How should I append to small file-like objects in mongodb? - python

I need an interface to mongodb by which I can treat data in a collection like a standard python file-like object. These will be fairly small files (measured in kilobytes, at most) and in particular I need the ability to append to these so-called files. (So this question is not a dupe.)
I have read the GridFS documentation, and in particular it says I should not use it for small files. The only other implementations I've been able to find have all been PHP. I'm not really looking for help writing any specifics of the code, but implementing the entire file api seems a daunting task.
Are there any shortcuts or tools to make it easier to implement file-like objects in python 2?
Am I missing that someone has already done this?
(Why am I doing this? Because I received an eleventh-hour requirement that we deploy a pre-existing application that produces csv files on a multinode cloud environment that cannot transparently handle files.)

For question 1: check out the io module, and especially IOBase. It implements all of the file-likes in terms of a fairly sensible set of methods.

You could just store the data as binary, or text, in a MongoDB collection. But you'd have two problems:
You'd have to implement as much of the Python file protocol as your other code expects to have implemented.
When you append to the "file", the document would grow in MongoDB and possibly need to be moved on disk to a location with enough space to hold the larger document. Moving documents is expensive.
Go with GridFS -- the documentation discourages you from using for static files but for your case it's perfect because PyMongo has done the work for you of implementing Python's file protocol for MongoDB data. To append to a GridFS file you must read it, save a new version with the additional data, and delete the previous version. But this isn't much more expensive than moving a grown document anyway.

Related

Is there a good way to store a boolean array into a file or database in python?

I am building an image mosaic that detect if the user's selected area are taken or not.
My idea is to store the available_spots in a list, and I would just have to look through the list to check whether a spot is available or not.
The problem is that when I reload the website, avaliable_spots also gets reset to blank list,
so I want to store this array somewhere, that is fast to read and write to.
I am currently thinking about a text file to store this, but that might take forever to read since array length is over 1.4 million. Is there any other solutions that might be better?
You can't store the data in a file for a few reasons: (1) GAE standard won't let you, (2) the data is lost when your server is restarted, and (3) different instances will have different data.
Of course you can and should store the data in a database of your choice. Firestore is likely a better and cheaper option than SQL. It should be fast enough for you and you can implement caching if needed.
You might be able to store the data in a single Firestore entity and consider using compression if you are getting close to the max entity size.
If you want to store into a database you can use the "sqlite3" module.
Is a simple database that gets stored in a file so you dont have to install a database program. Is great for small projects.
If you want to do more complex stuff with databases you can use "sqlalchemy".

Pandas as fast data storage for Flask application

I'm impressed by the speed of running transformations, loading data and ease of use of Pandas and want to leverage all these nice properties (amongst others) to model some large-ish data sets (~100-200k rows, <20 columns). The aim is to work with the data on some computing nodes, but also to provide a view of the data sets in a browser via Flask.
I'm currently using a Postgres database to store the data, but the import (coming from csv files) of the data is slow, tedious and error prone and getting the data out of the database and processing it is not much easier. The data is never going to be changed once imported (no CRUD operations), so I thought it's ideal to store it as several pandas DataFrame (stored in hdf5 format and loaded via pytables).
The question is:
(1) Is this a good idea and what are the things to watch out for? (For instance I don't expect concurrency problems as DataFrames are (should?) be stateless and immutable (taken care of from application-side)). What else needs to be watched out for?
(2) How would I go about caching the data once it's loaded from the hdf5 file into a DataFrame, so it doesn't need to be loaded for every client request (at least the most recent/frequent dataframes). Flask (or werkzeug) has a SimpleCaching class, but, internally, it pickles the data and unpickles the cached data on access. I wonder if this is necessary in my specific case (assuming the cached object is immutable). Also, is such a simple caching method usable when the system gets deployed with Gunicorn (is it possible to have static data (the cache) and can concurrent (different process?) requests access the same cache?).
I realise these are many questions, but before I invest more time and build a proof-of-concept, I thought I get some feedback here. Any thoughts are welcome.
Answers to some aspects of what you're asking for:
It's not quite clear from your description whether you have the tables in your SQL database only, stored as HDF5 files or both. Something to look out for here is that if you use Python 2.x and create the files via pandas' HDFStore class, any strings will be pickled leading to fairly large files. You can also generate pandas DataFrame's directly from SQL queries using read_sql, for example.
If you don't need any relational operations then I would say ditch the postgre server, if it's already set up and you might need that in future keep using the SQL server. The nice thing about the server is that even if you don't expect concurrency issues, it will be handled automatically for you using (Flask-)SQLAlchemy causing you less headache. In general, if you ever expect to add more tables (files), it's less of an issue to have one central database server than maintaining multiple files lying around.
Whichever way you go, Flask-Cache will be your friend, using either a memcached or a redis backend. You can then cache/memoize the function that returns a prepared DataFrame from either SQL or HDF5 file. Importantly, it also let's you cache templates which may play a role in displaying large tables.
You could, of course, also generate a global variable, for example, where you create the Flask app and just import that wherever it's needed. I have not tried this and would thus not recommend it. It might cause all sorts of concurrency issues.

Read-only python shelve to store {key->value} on google-app-engine?

I'm implementing morphology module for my app on google-app-engine. To do this I need a key-value database that stores a lot of small objects. I also need to perform huge amount of queries. So, I consider shelve module to be perfect solution.
Unfortunately, google-app-engine doesn't allow to use any python built-in databases because it doesn't allow to write into local files. However, I don't need writing, but only reading.
Is there any implementation of read-only db that can be run under google-app-engine.
P.S. I don't consider using google app engine datastore for this purpose because of huge amount (but small sized) of stored objects and because of huge abount of queries.
If you only need a read-only db, then write the data into a file before you deploy your app. You can read from it with your program on appengine, just like you would read a template file. Write the data in sorted order and use a binary search to locate the key(s).
Another option is to put the key-value pairs into memcache. That's very fast and can handle a huge amount of queries.

A good blobstore / memcache solution

Setting up a data warehousing mining project on a Linux cloud server. The primary language is Python .
Would like to use this pattern for querying on data and storing data:
SQL Database - SQL database is used to query on data. However, the SQL database stores only fields that need to be searched on, it does NOT store the "blob" of data itself. Instead it stores a key that references that full "blob" of data in the a key-value Blobstore.
Blobstore - A key-value Blobstore is used to store actual "documents" or "blobs" of data.
The issue that we are having is that we would like more frequently accessed blobs of data to be automatically stored in RAM. We were planning to use Redis for this. However, we would like a solution that automatically tries to get the data out of RAM first, if it can't find it there, then it goes to the blobstore.
Is there a good library or ready-made solution for this that we can use without rolling our own? Also, any comments and criticisms about the proposed architecture would also be appreciated.
Thanks so much!
Rather than using Redis or Memcached for caching, plus a "blobstore" package to store things on disk, I would suggest to have a look at Couchbase Server which does exactly what you want (i.e. serving hot blobs from memory, but still storing them to disk).
In the company I work for, we commonly use the pattern you described (i.e. indexing in a relational database, plus blob storage) for our archiving servers (terabytes of data). It works well when the I/O done to write the blobs are kept sequential. The blobs are never rewritten, but simply appended at the end of a file (it is fine for an archiving application).
The same approach has been also used by others. For instance:
Bitcask (used in Riak): http://downloads.basho.com/papers/bitcask-intro.pdf
Eblob (used in Elliptics project): http://doc.ioremap.net/eblob:eblob
Any SQL database will work for the first part. The Blobstore could also be obtained, essentially, "off the shelf" by using cbfs. This is a new project, built on top of couchbase 2.0, but it seems to be in pretty active development.
CouchBase already tries to serve results out of RAM cache before checking disk, and is fully distributed to support large data sets.
CBFS puts a filesystem on top of that, and already there is a FUSE module written for it.
Since fileststems are effectively the lowest-common-denominator, it should be really easy for you to access it from python, and would reduce the amount of custom code you need to write.
Blog post:
http://dustin.github.com/2012/09/27/cbfs.html
Project Repository:
https://github.com/couchbaselabs/cbfs

Memory usage of file versus database for simple data storage

I'm writing the server for a Javascript app that has a syncing feature. Files and directories being created and modified by the client need to be synced to the server (the same changes made on the client need to be made on the server, including deletes).
Since every file is on the server, I'm debating the need for a MySQL database entry corresponding to each file. The following information needs to be kept on each file/directory for every user:
Whether it was deleted or not (since deletes need to be synced to other clients)
The timestamp of when every file was last modified (so I know whether the file needs updating by the client or not)
I could keep both of those pieces of information in files (e.g. .deleted file and .modified file in every user's directory containing file paths + timestamps in the latter) or in the database.
However, I also have to fit under an 80mb memory constraint. Between file storage and
database storage, which would be more memory-efficient for this purpose?
Edit: Files have to be stored on the filesystem (not in a database), and users have a quota for the storage space they can use.
Probably the filesystem variant will be more efficient memory wise as long as the number of files is low, but that solution probably won't scale. Databases are optimized to do exactly that. Searching the filesystem, opening the file, searching the document, will be expensive as the number of files and requests increase.
But nobody says you have to use MySQl. A NoSQL database like Redis, or maybe something like CouchDB (where you could keep the file itself and include versioning) might be solutions that are more attractive.
here a quick comparison of NoSQL databases.
And a longer comparison.
Edit: From your comments, I would build it as follows: create an API abstracting the backend for all the operations you want to do. Then implement the backend part with the 2 or 3 operations that happen most, or could be more expensive, for the filesytem, and for a database (or two). Test and benchmark.
I'd go for one of the NoSQL databases. You can store file contents and provide some key function based on user's IDs in order to retrieve those contents when you need them. Redis or Casandra can be good choices for this case. There are many libs to use these databases in Python as well as in many other languages.
In my opinion, the only real way to be sure is to build a test system and compare the space requirements. It shouldn't take that long to generate some random data programatically. One might think the file system would be more efficient, but databases can and might compress the data or deduplicate it, or whatever. Don't forget that a database would also make it easier to implement new features, perhaps access control.

Categories

Resources