Python - start two processes to run indefinitely - python

I have a simple example script constructed that defines three separate processes using multiprocessing in python. My objective is to have one parent thread that spawns two smaller threads that will collect and process data.
Currently, my implementation looks like this:
from Queue import Queue,Empty
from multiprocessing import Process
import time
import hashlib
class FillQueue(Process):
def __init__(self,q):
Process.__init__(self)
self.q = q
def run(self):
i = 0
while i is not 5:
print 'putting'
self.q.put('foo')
i+=1
self.q.put('|STOP|')
class ConsumeQueue(Process):
def __init__(self,q):
Process.__init__(self)
self.q = q
def run(self):
print 'Consume'
while True:
try:
value = self.q.get(False)
print value
if value == '|STOP|':
print 'done'
break;
except Empty:
print 'Nothing to process atm'
class Ripper(Process):
q = Queue()
def __init__(self):
self.fq = FillQueue(self.q)
self.cq = ConsumeQueue(self.q)
self.fq.daemon = True
self.cq.daemon = True
def run(self):
try:
self.fq.start()
self.cq.start()
except KeyboardInterrupt:
print 'exit'
if __name__ == '__main__':
r = Ripper()
r.start()
As it runs presently, the output from the script on CLI looks like this:
putting
putting
putting
putting
putting
Consume
foo
foo
foo
foo
foo
|STOP|
done
Obviously, the way I am starting my two threads is blocking, since the consumer doesn't even begin to process the items in the queue until the filler finishes adding items.
How should I rewrite this to make both threads begin immediately and not block, so the consumer will simply pass to the Empty except block while there is no work to process, but will exit completely when it receives the stop message?
EDIT: typo, had the start and run methods mixed up

You seem to be starting multiple processes using multiprocessing.Process.
However, you are using Queue.Queue which is only threadsafe, and not designed to be used by multiple processes.
shevek's answer is valid as well, but as a start, you should replace Queue.Queue with multiprocessing.Queue.

try this:
from Queue import Empty
from multiprocessing import Process, Queue
import time
import hashlib
class FillQueue(object):
def __init__(self, q):
self.q = q
def run(self):
i = 0
while i < 5:
print 'putting'
self.q.put('foo %d' % i )
i+=1
time.sleep(.5)
self.q.put('|STOP|')
class ConsumeQueue(object):
def __init__(self, q):
self.q = q
def run(self):
while True:
try:
value = self.q.get(False)
print value
if value == '|STOP|':
print 'done'
break;
except Empty:
print 'Nothing to process atm'
time.sleep(.2)
if __name__ == '__main__':
q = Queue()
f = FillQueue(q)
c = ConsumeQueue(q)
p1 = Process(target=f.run)
p1.start()
p2 = Process(target=c.run)
p2.start()
p1.join()
p2.join()

I think your program works fine. The CPU processes only one thing at a time, for a short time. However, the time required to put all your stuff in the queue is very short. So there is no reason that the filler cannot do this in one time slice.
If you add some delays in the filler, I think you should see that it actually works as you expect.

Related

Queue in multiprocessing blocked by threading.Timer

I need to transfer data from a subprocess to the main one.
The subprocess in doing a repetitive task using threading.timer
Whenever threading.timer is called, the queue does not work anymore.
The subprocess is acquiring data, while I want to display them in real-time in the main process.
I wrote this snippet to showcase the problem:
import threading
import multiprocessing
class MyClass():
def __init__(self, q):
self.q = q
print("put value in q: ", "start")
self.q.put("start")
self.i = 0
self.update()
def update(self):
if self.i < 3:
print("put value in q: ", self.i)
self.q.put(self.i)
self.i += 1
threading.Timer(0.5, self.update).start()
else:
self.stop()
def stop(self):
print("put value in q: ", "stop")
self.q.put("stop")
if __name__ == "__main__":
q = multiprocessing.Queue()
process = multiprocessing.Process(target = MyClass, args=(q,))
process.start()
process.join()
for i in range(5):
print("get value in q: ",q.get(block = True, timeout = 2))
and I get this only:
put value in q: start
put value in q: 0
put value in q: 1
put value in q: 2
put value in q: stop
get value in q: start
get value in q: 0
Is there a solution or a workaround?
You have process. It has main thread (MyClass() call). threading.Timer() spawns another thread along with main thread so you have to wait untill all additional threads are terminated before you stop process. So to solve the problem replace threading.Timer(0.5, self.update).start() with (wait for threads):
t = threading.Timer(0.5, self.update)
t.start()
t.join()
Or replace threading.Timer(0.5, self.update).start() with (no additional threads):
time.sleep(.5)
self.update()
Both solutions should work.

Using Parallel process to update object attributes in main process

I've been looking into the multiprocessing module to figure this out but I'm not entirely sure of all the components I need or how to structure them. The basic structure/logic that I'm trying to get goes something like this though:
import datetime
import time
import multiprocessing
class So_Classy():
def __init__(self):
self.value = 0
def update_values(self):
print('In the process doing stuff!')
while True:
self.value = self.value + 1
time.sleep(0.1)
print("Self.value = {self.value}")
def run(self):
# Constantly update old value to a new one
try:
if __name__ == '__main__':
p = multiprocessing.Process(target=self.update_values)
p.start()
print("Process started!")
except Exception as e:
print(str(e))
def get_result(self, arg):
return self.value*arg
##### MAIN PROGRAM #####
# Initialize process given certain parameters
sc = So_Classy()
# This spawns a process running an infinite while loop
sc.run()
one_second = datetime.datetime.now() + datetime.timedelta(seconds=1)
while True:
if datetime.datetime.now() > one_second:
# Pass an arg to sc and do a calc with it
print(sc.get_result(5))
one_second = datetime.datetime.now() + datetime.timedelta(seconds=1)
The run() function is making it through to the end without causing an exception but it doesn't appear to actually be entering the process. No idea why. :\
The real process I will be using will be computationally intensive so it has to run as a separate process.

Python 3 Limit count of active threads (finished threads do not quit)

I want to limit the number of active threads. What i have seen is, that a finished thread stays alive and does not exit itself, so the number of active threads keep growing until an error occours.
The following code starts only 8 threads at a time but they stay alive even when they finished. So the number keeps growing:
class ThreadEx(threading.Thread):
__thread_limiter = None
__max_threads = 2
#classmethod
def max_threads(cls, thread_max):
ThreadEx.__max_threads = thread_max
ThreadEx.__thread_limiter = threading.BoundedSemaphore(value=ThreadEx.__max_threads)
def __init__(self, target=None, args:tuple=()):
super().__init__(target=target, args=args)
if not ThreadEx.__thread_limiter:
ThreadEx.__thread_limiter = threading.BoundedSemaphore(value=ThreadEx.__max_threads)
def run(self):
ThreadEx.__thread_limiter.acquire()
try:
#success = self._target(*self._args)
#if success: return True
super().run()
except:
pass
finally:
ThreadEx.__thread_limiter.release()
def call_me(test1, test2):
print(test1 + test2)
time.sleep(1)
ThreadEx.max_threads(8)
for i in range(0, 99):
t = ThreadEx(target=call_me, args=("Thread count: ", str(threading.active_count())))
t.start()
Due to the for loop, the number of threads keep growing to 99.
I know that a thread has done its work because call_me has been executed and threading.active_count() was printed.
Does somebody know how i make sure, a finished thread does not stay alive?
This may be a silly answer but to me it looks you are trying to reinvent ThreadPool.
from multiprocessing.pool import ThreadPool
from time import sleep
p = ThreadPool(8)
def call_me(test1):
print(test1)
sleep(1)
for i in range(0, 99):
p.apply_async(call_me, args=(i,))
p.close()
p.join()
This will ensure only 8 concurrent threads are running your function at any point of time. And if you want a bit more performance, you can import Pool from multiprocessing and use that. The interface is exactly the same but your pool will now be subprocesses instead of threads, which usually gives a performance boost as GIL does not come in the way.
I have changed the class according to the help of Hannu.
I post it for reference, maybe it's useful for others that come across this post:
import threading
from multiprocessing.pool import ThreadPool
import time
class MultiThread():
__thread_pool = None
#classmethod
def begin(cls, max_threads):
MultiThread.__thread_pool = ThreadPool(max_threads)
#classmethod
def end(cls):
MultiThread.__thread_pool.close()
MultiThread.__thread_pool.join()
def __init__(self, target=None, args:tuple=()):
self.__target = target
self.__args = args
def run(self):
try:
result = MultiThread.__thread_pool.apply_async(self.__target, args=self.__args)
return result.get()
except:
pass
def call_me(test1, test2):
print(test1 + test2)
time.sleep(1)
return 0
MultiThread.begin(8)
for i in range(0, 99):
t = MultiThread(target=call_me, args=("Thread count: ", str(threading.active_count())))
t.run()
MultiThread.end()
The maximum of threads is 8 at any given time determined by the method begin.
And also the method run returns the result of your passed function if it returns something.
Hope that helps.

python - multiprocessing with queue

Here is my code below , I put string in queue , and hope dowork2 to do something work , and return char in shared_queue
but I always get nothing at while not shared_queue.empty()
please give me some point , thanks.
import time
import multiprocessing as mp
class Test(mp.Process):
def __init__(self, **kwargs):
mp.Process.__init__(self)
self.daemon = False
print('dosomething')
def run(self):
manager = mp.Manager()
queue = manager.Queue()
shared_queue = manager.Queue()
# shared_list = manager.list()
pool = mp.Pool()
results = []
results.append(pool.apply_async(self.dowork2,(queue,shared_queue)))
while True:
time.sleep(0.2)
t =time.time()
queue.put('abc')
queue.put('def')
l = ''
while not shared_queue.empty():
l = l + shared_queue.get()
print(l)
print( '%.4f' %(time.time()-t))
pool.close()
pool.join()
def dowork2(queue,shared_queue):
while True:
path = queue.get()
shared_queue.put(path[-1:])
if __name__ == '__main__':
t = Test()
t.start()
# t.join()
# t.run()
I managed to get it work by moving your dowork2 outside the class. If you declare dowork2 as a function before Test class and call it as
results.append(pool.apply_async(dowork2, (queue, shared_queue)))
it works as expected. I am not 100% sure but it probably goes wrong because your Test class is already subclassing Process. Now when your pool creates a subprocess and initialises the same class in the subprocess, something gets overridden somewhere.
Overall I wonder if Pool is really what you want to use here. Your worker seems to be in an infinite loop indicating you do not expect a return value from the worker, only the result in the return queue. If this is the case, you can remove Pool.
I also managed to get it work keeping your worker function within the class when I scrapped the Pool and replaced with another subprocess:
foo = mp.Process(group=None, target=self.dowork2, args=(queue, shared_queue))
foo.start()
# results.append(pool.apply_async(Test.dowork2, (queue, shared_queue)))
while True:
....
(you need to add self to your worker, though, or declare it as a static method:)
def dowork2(self, queue, shared_queue):

Python Multithreading - Schedule Queue

I don't know why I'm having such a problem with this, basically, I want to have a Queue that is constantly running during the program called "Worker" this then works, however, every 10 seconds or so.. Another method called "Process" comes in and processes the data. Let's assume the following, data is captured every 10 seconds.. (0, 1, 2, 3, ..... n) and then the "Proces" function receives this, processes the data, ends, and then the "Worker" goes back to work and does their job until the program has ended.
I have the following code:
import multiprocessing as mp
import time
DELAY_SIZE = 10
def Worker(q):
print "I'm working..."
def Process(q):
print "I'm processing.."
queue = mp.Queue(maxsize=DELAY_SIZE)
p = mp.Process(target=Worker, args=(queue,))
p.start()
while True:
d = queue.get()
time.sleep(10)
Process()
In this example, it would look like the following:
I'm working...
I'm working...
I'm working...
...
...
...
I'm working...
I'm processing...
I'm processing...
I'm processing...
...
...
I'm working..
I'm working..
Any ideas?
Here is an alternative way using threads:
import threading
import Queue
import time
class Worker(threading.Thread):
def __init__(self, q):
threading.Thread.__init__(self)
self._q = q
def run(self):
# here, worker does its job
# results are pushed to the shared queue
while True:
print 'I am working'
time.sleep(1)
result = time.time() # just an example
self._q.put(result)
def process(q):
while True:
if q.empty():
time.sleep(10)
print 'I am processing'
worker_result = q.get()
# do whatever you want with the result...
print " ", worker_result
if __name__ == '__main__':
shared_queue = Queue.Queue()
worker = Worker(shared_queue)
worker.start()
process(shared_queue)

Categories

Resources