overload
def print_first(self, x):
return x[0]
#print_first.overload(str)
def p_first(self, x):
return x.split()[0]
def __repr__(self):
return "class A Instance"
a = A()
assert a.print_first([1,2,3]) == 1
assert a.print_first("one two three") == "one"
#Overload
def flatten(seq):
return [seq]
#flatten.overload(list, tuple)
def flat(seq):
return sum((flatten(item) for item in seq), [])
assert flatten([1,2,[3,4]]) == [1,2,3,4]
assert flat([1,2,[3,4]]) == [1,2,3,4]
Related
This question already has answers here:
Decorating class methods - how to pass the instance to the decorator?
(3 answers)
Closed 2 years ago.
NOTE:
I've got a related question here:
How to access variables from a Class Decorator from within the method it's applied on?
I'm planning to write a fairly complicated decorator. Therefore, the decorator itself should be a class of its own. I know this is possible in Python (Python 3.8):
import functools
class MyDecoratorClass:
def __init__(self, func):
functools.update_wrapper(self, func)
self.func = func
def __call__(self, *args, **kwargs):
# do stuff before
retval = self.func(*args, **kwargs)
# do stuff after
return retval
#MyDecoratorClass
def foo():
print("foo")
Now my problem starts when I try to apply the decorator on a method instead of just a function - especially if it's a method from another class. Let me show you what I've tried:
1. Trial one: identity loss
The decorator MyDecoratorClass below doesn't (or shouldn't) do anything. It's just boilerplate code, ready to be put to use later on. The method foo() from class Foobar prints the object it is called on:
import functools
class MyDecoratorClass:
def __init__(self, method):
functools.update_wrapper(self, method)
self.method = method
def __call__(self, *args, **kwargs):
# do stuff before
retval = self.method(self, *args, **kwargs)
# do stuff after
return retval
class Foobar:
def __init__(self):
# initialize stuff
pass
#MyDecoratorClass
def foo(self):
print(f"foo() called on object {self}")
return
Now what you observe here is that the self in the foo() method gets swapped. It's no longer a Foobar() instance, but a MyDecoratorClass() instance instead:
>>> foobar = Foobar()
>>> foobar.foo()
foo() called from object <__main__.MyDecoratorClass object at 0x000002DAE0B77A60>
In other words, the method foo() loses its original identity. That brings us to the next trial.
2. Trial two: keep identity, but crash
I attempt to preserve the original identity of the foo() method:
import functools
class MyDecoratorClass:
def __init__(self, method):
functools.update_wrapper(self, method)
self.method = method
def __call__(self, *args, **kwargs):
# do stuff before
retval = self.method(self.method.__self__, *args, **kwargs)
# do stuff after
return retval
class Foobar:
def __init__(self):
# initialize stuff
pass
#MyDecoratorClass
def foo(self):
print(f"foo() called on object {self}")
return
Now let's test:
>>> foobar = Foobar()
>>> foobar.foo()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 7, in __call__
AttributeError: 'function' object has no attribute '__self__'
Yikes!
EDIT
Thank you #AlexHall and #juanpa.arrivillaga for your solutions. They both work. However, there is a subtle difference between them.
Let's first take a look at this one:
def __get__(self, obj, objtype) -> object:
temp = type(self)(self.method.__get__(obj, objtype))
print(temp)
return temp
I've introduced a temporary variable, just to print what __get__() returns. Each time you access the method foo(), this __get__() function returns a new MyDecoratorClass() instance:
>>> f = Foobar()
>>> func1 = f.foo
>>> func2 = f.foo
>>> print(func1 == func2)
>>> print(func1 is func2)
<__main__.MyDecoratorClass object at 0x000001B7E974D3A0>
<__main__.MyDecoratorClass object at 0x000001B7E96C5520>
False
False
The second approach (from #juanpa.arrivillaga) is different:
def __get__(self, obj, objtype) -> object:
temp = types.MethodType(self, obj)
print(temp)
return temp
The output:
>>> f = Foobar()
>>> func1 = f.foo
>>> func2 = f.foo
>>> print(func1 == func2)
>>> print(func1 is func2)
<bound method Foobar.foo of <__main__.Foobar object at 0x000002824BBEF4C0>>
<bound method Foobar.foo of <__main__.Foobar object at 0x000002824BBEF4C0>>
True
False
There is a subtle difference, but I'm not sure why.
Functions are descriptors and that's what allows them to auto-bind self. The easiest way to deal with this is to implement decorators using functions so that this is handled for you. Otherwise you need to explicitly invoke the descriptor. Here's one way:
import functools
class MyDecoratorClass:
def __init__(self, method):
functools.update_wrapper(self, method)
self.method = method
def __get__(self, instance, owner):
return type(self)(self.method.__get__(instance, owner))
def __call__(self, *args, **kwargs):
# do stuff before
retval = self.method(*args, **kwargs)
# do stuff after
return retval
class Foobar:
def __init__(self):
# initialize stuff
pass
#MyDecoratorClass
def foo(self, x, y):
print(f"{[self, x, y]=}")
#MyDecoratorClass
def bar(spam):
print(f"{[spam]=}")
Foobar().foo(1, 2)
bar(3)
Here the __get__ method creates a new instance of MyDecoratorClass with the bound method (previously self.method was just a function since no instance existed yet). Also note that __call__ just calls self.method(*args, **kwargs) - if self.method is now a bound method, the self of FooBar is already implied.
You can implement the descriptor protocol, an example of how functions do it (but in pure python) is available in the Descriptor HOWTO, translated to your case:
import functools
import types
class MyDecoratorClass:
def __init__(self, func):
functools.update_wrapper(self, func)
self.func = func
def __call__(self, *args, **kwargs):
# do stuff before
retval = self.func(*args, **kwargs)
# do stuff after
return retval
def __get__(self, obj, objtype=None):
if obj is None:
return self
return types.MethodType(self, obj)
Note, return types.MethodType(self, obj) is essentially equivalent to
return lambda *args, **kwargs : self.func(obj, *args, **kwargs)
Note from Kristof
Could it be that you meant this:
return types.MethodType(self, obj) is essentially equivalent to
return lambda *args, **kwargs : self(obj, *args, **kwargs)
Note that I replaced self.func(..) with self(..). I tried, and only this way I can ensure that the statements at # do stuff before and # do stuff after actually run.
How do I pass a class field to a decorator on a class method as an argument? What I want to do is something like:
class Client(object):
def __init__(self, url):
self.url = url
#check_authorization("some_attr", self.url)
def get(self):
do_work()
It complains that self does not exist for passing self.url to the decorator. Is there a way around this?
Yes. Instead of passing in the instance attribute at class definition time, check it at runtime:
def check_authorization(f):
def wrapper(*args):
print args[0].url
return f(*args)
return wrapper
class Client(object):
def __init__(self, url):
self.url = url
#check_authorization
def get(self):
print 'get'
>>> Client('http://www.google.com').get()
http://www.google.com
get
The decorator intercepts the method arguments; the first argument is the instance, so it reads the attribute off of that. You can pass in the attribute name as a string to the decorator and use getattr if you don't want to hardcode the attribute name:
def check_authorization(attribute):
def _check_authorization(f):
def wrapper(self, *args):
print getattr(self, attribute)
return f(self, *args)
return wrapper
return _check_authorization
A more concise example might be as follows:
#/usr/bin/env python3
from functools import wraps
def wrapper(method):
#wraps(method)
def _impl(self, *method_args, **method_kwargs):
method_output = method(self, *method_args, **method_kwargs)
return method_output + "!"
return _impl
class Foo:
#wrapper
def bar(self, word):
return word
f = Foo()
result = f.bar("kitty")
print(result)
Which will print:
kitty!
from re import search
from functools import wraps
def is_match(_lambda, pattern):
def wrapper(f):
#wraps(f)
def wrapped(self, *f_args, **f_kwargs):
if callable(_lambda) and search(pattern, (_lambda(self) or '')):
f(self, *f_args, **f_kwargs)
return wrapped
return wrapper
class MyTest(object):
def __init__(self):
self.name = 'foo'
self.surname = 'bar'
#is_match(lambda x: x.name, 'foo')
#is_match(lambda x: x.surname, 'foo')
def my_rule(self):
print 'my_rule : ok'
#is_match(lambda x: x.name, 'foo')
#is_match(lambda x: x.surname, 'bar')
def my_rule2(self):
print 'my_rule2 : ok'
test = MyTest()
test.my_rule()
test.my_rule2()
ouput:
my_rule2 : ok
Another option would be to abandon the syntactic sugar and decorate in the __init__ of the class.
def countdown(number):
def countdown_decorator(func):
def func_wrapper():
for index in reversed(range(1, number+1)):
print(index)
func()
return func_wrapper
return countdown_decorator
class MySuperClass():
def __init__(self, number):
self.number = number
self.do_thing = countdown(number)(self.do_thing)
def do_thing(self):
print('im doing stuff!')
myclass = MySuperClass(3)
myclass.do_thing()
which would print
3
2
1
im doing stuff!
I know this issue is quite old, but the below workaround hasn't been proposed before. The problem here is that you can't access self in a class block, but you can in a class method.
Let's create a dummy decorator to repeat a function some times.
import functools
def repeat(num_rep):
def decorator_repeat(func):
#functools.wraps(func)
def wrapper_repeat(*args, **kwargs):
for _ in range(num_rep):
value = func(*args, **kwargs)
return
return wrapper_repeat
return decorator_repeat
class A:
def __init__(self, times, name):
self.times = times
self.name = name
def get_name(self):
#repeat(num_rep=self.times)
def _get_name():
print(f'Hi {self.name}')
_get_name()
I know this is an old question, but this solution has not been mentioned yet, hopefully it may help someone even today, after 8 years.
So, what about wrapping a wrapper? Let's assume one cannot change the decorator neither decorate those methods in init (they may be #property decorated or whatever). There is always a possibility to create custom, class-specific decorator that will capture self and subsequently call the original decorator, passing runtime attribute to it.
Here is a working example (f-strings require python 3.6):
import functools
# imagine this is at some different place and cannot be changed
def check_authorization(some_attr, url):
def decorator(func):
#functools.wraps(func)
def wrapper(*args, **kwargs):
print(f"checking authorization for '{url}'...")
return func(*args, **kwargs)
return wrapper
return decorator
# another dummy function to make the example work
def do_work():
print("work is done...")
###################
# wrapped wrapper #
###################
def custom_check_authorization(some_attr):
def decorator(func):
# assuming this will be used only on this particular class
#functools.wraps(func)
def wrapper(self, *args, **kwargs):
# get url
url = self.url
# decorate function with original decorator, pass url
return check_authorization(some_attr, url)(func)(self, *args, **kwargs)
return wrapper
return decorator
#############################
# original example, updated #
#############################
class Client(object):
def __init__(self, url):
self.url = url
#custom_check_authorization("some_attr")
def get(self):
do_work()
# create object
client = Client(r"https://stackoverflow.com/questions/11731136/class-method-decorator-with-self-arguments")
# call decorated function
client.get()
output:
checking authorisation for 'https://stackoverflow.com/questions/11731136/class-method-decorator-with-self-arguments'...
work is done...
You can't. There's no self in the class body, because no instance exists. You'd need to pass it, say, a str containing the attribute name to lookup on the instance, which the returned function can then do, or use a different method entirely.
It will be very useful to have a general-purpose utility, that can turn any decorator for functions, into decorator for methods. I thought about it for an hour, and actually come up with one:
from typing import Callable
Decorator = Callable[[Callable], Callable]
def decorate_method(dec_for_function: Decorator) -> Decorator:
def dec_for_method(unbounded_method) -> Callable:
# here, `unbounded_method` will be a unbounded function, whose
# invokation must have its first arg as a valid `self`. When it
# return, it also must return an unbounded method.
def decorated_unbounded_method(self, *args, **kwargs):
#dec_for_function
def bounded_method(*args, **kwargs):
return unbounded_method(self, *args, **kwargs)
return bounded_method(*args, **kwargs)
return decorated_unbounded_method
return dec_for_method
The usage is:
# for any decorator (with or without arguments)
#some_decorator_with_arguments(1, 2, 3)
def xyz(...): ...
# use it on a method:
class ABC:
#decorate_method(some_decorator_with_arguments(1, 2, 3))
def xyz(self, ...): ...
Test:
def dec_for_add(fn):
"""This decorator expects a function: (x,y) -> int.
If you use it on a method (self, x, y) -> int, it will fail at runtime.
"""
print(f"decorating: {fn}")
def add_fn(x,y):
print(f"Adding {x} + {y} by using {fn}")
return fn(x,y)
return add_fn
#dec_for_add
def add(x,y):
return x+y
add(1,2) # OK!
class A:
#dec_for_add
def f(self, x, y):
# ensure `self` is still a valid instance
assert isinstance(self, A)
return x+y
# TypeError: add_fn() takes 2 positional arguments but 3 were given
# A().f(1,2)
class A:
#decorate_method(dec_for_add)
def f(self, x, y):
# ensure `self` is still a valid instance
assert isinstance(self, A)
return x+y
# Now works!!
A().f(1,2)
How do I pass a class field to a decorator on a class method as an argument? What I want to do is something like:
class Client(object):
def __init__(self, url):
self.url = url
#check_authorization("some_attr", self.url)
def get(self):
do_work()
It complains that self does not exist for passing self.url to the decorator. Is there a way around this?
Yes. Instead of passing in the instance attribute at class definition time, check it at runtime:
def check_authorization(f):
def wrapper(*args):
print args[0].url
return f(*args)
return wrapper
class Client(object):
def __init__(self, url):
self.url = url
#check_authorization
def get(self):
print 'get'
>>> Client('http://www.google.com').get()
http://www.google.com
get
The decorator intercepts the method arguments; the first argument is the instance, so it reads the attribute off of that. You can pass in the attribute name as a string to the decorator and use getattr if you don't want to hardcode the attribute name:
def check_authorization(attribute):
def _check_authorization(f):
def wrapper(self, *args):
print getattr(self, attribute)
return f(self, *args)
return wrapper
return _check_authorization
A more concise example might be as follows:
#/usr/bin/env python3
from functools import wraps
def wrapper(method):
#wraps(method)
def _impl(self, *method_args, **method_kwargs):
method_output = method(self, *method_args, **method_kwargs)
return method_output + "!"
return _impl
class Foo:
#wrapper
def bar(self, word):
return word
f = Foo()
result = f.bar("kitty")
print(result)
Which will print:
kitty!
from re import search
from functools import wraps
def is_match(_lambda, pattern):
def wrapper(f):
#wraps(f)
def wrapped(self, *f_args, **f_kwargs):
if callable(_lambda) and search(pattern, (_lambda(self) or '')):
f(self, *f_args, **f_kwargs)
return wrapped
return wrapper
class MyTest(object):
def __init__(self):
self.name = 'foo'
self.surname = 'bar'
#is_match(lambda x: x.name, 'foo')
#is_match(lambda x: x.surname, 'foo')
def my_rule(self):
print 'my_rule : ok'
#is_match(lambda x: x.name, 'foo')
#is_match(lambda x: x.surname, 'bar')
def my_rule2(self):
print 'my_rule2 : ok'
test = MyTest()
test.my_rule()
test.my_rule2()
ouput:
my_rule2 : ok
Another option would be to abandon the syntactic sugar and decorate in the __init__ of the class.
def countdown(number):
def countdown_decorator(func):
def func_wrapper():
for index in reversed(range(1, number+1)):
print(index)
func()
return func_wrapper
return countdown_decorator
class MySuperClass():
def __init__(self, number):
self.number = number
self.do_thing = countdown(number)(self.do_thing)
def do_thing(self):
print('im doing stuff!')
myclass = MySuperClass(3)
myclass.do_thing()
which would print
3
2
1
im doing stuff!
I know this issue is quite old, but the below workaround hasn't been proposed before. The problem here is that you can't access self in a class block, but you can in a class method.
Let's create a dummy decorator to repeat a function some times.
import functools
def repeat(num_rep):
def decorator_repeat(func):
#functools.wraps(func)
def wrapper_repeat(*args, **kwargs):
for _ in range(num_rep):
value = func(*args, **kwargs)
return
return wrapper_repeat
return decorator_repeat
class A:
def __init__(self, times, name):
self.times = times
self.name = name
def get_name(self):
#repeat(num_rep=self.times)
def _get_name():
print(f'Hi {self.name}')
_get_name()
I know this is an old question, but this solution has not been mentioned yet, hopefully it may help someone even today, after 8 years.
So, what about wrapping a wrapper? Let's assume one cannot change the decorator neither decorate those methods in init (they may be #property decorated or whatever). There is always a possibility to create custom, class-specific decorator that will capture self and subsequently call the original decorator, passing runtime attribute to it.
Here is a working example (f-strings require python 3.6):
import functools
# imagine this is at some different place and cannot be changed
def check_authorization(some_attr, url):
def decorator(func):
#functools.wraps(func)
def wrapper(*args, **kwargs):
print(f"checking authorization for '{url}'...")
return func(*args, **kwargs)
return wrapper
return decorator
# another dummy function to make the example work
def do_work():
print("work is done...")
###################
# wrapped wrapper #
###################
def custom_check_authorization(some_attr):
def decorator(func):
# assuming this will be used only on this particular class
#functools.wraps(func)
def wrapper(self, *args, **kwargs):
# get url
url = self.url
# decorate function with original decorator, pass url
return check_authorization(some_attr, url)(func)(self, *args, **kwargs)
return wrapper
return decorator
#############################
# original example, updated #
#############################
class Client(object):
def __init__(self, url):
self.url = url
#custom_check_authorization("some_attr")
def get(self):
do_work()
# create object
client = Client(r"https://stackoverflow.com/questions/11731136/class-method-decorator-with-self-arguments")
# call decorated function
client.get()
output:
checking authorisation for 'https://stackoverflow.com/questions/11731136/class-method-decorator-with-self-arguments'...
work is done...
You can't. There's no self in the class body, because no instance exists. You'd need to pass it, say, a str containing the attribute name to lookup on the instance, which the returned function can then do, or use a different method entirely.
It will be very useful to have a general-purpose utility, that can turn any decorator for functions, into decorator for methods. I thought about it for an hour, and actually come up with one:
from typing import Callable
Decorator = Callable[[Callable], Callable]
def decorate_method(dec_for_function: Decorator) -> Decorator:
def dec_for_method(unbounded_method) -> Callable:
# here, `unbounded_method` will be a unbounded function, whose
# invokation must have its first arg as a valid `self`. When it
# return, it also must return an unbounded method.
def decorated_unbounded_method(self, *args, **kwargs):
#dec_for_function
def bounded_method(*args, **kwargs):
return unbounded_method(self, *args, **kwargs)
return bounded_method(*args, **kwargs)
return decorated_unbounded_method
return dec_for_method
The usage is:
# for any decorator (with or without arguments)
#some_decorator_with_arguments(1, 2, 3)
def xyz(...): ...
# use it on a method:
class ABC:
#decorate_method(some_decorator_with_arguments(1, 2, 3))
def xyz(self, ...): ...
Test:
def dec_for_add(fn):
"""This decorator expects a function: (x,y) -> int.
If you use it on a method (self, x, y) -> int, it will fail at runtime.
"""
print(f"decorating: {fn}")
def add_fn(x,y):
print(f"Adding {x} + {y} by using {fn}")
return fn(x,y)
return add_fn
#dec_for_add
def add(x,y):
return x+y
add(1,2) # OK!
class A:
#dec_for_add
def f(self, x, y):
# ensure `self` is still a valid instance
assert isinstance(self, A)
return x+y
# TypeError: add_fn() takes 2 positional arguments but 3 were given
# A().f(1,2)
class A:
#decorate_method(dec_for_add)
def f(self, x, y):
# ensure `self` is still a valid instance
assert isinstance(self, A)
return x+y
# Now works!!
A().f(1,2)
How do I pass a class field to a decorator on a class method as an argument? What I want to do is something like:
class Client(object):
def __init__(self, url):
self.url = url
#check_authorization("some_attr", self.url)
def get(self):
do_work()
It complains that self does not exist for passing self.url to the decorator. Is there a way around this?
Yes. Instead of passing in the instance attribute at class definition time, check it at runtime:
def check_authorization(f):
def wrapper(*args):
print args[0].url
return f(*args)
return wrapper
class Client(object):
def __init__(self, url):
self.url = url
#check_authorization
def get(self):
print 'get'
>>> Client('http://www.google.com').get()
http://www.google.com
get
The decorator intercepts the method arguments; the first argument is the instance, so it reads the attribute off of that. You can pass in the attribute name as a string to the decorator and use getattr if you don't want to hardcode the attribute name:
def check_authorization(attribute):
def _check_authorization(f):
def wrapper(self, *args):
print getattr(self, attribute)
return f(self, *args)
return wrapper
return _check_authorization
A more concise example might be as follows:
#/usr/bin/env python3
from functools import wraps
def wrapper(method):
#wraps(method)
def _impl(self, *method_args, **method_kwargs):
method_output = method(self, *method_args, **method_kwargs)
return method_output + "!"
return _impl
class Foo:
#wrapper
def bar(self, word):
return word
f = Foo()
result = f.bar("kitty")
print(result)
Which will print:
kitty!
from re import search
from functools import wraps
def is_match(_lambda, pattern):
def wrapper(f):
#wraps(f)
def wrapped(self, *f_args, **f_kwargs):
if callable(_lambda) and search(pattern, (_lambda(self) or '')):
f(self, *f_args, **f_kwargs)
return wrapped
return wrapper
class MyTest(object):
def __init__(self):
self.name = 'foo'
self.surname = 'bar'
#is_match(lambda x: x.name, 'foo')
#is_match(lambda x: x.surname, 'foo')
def my_rule(self):
print 'my_rule : ok'
#is_match(lambda x: x.name, 'foo')
#is_match(lambda x: x.surname, 'bar')
def my_rule2(self):
print 'my_rule2 : ok'
test = MyTest()
test.my_rule()
test.my_rule2()
ouput:
my_rule2 : ok
Another option would be to abandon the syntactic sugar and decorate in the __init__ of the class.
def countdown(number):
def countdown_decorator(func):
def func_wrapper():
for index in reversed(range(1, number+1)):
print(index)
func()
return func_wrapper
return countdown_decorator
class MySuperClass():
def __init__(self, number):
self.number = number
self.do_thing = countdown(number)(self.do_thing)
def do_thing(self):
print('im doing stuff!')
myclass = MySuperClass(3)
myclass.do_thing()
which would print
3
2
1
im doing stuff!
I know this issue is quite old, but the below workaround hasn't been proposed before. The problem here is that you can't access self in a class block, but you can in a class method.
Let's create a dummy decorator to repeat a function some times.
import functools
def repeat(num_rep):
def decorator_repeat(func):
#functools.wraps(func)
def wrapper_repeat(*args, **kwargs):
for _ in range(num_rep):
value = func(*args, **kwargs)
return
return wrapper_repeat
return decorator_repeat
class A:
def __init__(self, times, name):
self.times = times
self.name = name
def get_name(self):
#repeat(num_rep=self.times)
def _get_name():
print(f'Hi {self.name}')
_get_name()
I know this is an old question, but this solution has not been mentioned yet, hopefully it may help someone even today, after 8 years.
So, what about wrapping a wrapper? Let's assume one cannot change the decorator neither decorate those methods in init (they may be #property decorated or whatever). There is always a possibility to create custom, class-specific decorator that will capture self and subsequently call the original decorator, passing runtime attribute to it.
Here is a working example (f-strings require python 3.6):
import functools
# imagine this is at some different place and cannot be changed
def check_authorization(some_attr, url):
def decorator(func):
#functools.wraps(func)
def wrapper(*args, **kwargs):
print(f"checking authorization for '{url}'...")
return func(*args, **kwargs)
return wrapper
return decorator
# another dummy function to make the example work
def do_work():
print("work is done...")
###################
# wrapped wrapper #
###################
def custom_check_authorization(some_attr):
def decorator(func):
# assuming this will be used only on this particular class
#functools.wraps(func)
def wrapper(self, *args, **kwargs):
# get url
url = self.url
# decorate function with original decorator, pass url
return check_authorization(some_attr, url)(func)(self, *args, **kwargs)
return wrapper
return decorator
#############################
# original example, updated #
#############################
class Client(object):
def __init__(self, url):
self.url = url
#custom_check_authorization("some_attr")
def get(self):
do_work()
# create object
client = Client(r"https://stackoverflow.com/questions/11731136/class-method-decorator-with-self-arguments")
# call decorated function
client.get()
output:
checking authorisation for 'https://stackoverflow.com/questions/11731136/class-method-decorator-with-self-arguments'...
work is done...
You can't. There's no self in the class body, because no instance exists. You'd need to pass it, say, a str containing the attribute name to lookup on the instance, which the returned function can then do, or use a different method entirely.
It will be very useful to have a general-purpose utility, that can turn any decorator for functions, into decorator for methods. I thought about it for an hour, and actually come up with one:
from typing import Callable
Decorator = Callable[[Callable], Callable]
def decorate_method(dec_for_function: Decorator) -> Decorator:
def dec_for_method(unbounded_method) -> Callable:
# here, `unbounded_method` will be a unbounded function, whose
# invokation must have its first arg as a valid `self`. When it
# return, it also must return an unbounded method.
def decorated_unbounded_method(self, *args, **kwargs):
#dec_for_function
def bounded_method(*args, **kwargs):
return unbounded_method(self, *args, **kwargs)
return bounded_method(*args, **kwargs)
return decorated_unbounded_method
return dec_for_method
The usage is:
# for any decorator (with or without arguments)
#some_decorator_with_arguments(1, 2, 3)
def xyz(...): ...
# use it on a method:
class ABC:
#decorate_method(some_decorator_with_arguments(1, 2, 3))
def xyz(self, ...): ...
Test:
def dec_for_add(fn):
"""This decorator expects a function: (x,y) -> int.
If you use it on a method (self, x, y) -> int, it will fail at runtime.
"""
print(f"decorating: {fn}")
def add_fn(x,y):
print(f"Adding {x} + {y} by using {fn}")
return fn(x,y)
return add_fn
#dec_for_add
def add(x,y):
return x+y
add(1,2) # OK!
class A:
#dec_for_add
def f(self, x, y):
# ensure `self` is still a valid instance
assert isinstance(self, A)
return x+y
# TypeError: add_fn() takes 2 positional arguments but 3 were given
# A().f(1,2)
class A:
#decorate_method(dec_for_add)
def f(self, x, y):
# ensure `self` is still a valid instance
assert isinstance(self, A)
return x+y
# Now works!!
A().f(1,2)
When defining a decorator using a class, how do I automatically transfer over__name__, __module__ and __doc__? Normally, I would use the #wraps decorator from functools. Here's what I did instead for a class (this is not entirely my code):
class memoized:
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
super().__init__()
self.func = func
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.func(*args)
self.cache[args] = value
return value
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.func(*args)
def __repr__(self):
return self.func.__repr__()
def __get__(self, obj, objtype):
return functools.partial(self.__call__, obj)
__doc__ = property(lambda self:self.func.__doc__)
__module__ = property(lambda self:self.func.__module__)
__name__ = property(lambda self:self.func.__name__)
Is there a standard decorator to automate the creation of name module and doc? Also, to automate the get method (I assume that's for creating bound methods?) Are there any missing methods?
Everyone seems to have missed the obvious solution. Using functools.update_wrapper:
>>> import functools
>>> class memoized(object):
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
self.func = func
self.cache = {}
functools.update_wrapper(self, func) ## TA-DA! ##
def __call__(self, *args):
pass # Not needed for this demo.
>>> #memoized
def fibonacci(n):
"""fibonacci docstring"""
pass # Not needed for this demo.
>>> fibonacci
<__main__.memoized object at 0x0156DE30>
>>> fibonacci.__name__
'fibonacci'
>>> fibonacci.__doc__
'fibonacci docstring'
I'm not aware of such things in stdlib, but we can create our own if we need to.
Something like this can work :
from functools import WRAPPER_ASSIGNMENTS
def class_wraps(cls):
"""Update a wrapper class `cls` to look like the wrapped."""
class Wrapper(cls):
"""New wrapper that will extend the wrapper `cls` to make it look like `wrapped`.
wrapped: Original function or class that is beign decorated.
assigned: A list of attribute to assign to the the wrapper, by default they are:
['__doc__', '__name__', '__module__', '__annotations__'].
"""
def __init__(self, wrapped, assigned=WRAPPER_ASSIGNMENTS):
self.__wrapped = wrapped
for attr in assigned:
setattr(self, attr, getattr(wrapped, attr))
super().__init__(wrapped)
def __repr__(self):
return repr(self.__wrapped)
return Wrapper
Usage:
#class_wraps
class memoized:
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
super().__init__()
self.func = func
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.func(*args)
self.cache[args] = value
return value
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.func(*args)
def __get__(self, obj, objtype):
return functools.partial(self.__call__, obj)
#memoized
def fibonacci(n):
"""fibonacci docstring"""
if n in (0, 1):
return n
return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci)
print("__doc__: ", fibonacci.__doc__)
print("__name__: ", fibonacci.__name__)
Output:
<function fibonacci at 0x14627c0>
__doc__: fibonacci docstring
__name__: fibonacci
EDIT:
And if you are wondering why this wasn't included in the stdlib is because you can
wrap your class decorator in a function decorator and use functools.wraps like this:
def wrapper(f):
memoize = memoized(f)
#functools.wraps(f)
def helper(*args, **kws):
return memoize(*args, **kws)
return helper
#wrapper
def fibonacci(n):
"""fibonacci docstring"""
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
Turns out there's a straightforward solution using functools.wraps itself:
import functools
def dec(cls):
#functools.wraps(cls, updated=())
class D(cls):
decorated = 1
return D
#dec
class C:
"""doc"""
print(f'{C.__name__=} {C.__doc__=} {C.__wrapped__=}')
$ python3 t.py
C.__name__='C' C.__doc__='doc' C.__wrapped__=<class '__main__.C'>
Note that updated=() is needed to prevent an attempt to update the class's __dict__ (this output is without updated=()):
$ python t.py
Traceback (most recent call last):
File "t.py", line 26, in <module>
class C:
File "t.py", line 20, in dec
class D(cls):
File "/usr/lib/python3.8/functools.py", line 57, in update_wrapper
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
AttributeError: 'mappingproxy' object has no attribute 'update'
I needed something that would wrap both classes and functions and wrote this:
def wrap_is_timeout(base):
'''Adds `.is_timeout=True` attribute to objects returned by `base()`.
When `base` is class, it returns a subclass with same name and adds read-only property.
Otherwise, it returns a function that sets `.is_timeout` attribute on result of `base()` call.
Wrappers make best effort to be transparent.
'''
if inspect.isclass(base):
class wrapped(base):
is_timeout = property(lambda _: True)
for k in functools.WRAPPER_ASSIGNMENTS:
v = getattr(base, k, _MISSING)
if v is not _MISSING:
try:
setattr(wrapped, k, v)
except AttributeError:
pass
return wrapped
#functools.wraps(base)
def fun(*args, **kwargs):
ex = base(*args, **kwargs)
ex.is_timeout = True
return ex
return fun
All we really need to do is modify the behavior of the decorator so that it is "hygienic", i.e. it is attribute-preserving.
#!/usr/bin/python3
def hygienic(decorator):
def new_decorator(original):
wrapped = decorator(original)
wrapped.__name__ = original.__name__
wrapped.__doc__ = original.__doc__
wrapped.__module__ = original.__module__
return wrapped
return new_decorator
This is ALL you need. In general. It doesn't preserve the signature, but if you really want that you can use a library to do that. I also went ahead and rewrote the memoization code so that it works on keyword arguments as well. Also there was a bug where failure to convert it to a hashable tuple would make it not work in 100% of cases.
Demo of rewritten memoized decorator with #hygienic modifying its behavior. memoized is now a function that wraps the original class, though you can (like the other answer) write a wrapping class instead, or even better, something which detects if it's a class and if so wraps the __init__ method.
#hygienic
class memoized:
def __init__(self, func):
self.func = func
self.cache = {}
def __call__(self, *args, **kw):
try:
key = (tuple(args), frozenset(kw.items()))
if not key in self.cache:
self.cache[key] = self.func(*args,**kw)
return self.cache[key]
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.func(*args,**kw)
In action:
#memoized
def f(a, b=5, *args, keyword=10):
"""Intact docstring!"""
print('f was called!')
return {'a':a, 'b':b, 'args':args, 'keyword':10}
x=f(0)
#OUTPUT: f was called!
print(x)
#OUTPUT: {'a': 0, 'b': 5, 'keyword': 10, 'args': ()}
y=f(0)
#NO OUTPUT - MEANS MEMOIZATION IS WORKING
print(y)
#OUTPUT: {'a': 0, 'b': 5, 'keyword': 10, 'args': ()}
print(f.__name__)
#OUTPUT: 'f'
print(f.__doc__)
#OUTPUT: 'Intact docstring!'
Another solution using inheritance:
import functools
import types
class CallableClassDecorator:
"""Base class that extracts attributes and assigns them to self.
By default the extracted attributes are:
['__doc__', '__name__', '__module__'].
"""
def __init__(self, wrapped, assigned=functools.WRAPPER_ASSIGNMENTS):
for attr in assigned:
setattr(self, attr, getattr(wrapped, attr))
super().__init__()
def __get__(self, obj, objtype):
return types.MethodType(self.__call__, obj)
And, usage:
class memoized(CallableClassDecorator):
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, function):
super().__init__(function)
self.function = function
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.function(*args)
self.cache[args] = value
return value
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.function(*args)