For a fixed integer n, I have a set of 2(n-1) simultaneous equations as follows.
M(p) = 1+((n-p-1)/n)*M(n-1) + (2/n)*N(p-1) + ((p-1)/n)*M(p-1)
N(p) = 1+((n-p-1)/n)*M(n-1) + (p/n)*N(p-1)
M(1) = 1+((n-2)/n)*M(n-1) + (2/n)*N(0)
N(0) = 1+((n-1)/n)*M(n-1)
M(p) is defined for 1 <= p <= n-1. N(p) is defined for 0 <= p <= n-2. Notice also that p is just a constant integer in every equation so the whole system is linear.
I have been using Maple but I would like to set these up and solve them in python now, maybe using numpy.linalg.solve (or any other better method). I actually only want the value of M(n-1). For example, when n=2 the answer should be M(1) = 4, I believe. This is because the equations become
M(1) = 1+(2/2)*N(0)
N(0) = 1 + (1/2)*M(1)
Therefore
M(1)/2 = 1+1
and so
M(1) = 4.
If I want to plug in n=50, say, how can you set up this system of simultaneous equations in python so that numpy.linalg.solve can solve them?
Update The answers are great but they use dense solvers where the system of equations is sparse. Posted follow up to Using scipy sparse matrices to solve system of equations .
Updated: added implementation using scipy.sparse
This gives the solution in the order N_max,...,N_0,M_max,...,M_1.
The linear system to solve is of the shape A dot x == const 1-vector.
x is the sought after solution vector.
Here I ordered the equations such that x is N_max,...,N_0,M_max,...,M_1.
Then I build up the A-coefficient matrix from 4 block matrices.
Here's a snapshot for the example case n=50 showing how you can derive the coefficient matrix and understand the block structure. The coefficient matrix A is light blue, the constant right side is orange. The sought after solution vector x is here light green and used to label the columns. The first column show from which of the above given eqs. the row (= eq.) has been derived:
As Jaime suggested, multiplying by n improves the code. This is not reflected in the spreadsheet above but has been implemented in the code below:
Implementation using numpy:
import numpy as np
import numpy.linalg as linalg
def solve(n):
# upper left block
n_to_M = -2. * np.eye(n-1)
# lower left block
n_to_N = (n * np.eye(n-1)) - np.diag(np.arange(n-2, 0, -1), 1)
# upper right block
m_to_M = n_to_N.copy()
m_to_M[1:, 0] = -np.arange(1, n-1)
# lower right block
m_to_N = np.zeros((n-1, n-1))
m_to_N[:,0] = -np.arange(1,n)
# build A, combine all blocks
coeff_mat = np.hstack(
(np.vstack((n_to_M, n_to_N)),
np.vstack((m_to_M, m_to_N))))
# const vector, right side of eq.
const = n * np.ones((2 * (n-1),1))
return linalg.solve(coeff_mat, const)
Solution using scipy.sparse:
from scipy.sparse import spdiags, lil_matrix, vstack, hstack
from scipy.sparse.linalg import spsolve
import numpy as np
def solve(n):
nrange = np.arange(n)
diag = np.ones(n-1)
# upper left block
n_to_M = spdiags(-2. * diag, 0, n-1, n-1)
# lower left block
n_to_N = spdiags([n * diag, -nrange[-1:0:-1]], [0, 1], n-1, n-1)
# upper right block
m_to_M = lil_matrix(n_to_N)
m_to_M[1:, 0] = -nrange[1:-1].reshape((n-2, 1))
# lower right block
m_to_N = lil_matrix((n-1, n-1))
m_to_N[:, 0] = -nrange[1:].reshape((n-1, 1))
# build A, combine all blocks
coeff_mat = hstack(
(vstack((n_to_M, n_to_N)),
vstack((m_to_M, m_to_N))))
# const vector, right side of eq.
const = n * np.ones((2 * (n-1),1))
return spsolve(coeff_mat.tocsr(), const).reshape((-1,1))
Example for n=4:
[[ 7.25 ]
[ 7.76315789]
[ 8.10526316]
[ 9.47368421] # <<< your result
[ 9.69736842]
[ 9.78947368]]
Example for n=10:
[[ 24.778976 ]
[ 25.85117842]
[ 26.65015984]
[ 27.26010007]
[ 27.73593401]
[ 28.11441922]
[ 28.42073207]
[ 28.67249606]
[ 28.88229939]
[ 30.98033266] # <<< your result
[ 31.28067182]
[ 31.44628982]
[ 31.53365219]
[ 31.57506477]
[ 31.58936225]
[ 31.58770694]
[ 31.57680467]
[ 31.560726 ]]
Here's an entirely different approach, using sympy. It's not fast, but it allows me to copy the RHS of your equations exactly, limiting the thinking I need to do (always a plus), and gives fractional answers.
from sympy import Integer, Symbol, Eq, solve
def build_equations(n):
ni = n
n = Integer(n)
Ms = {p: Symbol("M{}".format(p)) for p in range(ni)}
Ns = {p: Symbol("N{}".format(p)) for p in range(ni-1)}
M = lambda i: Ms[int(i)] if i >= 1 else 0
N = lambda i: Ns[int(i)]
M_eqs = {}
M_eqs[1] = Eq(M(1), 1+((n-2)/n)*M(n-1) + (2/n)*N(0))
for p in range(2, ni):
M_eqs[p] = Eq(M(p), 1+((n-p-1)/n)*M(n-1) + (2/n)*N(p-1) + ((p-1)/n)*M(p-1))
N_eqs = {}
N_eqs[0] = Eq(N(0), 1+((n-1)/n)*M(n-1))
for p in range(1, ni-1):
N_eqs[p] = Eq(N(p), 1+((n-p-1)/n)*M(n-1) + (p/n)*N(p-1))
return M_eqs.values() + N_eqs.values()
def solve_system(n, show=False):
eqs = build_equations(n)
sol = solve(eqs)
if show:
print 'equations:'
for eq in sorted(eqs):
print eq
print 'solution:'
for var, val in sorted(sol.items()):
print var, val, float(val)
return sol
which gives
>>> solve_system(2, True)
equations:
M1 == N0 + 1
N0 == M1/2 + 1
solution:
M1 4 4.0
N0 3 3.0
{M1: 4, N0: 3}
>>> solve_system(3, True)
equations:
M1 == M2/3 + 2*N0/3 + 1
M2 == M1/3 + 2*N1/3 + 1
N0 == 2*M2/3 + 1
N1 == M2/3 + N0/3 + 1
solution:
M1 34/5 6.8
M2 33/5 6.6
N0 27/5 5.4
N1 5 5.0
{M2: 33/5, M1: 34/5, N1: 5, N0: 27/5}
and
>>> solve_system(4, True)
equations:
M1 == M3/2 + N0/2 + 1
M2 == M1/4 + M3/4 + N1/2 + 1
M3 == M2/2 + N2/2 + 1
N0 == 3*M3/4 + 1
N1 == M3/2 + N0/4 + 1
N2 == M3/4 + N1/2 + 1
solution:
M1 186/19 9.78947368421
M2 737/76 9.69736842105
M3 180/19 9.47368421053
N0 154/19 8.10526315789
N1 295/38 7.76315789474
N2 29/4 7.25
{N2: 29/4, N1: 295/38, M1: 186/19, M3: 180/19, N0: 154/19, M2: 737/76}
which seems to match the other answers.
This is messy, but solves your problem, barring a very probable mistake transcribing the coefficients:
from __future__ import division
import numpy as np
n = 2
# Solution vector is [N[0], N[1], ..., N[n - 2], M[1], M[2], ..., M[n - 1]]
n_pos = lambda p : p
m_pos = lambda p : p + n - 2
A = np.zeros((2 * (n - 1), 2 * (n - 1)))
# p = 0
# N[0] + (1 - n) / n * M[n-1] = 1
A[n_pos(0), n_pos(0)] = 1 # N[0]
A[n_pos(0), m_pos(n - 1)] = (1 - n) / n #M[n - 1]
for p in xrange(1, n - 1) :
# M[p] + (1 + p - n) /n * M[n - 1] - 2 / n * N[p - 1] +
# (1 - p) / n * M[p - 1] = 1
A[m_pos(p), m_pos(p)] = 1 # M[p]
A[m_pos(p), m_pos(n - 1)] = (1 + p - n) / n # M[n - 1]
A[m_pos(p), n_pos(p - 1)] = -2 / n # N[p - 1]
if p > 1 :
A[m_pos(p), m_pos(p - 1)] = (1 - p) / n # M[p - 1]
# N[p] + (1 + p -n) / n * M[n - 1] - p / n * N[p - 1] = 1
A[n_pos(p), n_pos(p)] = 1 # N[p]
A[n_pos(p), m_pos(n - 1)] = (1 + p - n) / n # M[n - 1]
A[n_pos(p), n_pos(p - 1)] = -p / n # N[p - 1]
if n > 2 :
# p = n - 1
# M[n - 1] - 2 / n * N[n - 2] + (2 - n) / n * M[n - 2] = 1
A[m_pos(n - 1), m_pos(n - 1)] = 1 # M[n - 1]
A[m_pos(n - 1), n_pos(n - 2)] = -2 / n # N[n - 2]
A[m_pos(n - 1), m_pos(n - 2)] = (2 - n) / n # M[n - 2]
else :
# p = 1
#M[1] - 2 / n * N[0] = 1
A[m_pos(n - 1), m_pos(n - 1)] = 1
A[m_pos(n - 1), n_pos(n - 2)] = -2 / n
X = np.linalg.solve(A, np.ones((2 * (n - 1),)))
But it gives a solution of
>>> X[-1]
6.5999999999999979
for M(2) when n=3, which is not what you came up with.
Related
I am currently to new to sympy and I am trying to reproduce the Mathematica example in the attached image in Python. My attempt is written below but it returns an empty list
import sympy
m , n, D_star, a, j = sympy.symbols('m , n, D_star, a, j')
s1 = sympy.Sum(a**(j-1),(j, 1, m-1))
rhs = 6 * sympy.sqrt((D_star * (1 + a)*(n - 1))/2)
expand_expr = sympy.solve(s1 - rhs, m)
temp = sympy.lambdify((a, n, D_star), expand_expr, 'numpy')
n = 100
a = 1.2
D_star = 2.0
ms = temp(1.2, 100, 2.0)
ms
# what I get is an empty list []
# expected answer using Mma FindRoot function is 17.0652
Adding .doit() to expand the sum seems to help. It gives Piecewise((m - 1, Eq(a, 1)), ((a - a**m)/(1 - a), True))/a for the sum in s1.
from sympy import symbols, Eq, Sum, sqrt, solve, lambdify
m, n, j, a, D_star = symbols('m n j a D_star')
s1 = Sum(a**(j - 1), (j, 1, m - 1)).doit()
rhs = 6 * sqrt((D_star * (1 + a) * (n - 1)) / 2)
expand_expr = solve(Eq(s1, rhs), m)
temp = lambdify((a, n, D_star), expand_expr, 'numpy')
n = 100
a = 1.2
D_star = 2.0
ms = temp(1.2, 100, 2.0)
This gives for expand_expr:
[Piecewise((log(a*(3*sqrt(2)*a*sqrt(D_star*(a*n - a + n - 1)) - 3*sqrt(2)*sqrt(D_star*(a*n - a + n - 1)) + 1))/log(a), Ne(a, 1)), (nan, True)),
Piecewise((3*sqrt(2)*a*sqrt(D_star*(a*n - a + n - 1)) + 1, Eq(a, 1)), (nan, True))]
which separates into a != 1 and a == 1.
The result of ms gives [array(17.06524172), array(nan)], again in a bit awkward way to separate a hypothetical a == 1.
I am seeking to find a finite difference solution to the 1D Nonlinear PDE
u_t = u_xx + u(u_x)^2
Code:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import math
'''
We explore three different numerical methods for solving the PDE, with solution u(x, t),
u_t = u_xx + u(u_x)^2
for (x, t) in (0, 1) . (0, 1/5)
u(x, 0) = 40 * x^2 * (1 - x) / 3
u(0, t) = u(1, t) = 0
'''
M = 30
dx = 1 / M
r = 0.25
dt = r * dx**2
N = math.floor(0.2 / dt)
x = np.linspace(0, 1, M + 1)
t = np.linspace(0, 0.2, N + 1)
U = np.zeros((M + 1, N + 1)) # Initial array for solution u(x, t)
U[:, 0] = 40 * x**2 * (1 - x) / 3 # Initial condition (: for the whole of that array)
U[0, :] = 0 # Boundary condition at x = 0
U[-1, :] = 0 # Boundary condition at x = 1 (-1 means end of the array)
'''
Explicit Scheme - Simple Forward Difference Scheme
'''
for q in range(0, N - 1):
for p in range(0, M - 1):
b = 1 / (1 - 2 * r)
C = r * U[p, q] * (U[p + 1, q] - U[p, q])**2
U[p, q + 1] = b * (U[p, q] + r * (U[p + 1, q + 1] + U[p - 1, q + 1]) - C)
T, X = np.meshgrid(t, x)
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(T, X, U)
#fig.colorbar(surf, shrink=0.5, aspect=5) # colour bar for reference
ax.set_xlabel('t')
ax.set_ylabel('x')
ax.set_zlabel('u(x, t)')
plt.tight_layout()
plt.savefig('FDExplSol.png', bbox_inches='tight')
plt.show()
The code I use produces the following error:
overflow encountered in double_scalars
C = r * U[p, q] * (U[p + 1, q] - U[p, q])**2
invalid value encountered in double_scalars
U[p, q + 1] = b * (U[p, q] + r * (U[p + 1, q + 1] + U[p - 1, q + 1]) - C)
invalid value encountered in double_scalars
C = r * U[p, q] * (U[p + 1, q] - U[p, q])**2
Z contains NaN values. This may result in rendering artifacts.
surf = ax.plot_surface(T, X, U)
I've looked up these errors and I assume that the square term generates values too small for the dtype. However when I try changing the dtype to account for a larger range of numbers (np.complex128) I get the same error.
The resulting plot obviously has most of its contents missing. So, my question is, what do I do?
Discretisation expression was incorrect.
Should be
for q in range(0, N - 1):
for p in range(0, M - 1):
U[p, q + 1] = r * (U[p + 1, q] - 2 * U[p, q] + U[p - 1, q]) + r * U[p, q] * (U[p + 1, q] - U[p, q])
I am trying to extract the coefficients of a shifted Chebyshev Polynomial in Python, but I couldn't find the function to do that.
There is this function:
scipy.special.eval_sh_chebyt
scipy.special.eval_sh_chebyt(n, x, out=None) = <ufunc 'eval_sh_chebyt'>
but I can't extract only the coefficients.
The shifted Chebyshev polynomials are:
T^{*}_n(x) = T_n (2x -1)
and then:
T_1^{*}(x) = 2x - 1
T_2^{*}(x) = 8x^2 - 8x -1
I would like to extract a matrix only with the coefficients, like 2 and 1 or 8,8 and 1.
scipy.special.eval_sh_chebyt evaluates the function T* at a given point x. Unless you are very smart in choosing your arguments, this is not an appropriate way to get the coeffcients.
You can instead calculate the coefficients directly from the recurrence formula T0 = 1, T1 = x, T{n} = 2xT{n-1} - T{n-2}. And then calculate the shifted polynomials from _T*{n} = T{n}(2x - 1).
degree = 10
coeffs = []
# for T_0
coeffLine = [1]
coeffs.append(coeffLine)
# for T_1
coeffLine = [0, 1]
coeffs.append(coeffLine)
for i in range(2, degree + 1):
coeffLine = [0] * (1 + i)
coeffLine[0] = -coeffs[i - 2][0]
for j in range(1, i - 1):
coeffLine[j] = 2 * coeffs[i - 1][j - 1] - coeffs[i - 2][j]
coeffLine[-2] = 2 * coeffs[i - 1][-2]
coeffLine[-1] = 2 * coeffs[i - 1][-1]
coeffs.append(coeffLine)
print("T_%d" % degree, coeffs[-1])
shiftedCoeffs = [0] * (degree + 1);
for i in range(degree + 1):
binom = 1
for j in range(i + 1):
shiftedCoeffs[i - j] += coeffs[-1][i] * 2 ** (i - j) * (-1) ** j * binom
binom *= (i - j) / (j + 1)
print("T*_%d" % degree, shiftedCoeffs)
Edit: I originally misread the formula for T*{n} as _T{n}(x) * (2x - 1). However it is T*{n} = T{n}(2x - 1). We therefore need to calculate the binomial coefficients sum them up depending on the order of x.
I'm currently trying to implement the GDT described by Felzenszwalb and Huttenlocher (http://www.cs.cornell.edu/~dph/papers/dt.pdf) inside of Python for an image processing algorithm. However I used the algorithm described in the paper they published a few years back but got faulty results. I found a C# implementation here: https://dsp.stackexchange.com/questions/227/fastest-available-algorithm-for-distance-transform/29727?noredirect=1#comment55866_29727
And converted it to Python (which is pretty much the same I had before).
This is my code:
def of_column(dataInput):
output = zeros(dataInput.shape)
n = len(dataInput)
k = 0
v = zeros((n,))
z = zeros((n + 1,))
v[0] = 0
z[0] = -inf
z[1] = +inf
s = 0
for q in range(1, n):
while True:
s = (((dataInput[q] + q * q) - (dataInput[v[k]] + v[k] * v[k])) / (2.0 * q - 2.0 * v[k]))
if s <= z[k]:
k -= 1
else:
break
k += 1
v[k] = q
z[k] = s
z[k + 1] = +inf
k = 0
for q in range(n):
while z[k + 1] < q:
k += 1
output[q] = ((q - v[k]) * (q - v[k]) + dataInput[v[k]])
return output
I still can't find my error. When giving the algorithm a binary (boolean) numpy array it just returns the array itself not the Distance Transform. Why is this not working in Python?
I got it working after hours and hours. The answer given in the link above implementing the code in C# suggests putting up the "white" areas to a very large number. My dataInput array was a boolean array (0, 1). I replaced all 1s with 2^32 and it works just fine. The higher the number the more blurry it gets. The lower the more similar to the source it gets.
I would like to add the function for 2D that works with the 1D function described previously:
###############################################################################
# distance transform of 1d function using squared distance
###############################################################################
def dt_1d(dataInput, n):
output = np.zeros(dataInput.shape)
k = 0
v = np.zeros((n,))
z = np.zeros((n + 1,))
v[0] = 0
z[0] = -np.inf
z[1] = +np.inf
for q in range(1, n):
s = (((dataInput[q] + q * q) - (dataInput[v[k]] + v[k] * v[k])) / (2.0 * q - 2.0 * v[k]))
while s <= z[k]:
k -= 1
s = (((dataInput[q] + q * q) - (dataInput[v[k]] + v[k] * v[k])) / (2.0 * q - 2.0 * v[k]))
k += 1
v[k] = q
z[k] = s
z[k + 1] = +np.inf
k = 0
for q in range(n):
while z[k + 1] < q:
k += 1
value = ((q - v[k]) * (q - v[k]) + dataInput[v[k]])
if value > 255: value = 255
if value < 0: value = 0
output[q] = value
print output
return output
###############################################################################
# distance transform of 2d function using squared distance
###############################################################################
def dt_2d(dataInput):
height, width = dataInput.shape
f = np.zeros(max(height, width))
# transform along columns
for x in range(width):
f = dataInput[:,x]
dataInput[:,x] = dt_1d(f, height)
# transform along rows
for y in range(height):
f = dataInput[y,:]
dataInput[y,:] = dt_1d(f, width)
return dataInput
I hope it helps.
I have this program for calculating Hermite interpolation.
Problem is, that its behave really bad.
This is chart for 35 Chebyshev nodes. If I put more points, peak on the beginning will be higher(its about 10^7 with this amount of nodes).
I interpolated this same function using Lagrange method (green, its shifted so it can be seen) and as you can see it looks fine.
Here is the code:
def hermit_interpolate(input): #input is list of tuples [(x1,y1),(x2,y2)...] xi are Chebyshev nodes
points = [(input[0][0], input[0][1] - 0), (input[0][0], calculate_f_p_x(input[0][0]))] #"input[0][1] - 0" this is just to change type of second element
#calculate_f_p_x returns value of derivative
for k in range(1, len(input)): #Divided differences and derivatives in one list alternately
points.append((input[k][0], (input[k][1] - input[k - 1][1]) / (
input[k][0] - input[k - 1][0])))
points.append((input[k][0], calculate_f_p_x(input[k][0])))
x, c = zip(*points)
x = list(x)
c = list(c)
n = len(points)
for i in range(2, n): #calculating factors
for j in range(n - 1, i - 1, -1):
c[j] = (c[j] - c[j - 1]) / (x[j] - x[j - i])
def result_polynomial(xpoint): #here is function to calculate value for given x
val = c[0]
factor = 1.0
for l in range(1, n):
factor *= (xpoint - x[l - 1])
val += (c[l] * factor)
return val
return result_polynomial
I can't seen what's wrong here.
Thanks!
This code actually works:
def hermit_interpolate(input): #input is list of tuples [(x1,y1),(x2,y2),...,(xn,yn)] xi are Chebyshev nodes
n = len(input)
points = numpy.zeros(shape=(2 * n + 1, 2 * n + 1))
X, Y = zip(*input)
X = list(X)
Y = list(Y)
for i in range(0, 2 * n, 2):
points[i][0] = X[i / 2]
points[i + 1][0] = X[i / 2]
points[i][1] = Y[i / 2]
points[i + 1][1] = Y[i / 2]
for i in range(2, 2 * n + 1):
for j in range(1 + (i - 2), 2 * n):
if i == 2 and j % 2 == 1:
points[j][i] = calculate_f_p_x(X[j / 2]);
else:
points[j][i] = (points[j][i - 1] - points[j - 1][i - 1]) / (
points[j][0] - points[(j - 1) - (i - 2)][0])
def result_polynomial(xpoint): #here is function to calculate value for given x
val = 0
for i in range(0, 2 * n):
factor = 1.
j = 0
while j < i:
factor *= (xpoint - X[j / 2])
if j + 1 != i:
factor *= (xpoint - X[j / 2])
j += 1
j += 1
val += factor * points[i][i + 1]
return val
return result_polynomia