Python None comparison: should I use "is" or ==? - python

My editor warns me when I compare my_var == None, but no warning when I use my_var is None.
I did a test in the Python shell and determined both are valid syntax, but my editor seems to be saying that my_var is None is preferred.
Is this the case, and if so, why?

Summary:
Use is when you want to check against an object's identity (e.g. checking to see if var is None). Use == when you want to check equality (e.g. Is var equal to 3?).
Explanation:
You can have custom classes where my_var == None will return True
e.g:
class Negator(object):
def __eq__(self,other):
return not other
thing = Negator()
print thing == None #True
print thing is None #False
is checks for object identity. There is only 1 object None, so when you do my_var is None, you're checking whether they actually are the same object (not just equivalent objects)
In other words, == is a check for equivalence (which is defined from object to object) whereas is checks for object identity:
lst = [1,2,3]
lst == lst[:] # This is True since the lists are "equivalent"
lst is lst[:] # This is False since they're actually different objects

is is generally preferred when comparing arbitrary objects to singletons like None because it is faster and more predictable. is always compares by object identity, whereas what == will do depends on the exact type of the operands and even on their ordering.
This recommendation is supported by PEP 8, which explicitly states that "comparisons to singletons like None should always be done with is or is not, never the equality operators."

PEP 8 defines that it is better to use the is operator when comparing singletons.

I recently encountered where this can go wrong.
import numpy as np
nparray = np.arange(4)
# Works
def foo_is(x=None):
if x is not None:
print(x[1])
foo_is()
foo_is(nparray)
# Code below raises
# ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
def foo_eq(x=None):
if x != None:
print(x[1])
foo_eq()
foo_eq(nparray)
I created a function that optionally takes a numpy array as argument and changes if it is included. If I test for its inclusion using inequality operators !=, this raises a ValueError (see code above). If I use is not none, the code works correctly.

A useful tidbit to add to people's understanding.
The reason that we check for identity with None is because Python only ever stores the value None in one place in memory, and every object which equals None has its value stored in this same location. There are a handful of "special values" which get this treatment, and None is just one of them.
But most values do not get this special treatment! For example, the float 1.25 can be stored in different locations in memory:
a = None
b = None
a is b
True
a = 1.25
b = 1.25
a is b
False
It just so happens that None is among the handful of values which are always stored in one place in memory. Another example is any integer between -5 and 256... since these integers are used often, they are always stored in memory, and every integer with that value is stored in the same place in your computer's memory! Try it out:
a = 256
b = 256
a is b
True
a = 257
b = 257
a is b
False
So you can think of None as being part of a special class of values which always have a constant memory address. That is why we can use is to check whether two variables are both None... it just checks whether the memory address is the same.
Edit: Joooeey makes the good point that which integers are stored in memory is specific to your python implementation, and the example of numbers from -5 to 256 is specific to CPython. If you don't know what you're running, it's probably CPython, which is the most common implementation. But for this reason (and others) it is better practice to compare equality between these numbers with a == 2 and not with a is 2. As for None, it is specified to be the sole instance of the NoneType type according to the Python Documentation itself, so regardless of implementation you can always compare it using a is None.

Another instance where "==" differs from "is". When you pull information from a database and check if a value exists, the result will be either a value or None.
Look at the if and else below. Only "is" works when the database returns "None". If you put == instead, the if statement won't work, it will go straight to else, even though the result is "None". Hopefully, I am making myself clear.
conn = sqlite3.connect('test.db')
c = conn.cursor()
row = itemID_box.get()
# pull data to be logged so that the deletion is recorded
query = "SELECT itemID, item, description FROM items WHERE itemID LIKE '%" + row + "%'"
c.execute(query)
result = c.fetchone()
if result is None:
# log the deletion in the app.log file
logging = logger('Error')
logging.info(f'The deletion of {row} failed.')
messagebox.showwarning("Warning", "The record number is invalid")
else:
# execute the deletion
c.execute("DELETE from items WHERE itemID = " + row)
itemID_box.delete(0, tk.END)
messagebox.showinfo("Warning", "The record has been deleted")
conn.commit()
conn.close()

Related

why same strings in python doesn't have same id? [duplicate]

Two string variables are set to the same value. s1 == s2 always returns True, but s1 is s2 sometimes returns False.
If I open my Python interpreter and do the same is comparison, it succeeds:
>>> s1 = 'text'
>>> s2 = 'text'
>>> s1 is s2
True
Why is this?
is is identity testing, and == is equality testing. What happens in your code would be emulated in the interpreter like this:
>>> a = 'pub'
>>> b = ''.join(['p', 'u', 'b'])
>>> a == b
True
>>> a is b
False
So, no wonder they're not the same, right?
In other words: a is b is the equivalent of id(a) == id(b)
Other answers here are correct: is is used for identity comparison, while == is used for equality comparison. Since what you care about is equality (the two strings should contain the same characters), in this case the is operator is simply wrong and you should be using == instead.
The reason is works interactively is that (most) string literals are interned by default. From Wikipedia:
Interned strings speed up string
comparisons, which are sometimes a
performance bottleneck in applications
(such as compilers and dynamic
programming language runtimes) that
rely heavily on hash tables with
string keys. Without interning,
checking that two different strings
are equal involves examining every
character of both strings. This is
slow for several reasons: it is
inherently O(n) in the length of the
strings; it typically requires reads
from several regions of memory, which
take time; and the reads fills up the
processor cache, meaning there is less
cache available for other needs. With
interned strings, a simple object
identity test suffices after the
original intern operation; this is
typically implemented as a pointer
equality test, normally just a single
machine instruction with no memory
reference at all.
So, when you have two string literals (words that are literally typed into your program source code, surrounded by quotation marks) in your program that have the same value, the Python compiler will automatically intern the strings, making them both stored at the same memory location. (Note that this doesn't always happen, and the rules for when this happens are quite convoluted, so please don't rely on this behavior in production code!)
Since in your interactive session both strings are actually stored in the same memory location, they have the same identity, so the is operator works as expected. But if you construct a string by some other method (even if that string contains exactly the same characters), then the string may be equal, but it is not the same string -- that is, it has a different identity, because it is stored in a different place in memory.
The is keyword is a test for object identity while == is a value comparison.
If you use is, the result will be true if and only if the object is the same object. However, == will be true any time the values of the object are the same.
One last thing to note is you may use the sys.intern function to ensure that you're getting a reference to the same string:
>>> from sys import intern
>>> a = intern('a')
>>> a2 = intern('a')
>>> a is a2
True
As pointed out in previous answers, you should not be using is to determine equality of strings. But this may be helpful to know if you have some kind of weird requirement to use is.
Note that the intern function used to be a built-in on Python 2, but it was moved to the sys module in Python 3.
is is identity testing and == is equality testing. This means is is a way to check whether two things are the same things, or just equivalent.
Say you've got a simple person object. If it is named 'Jack' and is '23' years old, it's equivalent to another 23-year-old Jack, but it's not the same person.
class Person(object):
def __init__(self, name, age):
self.name = name
self.age = age
def __eq__(self, other):
return self.name == other.name and self.age == other.age
jack1 = Person('Jack', 23)
jack2 = Person('Jack', 23)
jack1 == jack2 # True
jack1 is jack2 # False
They're the same age, but they're not the same instance of person. A string might be equivalent to another, but it's not the same object.
This is a side note, but in idiomatic Python, you will often see things like:
if x is None:
# Some clauses
This is safe, because there is guaranteed to be one instance of the Null Object (i.e., None).
If you're not sure what you're doing, use the '=='.
If you have a little more knowledge about it you can use 'is' for known objects like 'None'.
Otherwise, you'll end up wondering why things doesn't work and why this happens:
>>> a = 1
>>> b = 1
>>> b is a
True
>>> a = 6000
>>> b = 6000
>>> b is a
False
I'm not even sure if some things are guaranteed to stay the same between different Python versions/implementations.
From my limited experience with Python, is is used to compare two objects to see if they are the same object as opposed to two different objects with the same value. == is used to determine if the values are identical.
Here is a good example:
>>> s1 = u'public'
>>> s2 = 'public'
>>> s1 is s2
False
>>> s1 == s2
True
s1 is a Unicode string, and s2 is a normal string. They are not the same type, but they are the same value.
I think it has to do with the fact that, when the 'is' comparison evaluates to false, two distinct objects are used. If it evaluates to true, that means internally it's using the same exact object and not creating a new one, possibly because you created them within a fraction of 2 or so seconds and because there isn't a large time gap in between it's optimized and uses the same object.
This is why you should be using the equality operator ==, not is, to compare the value of a string object.
>>> s = 'one'
>>> s2 = 'two'
>>> s is s2
False
>>> s2 = s2.replace('two', 'one')
>>> s2
'one'
>>> s2 is s
False
>>>
In this example, I made s2, which was a different string object previously equal to 'one' but it is not the same object as s, because the interpreter did not use the same object as I did not initially assign it to 'one', if I had it would have made them the same object.
The == operator tests value equivalence. The is operator tests object identity, and Python tests whether the two are really the same object (i.e., live at the same address in memory).
>>> a = 'banana'
>>> b = 'banana'
>>> a is b
True
In this example, Python only created one string object, and both a and b refers to it. The reason is that Python internally caches and reuses some strings as an optimization. There really is just a string 'banana' in memory, shared by a and b. To trigger the normal behavior, you need to use longer strings:
>>> a = 'a longer banana'
>>> b = 'a longer banana'
>>> a == b, a is b
(True, False)
When you create two lists, you get two objects:
>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False
In this case we would say that the two lists are equivalent, because they have the same elements, but not identical, because they are not the same object. If two objects are identical, they are also equivalent, but if they are equivalent, they are not necessarily identical.
If a refers to an object and you assign b = a, then both variables refer to the same object:
>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True
Reference: Think Python 2e by Allen B. Downey
I believe that this is known as "interned" strings. Python does this, so does Java, and so do C and C++ when compiling in optimized modes.
If you use two identical strings, instead of wasting memory by creating two string objects, all interned strings with the same contents point to the same memory.
This results in the Python "is" operator returning True because two strings with the same contents are pointing at the same string object. This will also happen in Java and in C.
This is only useful for memory savings though. You cannot rely on it to test for string equality, because the various interpreters and compilers and JIT engines cannot always do it.
Actually, the is operator checks for identity and == operator checks for equality.
From the language reference:
Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for immutable types, operations that compute new values may actually return a reference to any existing object with the same type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1, a and b may or may not refer to the same object with the value one, depending on the implementation, but after c = []; d = [], c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object to both c and d.)
So from the above statement we can infer that the strings, which are immutable types, may fail when checked with "is" and may succeed when checked with "is".
The same applies for int and tuple which are also immutable types.
is will compare the memory location. It is used for object-level comparison.
== will compare the variables in the program. It is used for checking at a value level.
is checks for address level equivalence
== checks for value level equivalence
is is identity testing and == is equality testing (see the Python documentation).
In most cases, if a is b, then a == b. But there are exceptions, for example:
>>> nan = float('nan')
>>> nan is nan
True
>>> nan == nan
False
So, you can only use is for identity tests, never equality tests.
The basic concept, we have to be clear, while approaching this question, is to understand the difference between is and ==.
"is" is will compare the memory location. if id(a)==id(b), then a is b returns true else it returns false.
So, we can say that is is used for comparing memory locations. Whereas,
== is used for equality testing which means that it just compares only the resultant values. The below shown code may acts as an example to the above given theory.
Code
In the case of string literals (strings without getting assigned to variables), the memory address will be same as shown in the picture. so, id(a)==id(b). The remaining of this is self-explanatory.

I am getting SyntaxWarning: "is" with a literal. Did you mean "=="? [duplicate]

Two string variables are set to the same value. s1 == s2 always returns True, but s1 is s2 sometimes returns False.
If I open my Python interpreter and do the same is comparison, it succeeds:
>>> s1 = 'text'
>>> s2 = 'text'
>>> s1 is s2
True
Why is this?
is is identity testing, and == is equality testing. What happens in your code would be emulated in the interpreter like this:
>>> a = 'pub'
>>> b = ''.join(['p', 'u', 'b'])
>>> a == b
True
>>> a is b
False
So, no wonder they're not the same, right?
In other words: a is b is the equivalent of id(a) == id(b)
Other answers here are correct: is is used for identity comparison, while == is used for equality comparison. Since what you care about is equality (the two strings should contain the same characters), in this case the is operator is simply wrong and you should be using == instead.
The reason is works interactively is that (most) string literals are interned by default. From Wikipedia:
Interned strings speed up string
comparisons, which are sometimes a
performance bottleneck in applications
(such as compilers and dynamic
programming language runtimes) that
rely heavily on hash tables with
string keys. Without interning,
checking that two different strings
are equal involves examining every
character of both strings. This is
slow for several reasons: it is
inherently O(n) in the length of the
strings; it typically requires reads
from several regions of memory, which
take time; and the reads fills up the
processor cache, meaning there is less
cache available for other needs. With
interned strings, a simple object
identity test suffices after the
original intern operation; this is
typically implemented as a pointer
equality test, normally just a single
machine instruction with no memory
reference at all.
So, when you have two string literals (words that are literally typed into your program source code, surrounded by quotation marks) in your program that have the same value, the Python compiler will automatically intern the strings, making them both stored at the same memory location. (Note that this doesn't always happen, and the rules for when this happens are quite convoluted, so please don't rely on this behavior in production code!)
Since in your interactive session both strings are actually stored in the same memory location, they have the same identity, so the is operator works as expected. But if you construct a string by some other method (even if that string contains exactly the same characters), then the string may be equal, but it is not the same string -- that is, it has a different identity, because it is stored in a different place in memory.
The is keyword is a test for object identity while == is a value comparison.
If you use is, the result will be true if and only if the object is the same object. However, == will be true any time the values of the object are the same.
One last thing to note is you may use the sys.intern function to ensure that you're getting a reference to the same string:
>>> from sys import intern
>>> a = intern('a')
>>> a2 = intern('a')
>>> a is a2
True
As pointed out in previous answers, you should not be using is to determine equality of strings. But this may be helpful to know if you have some kind of weird requirement to use is.
Note that the intern function used to be a built-in on Python 2, but it was moved to the sys module in Python 3.
is is identity testing and == is equality testing. This means is is a way to check whether two things are the same things, or just equivalent.
Say you've got a simple person object. If it is named 'Jack' and is '23' years old, it's equivalent to another 23-year-old Jack, but it's not the same person.
class Person(object):
def __init__(self, name, age):
self.name = name
self.age = age
def __eq__(self, other):
return self.name == other.name and self.age == other.age
jack1 = Person('Jack', 23)
jack2 = Person('Jack', 23)
jack1 == jack2 # True
jack1 is jack2 # False
They're the same age, but they're not the same instance of person. A string might be equivalent to another, but it's not the same object.
This is a side note, but in idiomatic Python, you will often see things like:
if x is None:
# Some clauses
This is safe, because there is guaranteed to be one instance of the Null Object (i.e., None).
If you're not sure what you're doing, use the '=='.
If you have a little more knowledge about it you can use 'is' for known objects like 'None'.
Otherwise, you'll end up wondering why things doesn't work and why this happens:
>>> a = 1
>>> b = 1
>>> b is a
True
>>> a = 6000
>>> b = 6000
>>> b is a
False
I'm not even sure if some things are guaranteed to stay the same between different Python versions/implementations.
From my limited experience with Python, is is used to compare two objects to see if they are the same object as opposed to two different objects with the same value. == is used to determine if the values are identical.
Here is a good example:
>>> s1 = u'public'
>>> s2 = 'public'
>>> s1 is s2
False
>>> s1 == s2
True
s1 is a Unicode string, and s2 is a normal string. They are not the same type, but they are the same value.
I think it has to do with the fact that, when the 'is' comparison evaluates to false, two distinct objects are used. If it evaluates to true, that means internally it's using the same exact object and not creating a new one, possibly because you created them within a fraction of 2 or so seconds and because there isn't a large time gap in between it's optimized and uses the same object.
This is why you should be using the equality operator ==, not is, to compare the value of a string object.
>>> s = 'one'
>>> s2 = 'two'
>>> s is s2
False
>>> s2 = s2.replace('two', 'one')
>>> s2
'one'
>>> s2 is s
False
>>>
In this example, I made s2, which was a different string object previously equal to 'one' but it is not the same object as s, because the interpreter did not use the same object as I did not initially assign it to 'one', if I had it would have made them the same object.
The == operator tests value equivalence. The is operator tests object identity, and Python tests whether the two are really the same object (i.e., live at the same address in memory).
>>> a = 'banana'
>>> b = 'banana'
>>> a is b
True
In this example, Python only created one string object, and both a and b refers to it. The reason is that Python internally caches and reuses some strings as an optimization. There really is just a string 'banana' in memory, shared by a and b. To trigger the normal behavior, you need to use longer strings:
>>> a = 'a longer banana'
>>> b = 'a longer banana'
>>> a == b, a is b
(True, False)
When you create two lists, you get two objects:
>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False
In this case we would say that the two lists are equivalent, because they have the same elements, but not identical, because they are not the same object. If two objects are identical, they are also equivalent, but if they are equivalent, they are not necessarily identical.
If a refers to an object and you assign b = a, then both variables refer to the same object:
>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True
Reference: Think Python 2e by Allen B. Downey
I believe that this is known as "interned" strings. Python does this, so does Java, and so do C and C++ when compiling in optimized modes.
If you use two identical strings, instead of wasting memory by creating two string objects, all interned strings with the same contents point to the same memory.
This results in the Python "is" operator returning True because two strings with the same contents are pointing at the same string object. This will also happen in Java and in C.
This is only useful for memory savings though. You cannot rely on it to test for string equality, because the various interpreters and compilers and JIT engines cannot always do it.
Actually, the is operator checks for identity and == operator checks for equality.
From the language reference:
Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for immutable types, operations that compute new values may actually return a reference to any existing object with the same type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1, a and b may or may not refer to the same object with the value one, depending on the implementation, but after c = []; d = [], c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object to both c and d.)
So from the above statement we can infer that the strings, which are immutable types, may fail when checked with "is" and may succeed when checked with "is".
The same applies for int and tuple which are also immutable types.
is will compare the memory location. It is used for object-level comparison.
== will compare the variables in the program. It is used for checking at a value level.
is checks for address level equivalence
== checks for value level equivalence
is is identity testing and == is equality testing (see the Python documentation).
In most cases, if a is b, then a == b. But there are exceptions, for example:
>>> nan = float('nan')
>>> nan is nan
True
>>> nan == nan
False
So, you can only use is for identity tests, never equality tests.
The basic concept, we have to be clear, while approaching this question, is to understand the difference between is and ==.
"is" is will compare the memory location. if id(a)==id(b), then a is b returns true else it returns false.
So, we can say that is is used for comparing memory locations. Whereas,
== is used for equality testing which means that it just compares only the resultant values. The below shown code may acts as an example to the above given theory.
Code
In the case of string literals (strings without getting assigned to variables), the memory address will be same as shown in the picture. so, id(a)==id(b). The remaining of this is self-explanatory.

Can't compare strings with symbols? [duplicate]

Two string variables are set to the same value. s1 == s2 always returns True, but s1 is s2 sometimes returns False.
If I open my Python interpreter and do the same is comparison, it succeeds:
>>> s1 = 'text'
>>> s2 = 'text'
>>> s1 is s2
True
Why is this?
is is identity testing, and == is equality testing. What happens in your code would be emulated in the interpreter like this:
>>> a = 'pub'
>>> b = ''.join(['p', 'u', 'b'])
>>> a == b
True
>>> a is b
False
So, no wonder they're not the same, right?
In other words: a is b is the equivalent of id(a) == id(b)
Other answers here are correct: is is used for identity comparison, while == is used for equality comparison. Since what you care about is equality (the two strings should contain the same characters), in this case the is operator is simply wrong and you should be using == instead.
The reason is works interactively is that (most) string literals are interned by default. From Wikipedia:
Interned strings speed up string
comparisons, which are sometimes a
performance bottleneck in applications
(such as compilers and dynamic
programming language runtimes) that
rely heavily on hash tables with
string keys. Without interning,
checking that two different strings
are equal involves examining every
character of both strings. This is
slow for several reasons: it is
inherently O(n) in the length of the
strings; it typically requires reads
from several regions of memory, which
take time; and the reads fills up the
processor cache, meaning there is less
cache available for other needs. With
interned strings, a simple object
identity test suffices after the
original intern operation; this is
typically implemented as a pointer
equality test, normally just a single
machine instruction with no memory
reference at all.
So, when you have two string literals (words that are literally typed into your program source code, surrounded by quotation marks) in your program that have the same value, the Python compiler will automatically intern the strings, making them both stored at the same memory location. (Note that this doesn't always happen, and the rules for when this happens are quite convoluted, so please don't rely on this behavior in production code!)
Since in your interactive session both strings are actually stored in the same memory location, they have the same identity, so the is operator works as expected. But if you construct a string by some other method (even if that string contains exactly the same characters), then the string may be equal, but it is not the same string -- that is, it has a different identity, because it is stored in a different place in memory.
The is keyword is a test for object identity while == is a value comparison.
If you use is, the result will be true if and only if the object is the same object. However, == will be true any time the values of the object are the same.
One last thing to note is you may use the sys.intern function to ensure that you're getting a reference to the same string:
>>> from sys import intern
>>> a = intern('a')
>>> a2 = intern('a')
>>> a is a2
True
As pointed out in previous answers, you should not be using is to determine equality of strings. But this may be helpful to know if you have some kind of weird requirement to use is.
Note that the intern function used to be a built-in on Python 2, but it was moved to the sys module in Python 3.
is is identity testing and == is equality testing. This means is is a way to check whether two things are the same things, or just equivalent.
Say you've got a simple person object. If it is named 'Jack' and is '23' years old, it's equivalent to another 23-year-old Jack, but it's not the same person.
class Person(object):
def __init__(self, name, age):
self.name = name
self.age = age
def __eq__(self, other):
return self.name == other.name and self.age == other.age
jack1 = Person('Jack', 23)
jack2 = Person('Jack', 23)
jack1 == jack2 # True
jack1 is jack2 # False
They're the same age, but they're not the same instance of person. A string might be equivalent to another, but it's not the same object.
This is a side note, but in idiomatic Python, you will often see things like:
if x is None:
# Some clauses
This is safe, because there is guaranteed to be one instance of the Null Object (i.e., None).
If you're not sure what you're doing, use the '=='.
If you have a little more knowledge about it you can use 'is' for known objects like 'None'.
Otherwise, you'll end up wondering why things doesn't work and why this happens:
>>> a = 1
>>> b = 1
>>> b is a
True
>>> a = 6000
>>> b = 6000
>>> b is a
False
I'm not even sure if some things are guaranteed to stay the same between different Python versions/implementations.
From my limited experience with Python, is is used to compare two objects to see if they are the same object as opposed to two different objects with the same value. == is used to determine if the values are identical.
Here is a good example:
>>> s1 = u'public'
>>> s2 = 'public'
>>> s1 is s2
False
>>> s1 == s2
True
s1 is a Unicode string, and s2 is a normal string. They are not the same type, but they are the same value.
I think it has to do with the fact that, when the 'is' comparison evaluates to false, two distinct objects are used. If it evaluates to true, that means internally it's using the same exact object and not creating a new one, possibly because you created them within a fraction of 2 or so seconds and because there isn't a large time gap in between it's optimized and uses the same object.
This is why you should be using the equality operator ==, not is, to compare the value of a string object.
>>> s = 'one'
>>> s2 = 'two'
>>> s is s2
False
>>> s2 = s2.replace('two', 'one')
>>> s2
'one'
>>> s2 is s
False
>>>
In this example, I made s2, which was a different string object previously equal to 'one' but it is not the same object as s, because the interpreter did not use the same object as I did not initially assign it to 'one', if I had it would have made them the same object.
The == operator tests value equivalence. The is operator tests object identity, and Python tests whether the two are really the same object (i.e., live at the same address in memory).
>>> a = 'banana'
>>> b = 'banana'
>>> a is b
True
In this example, Python only created one string object, and both a and b refers to it. The reason is that Python internally caches and reuses some strings as an optimization. There really is just a string 'banana' in memory, shared by a and b. To trigger the normal behavior, you need to use longer strings:
>>> a = 'a longer banana'
>>> b = 'a longer banana'
>>> a == b, a is b
(True, False)
When you create two lists, you get two objects:
>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False
In this case we would say that the two lists are equivalent, because they have the same elements, but not identical, because they are not the same object. If two objects are identical, they are also equivalent, but if they are equivalent, they are not necessarily identical.
If a refers to an object and you assign b = a, then both variables refer to the same object:
>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True
Reference: Think Python 2e by Allen B. Downey
I believe that this is known as "interned" strings. Python does this, so does Java, and so do C and C++ when compiling in optimized modes.
If you use two identical strings, instead of wasting memory by creating two string objects, all interned strings with the same contents point to the same memory.
This results in the Python "is" operator returning True because two strings with the same contents are pointing at the same string object. This will also happen in Java and in C.
This is only useful for memory savings though. You cannot rely on it to test for string equality, because the various interpreters and compilers and JIT engines cannot always do it.
Actually, the is operator checks for identity and == operator checks for equality.
From the language reference:
Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for immutable types, operations that compute new values may actually return a reference to any existing object with the same type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1, a and b may or may not refer to the same object with the value one, depending on the implementation, but after c = []; d = [], c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object to both c and d.)
So from the above statement we can infer that the strings, which are immutable types, may fail when checked with "is" and may succeed when checked with "is".
The same applies for int and tuple which are also immutable types.
is will compare the memory location. It is used for object-level comparison.
== will compare the variables in the program. It is used for checking at a value level.
is checks for address level equivalence
== checks for value level equivalence
is is identity testing and == is equality testing (see the Python documentation).
In most cases, if a is b, then a == b. But there are exceptions, for example:
>>> nan = float('nan')
>>> nan is nan
True
>>> nan == nan
False
So, you can only use is for identity tests, never equality tests.
The basic concept, we have to be clear, while approaching this question, is to understand the difference between is and ==.
"is" is will compare the memory location. if id(a)==id(b), then a is b returns true else it returns false.
So, we can say that is is used for comparing memory locations. Whereas,
== is used for equality testing which means that it just compares only the resultant values. The below shown code may acts as an example to the above given theory.
Code
In the case of string literals (strings without getting assigned to variables), the memory address will be same as shown in the picture. so, id(a)==id(b). The remaining of this is self-explanatory.

python: compare sliced string to string with "is" equals False [duplicate]

Two string variables are set to the same value. s1 == s2 always returns True, but s1 is s2 sometimes returns False.
If I open my Python interpreter and do the same is comparison, it succeeds:
>>> s1 = 'text'
>>> s2 = 'text'
>>> s1 is s2
True
Why is this?
is is identity testing, and == is equality testing. What happens in your code would be emulated in the interpreter like this:
>>> a = 'pub'
>>> b = ''.join(['p', 'u', 'b'])
>>> a == b
True
>>> a is b
False
So, no wonder they're not the same, right?
In other words: a is b is the equivalent of id(a) == id(b)
Other answers here are correct: is is used for identity comparison, while == is used for equality comparison. Since what you care about is equality (the two strings should contain the same characters), in this case the is operator is simply wrong and you should be using == instead.
The reason is works interactively is that (most) string literals are interned by default. From Wikipedia:
Interned strings speed up string
comparisons, which are sometimes a
performance bottleneck in applications
(such as compilers and dynamic
programming language runtimes) that
rely heavily on hash tables with
string keys. Without interning,
checking that two different strings
are equal involves examining every
character of both strings. This is
slow for several reasons: it is
inherently O(n) in the length of the
strings; it typically requires reads
from several regions of memory, which
take time; and the reads fills up the
processor cache, meaning there is less
cache available for other needs. With
interned strings, a simple object
identity test suffices after the
original intern operation; this is
typically implemented as a pointer
equality test, normally just a single
machine instruction with no memory
reference at all.
So, when you have two string literals (words that are literally typed into your program source code, surrounded by quotation marks) in your program that have the same value, the Python compiler will automatically intern the strings, making them both stored at the same memory location. (Note that this doesn't always happen, and the rules for when this happens are quite convoluted, so please don't rely on this behavior in production code!)
Since in your interactive session both strings are actually stored in the same memory location, they have the same identity, so the is operator works as expected. But if you construct a string by some other method (even if that string contains exactly the same characters), then the string may be equal, but it is not the same string -- that is, it has a different identity, because it is stored in a different place in memory.
The is keyword is a test for object identity while == is a value comparison.
If you use is, the result will be true if and only if the object is the same object. However, == will be true any time the values of the object are the same.
One last thing to note is you may use the sys.intern function to ensure that you're getting a reference to the same string:
>>> from sys import intern
>>> a = intern('a')
>>> a2 = intern('a')
>>> a is a2
True
As pointed out in previous answers, you should not be using is to determine equality of strings. But this may be helpful to know if you have some kind of weird requirement to use is.
Note that the intern function used to be a built-in on Python 2, but it was moved to the sys module in Python 3.
is is identity testing and == is equality testing. This means is is a way to check whether two things are the same things, or just equivalent.
Say you've got a simple person object. If it is named 'Jack' and is '23' years old, it's equivalent to another 23-year-old Jack, but it's not the same person.
class Person(object):
def __init__(self, name, age):
self.name = name
self.age = age
def __eq__(self, other):
return self.name == other.name and self.age == other.age
jack1 = Person('Jack', 23)
jack2 = Person('Jack', 23)
jack1 == jack2 # True
jack1 is jack2 # False
They're the same age, but they're not the same instance of person. A string might be equivalent to another, but it's not the same object.
This is a side note, but in idiomatic Python, you will often see things like:
if x is None:
# Some clauses
This is safe, because there is guaranteed to be one instance of the Null Object (i.e., None).
If you're not sure what you're doing, use the '=='.
If you have a little more knowledge about it you can use 'is' for known objects like 'None'.
Otherwise, you'll end up wondering why things doesn't work and why this happens:
>>> a = 1
>>> b = 1
>>> b is a
True
>>> a = 6000
>>> b = 6000
>>> b is a
False
I'm not even sure if some things are guaranteed to stay the same between different Python versions/implementations.
From my limited experience with Python, is is used to compare two objects to see if they are the same object as opposed to two different objects with the same value. == is used to determine if the values are identical.
Here is a good example:
>>> s1 = u'public'
>>> s2 = 'public'
>>> s1 is s2
False
>>> s1 == s2
True
s1 is a Unicode string, and s2 is a normal string. They are not the same type, but they are the same value.
I think it has to do with the fact that, when the 'is' comparison evaluates to false, two distinct objects are used. If it evaluates to true, that means internally it's using the same exact object and not creating a new one, possibly because you created them within a fraction of 2 or so seconds and because there isn't a large time gap in between it's optimized and uses the same object.
This is why you should be using the equality operator ==, not is, to compare the value of a string object.
>>> s = 'one'
>>> s2 = 'two'
>>> s is s2
False
>>> s2 = s2.replace('two', 'one')
>>> s2
'one'
>>> s2 is s
False
>>>
In this example, I made s2, which was a different string object previously equal to 'one' but it is not the same object as s, because the interpreter did not use the same object as I did not initially assign it to 'one', if I had it would have made them the same object.
The == operator tests value equivalence. The is operator tests object identity, and Python tests whether the two are really the same object (i.e., live at the same address in memory).
>>> a = 'banana'
>>> b = 'banana'
>>> a is b
True
In this example, Python only created one string object, and both a and b refers to it. The reason is that Python internally caches and reuses some strings as an optimization. There really is just a string 'banana' in memory, shared by a and b. To trigger the normal behavior, you need to use longer strings:
>>> a = 'a longer banana'
>>> b = 'a longer banana'
>>> a == b, a is b
(True, False)
When you create two lists, you get two objects:
>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False
In this case we would say that the two lists are equivalent, because they have the same elements, but not identical, because they are not the same object. If two objects are identical, they are also equivalent, but if they are equivalent, they are not necessarily identical.
If a refers to an object and you assign b = a, then both variables refer to the same object:
>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True
Reference: Think Python 2e by Allen B. Downey
I believe that this is known as "interned" strings. Python does this, so does Java, and so do C and C++ when compiling in optimized modes.
If you use two identical strings, instead of wasting memory by creating two string objects, all interned strings with the same contents point to the same memory.
This results in the Python "is" operator returning True because two strings with the same contents are pointing at the same string object. This will also happen in Java and in C.
This is only useful for memory savings though. You cannot rely on it to test for string equality, because the various interpreters and compilers and JIT engines cannot always do it.
Actually, the is operator checks for identity and == operator checks for equality.
From the language reference:
Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for immutable types, operations that compute new values may actually return a reference to any existing object with the same type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1, a and b may or may not refer to the same object with the value one, depending on the implementation, but after c = []; d = [], c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object to both c and d.)
So from the above statement we can infer that the strings, which are immutable types, may fail when checked with "is" and may succeed when checked with "is".
The same applies for int and tuple which are also immutable types.
is will compare the memory location. It is used for object-level comparison.
== will compare the variables in the program. It is used for checking at a value level.
is checks for address level equivalence
== checks for value level equivalence
is is identity testing and == is equality testing (see the Python documentation).
In most cases, if a is b, then a == b. But there are exceptions, for example:
>>> nan = float('nan')
>>> nan is nan
True
>>> nan == nan
False
So, you can only use is for identity tests, never equality tests.
The basic concept, we have to be clear, while approaching this question, is to understand the difference between is and ==.
"is" is will compare the memory location. if id(a)==id(b), then a is b returns true else it returns false.
So, we can say that is is used for comparing memory locations. Whereas,
== is used for equality testing which means that it just compares only the resultant values. The below shown code may acts as an example to the above given theory.
Code
In the case of string literals (strings without getting assigned to variables), the memory address will be same as shown in the picture. so, id(a)==id(b). The remaining of this is self-explanatory.

When is the `==` operator not equivalent to the `is` operator? (Python)

I noticed I can use the == operator to compare all the native data types (integers, strings, booleans, floating point numbers etc) and also lists, tuples, sets and dictionaries which contain native data types. In these cases the == operator checks if two objects are equal. But in some other cases (trying to compare instances of classes I created) the == operator just checks if the two variables reference the same object (so in these cases the == operator is equivalent to the is operator)
My question is: When does the == operator do more than just comparing identities?
EDIT: I'm using Python 3
In Python, the == operator is implemented in terms of the magic method __eq__, which by default implements it by identity comparison. You can, however, override the method in order to provide your own concept of object equality. Note, that if you do so, you will usually also override at least __ne__ (which implements the != operator) and __hash__, which computes a hash code for the instance.
I found it very helpful, even in Python, to make my __eq__ implementations comply with the rules set out in the Java language for implementations of the equals method, namely:
It is reflexive: for any non-null reference value x, x.equals(x) should return true.
It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
For any non-null reference value x, x.equals(null) should return false.
the last one should probably replace null with None, but the rules are not as easy here in Python as in Java.
== and is are always conceptually distinct: the former delegates to the left-hand object's __eq__ [1], the latter always checks identity, without any delegation. What seems to be confusing you is that object.__eq__ (which gets inherited by default by user-coded classes that don't override it, of course!) is implemented in terms of identity (after all, a bare object has absolutely nothing to check except its identity, so what else could it possibly do?!-).
[1] omitting for simplicity the legacy concept of the __cmp__ method, which is just a marginal complication and changes nothing important in the paragraph's gist;-).
The == does more than comparing identity when ints are involved. It doesn't just check that the two ints are the same object; it actually ensures their values match. Consider:
>>> x=10000
>>> y=10000
>>> x==y,x is y
(True, False)
>>> del x
>>> del y
>>> x=10000
>>> y=x
>>> x==y,x is y
(True, True)
The "standard" Python implementation does some stuff behind the scenes for small ints, so when testing with small values you may get something different. Compare this to the equivalent 10000 case:
>>> del y
>>> del x
>>> x=1
>>> y=1
>>> x==y,x is y
(True, True)
What is maybe most important point is that recommendation is to always use:
if myvalue is None:
not
if myvalue == None:
And never to use:
if myvalue is True:
but use:
if myvalue:
This later point is not so supper clear to me as I think there is times to separate the boolean True from other True values like "Alex Martelli" , say there is not False in "Alex Martelli" (absolutely not, it even raises exception :) ) but there is '' in "Alex Martelli" (as is in any other string).

Categories

Resources