Related
This is a program I wrote to calculate Pythagorean triplets. When I run the program it prints each set of triplets twice because of the if statement. Is there any way I can tell the program to only print a new set of triplets once? Thanks.
import math
def main():
for x in range (1, 1000):
for y in range (1, 1000):
for z in range(1, 1000):
if x*x == y*y + z*z:
print y, z, x
print '-'*50
if __name__ == '__main__':
main()
Pythagorean Triples make a good example for claiming "for loops considered harmful", because for loops seduce us into thinking about counting, often the most irrelevant part of a task.
(I'm going to stick with pseudo-code to avoid language biases, and to keep the pseudo-code streamlined, I'll not optimize away multiple calculations of e.g. x * x and y * y.)
Version 1:
for x in 1..N {
for y in 1..N {
for z in 1..N {
if x * x + y * y == z * z then {
// use x, y, z
}
}
}
}
is the worst solution. It generates duplicates, and traverses parts of the space that aren't useful (e.g. whenever z < y). Its time complexity is cubic on N.
Version 2, the first improvement, comes from requiring x < y < z to hold, as in:
for x in 1..N {
for y in x+1..N {
for z in y+1..N {
if x * x + y * y == z * z then {
// use x, y, z
}
}
}
}
which reduces run time and eliminates duplicated solutions. However, it is still cubic on N; the improvement is just a reduction of the co-efficient of N-cubed.
It is pointless to continue examining increasing values of z after z * z < x * x + y * y no longer holds. That fact motivates Version 3, the first step away from brute-force iteration over z:
for x in 1..N {
for y in x+1..N {
z = y + 1
while z * z < x * x + y * y {
z = z + 1
}
if z * z == x * x + y * y and z <= N then {
// use x, y, z
}
}
}
For N of 1000, this is about 5 times faster than Version 2, but it is still cubic on N.
The next insight is that x and y are the only independent variables; z depends on their values, and the last z value considered for the previous value of y is a good starting search value for the next value of y. That leads to Version 4:
for x in 1..N {
y = x+1
z = y+1
while z <= N {
while z * z < x * x + y * y {
z = z + 1
}
if z * z == x * x + y * y and z <= N then {
// use x, y, z
}
y = y + 1
}
}
which allows y and z to "sweep" the values above x only once. Not only is it over 100 times faster for N of 1000, it is quadratic on N, so the speedup increases as N grows.
I've encountered this kind of improvement often enough to be mistrustful of "counting loops" for any but the most trivial uses (e.g. traversing an array).
Update: Apparently I should have pointed out a few things about V4 that are easy to overlook.
Both of the while loops are controlled by the value of z (one directly, the other indirectly through the square of z). The inner while is actually speeding up the outer while, rather than being orthogonal to it. It's important to look at what the loops are doing, not merely to count how many loops there are.
All of the calculations in V4 are strictly integer arithmetic. Conversion to/from floating-point, as well as floating-point calculations, are costly by comparison.
V4 runs in constant memory, requiring only three integer variables. There are no arrays or hash tables to allocate and initialize (and, potentially, to cause an out-of-memory error).
The original question allowed all of x, y, and x to vary over the same range. V1..V4 followed that pattern.
Below is a not-very-scientific set of timings (using Java under Eclipse on my older laptop with other stuff running...), where the "use x, y, z" was implemented by instantiating a Triple object with the three values and putting it in an ArrayList. (For these runs, N was set to 10,000, which produced 12,471 triples in each case.)
Version 4: 46 sec.
using square root: 134 sec.
array and map: 400 sec.
The "array and map" algorithm is essentially:
squares = array of i*i for i in 1 .. N
roots = map of i*i -> i for i in 1 .. N
for x in 1 .. N
for y in x+1 .. N
z = roots[squares[x] + squares[y]]
if z exists use x, y, z
The "using square root" algorithm is essentially:
for x in 1 .. N
for y in x+1 .. N
z = (int) sqrt(x * x + y * y)
if z * z == x * x + y * y then use x, y, z
The actual code for V4 is:
public Collection<Triple> byBetterWhileLoop() {
Collection<Triple> result = new ArrayList<Triple>(limit);
for (int x = 1; x < limit; ++x) {
int xx = x * x;
int y = x + 1;
int z = y + 1;
while (z <= limit) {
int zz = xx + y * y;
while (z * z < zz) {++z;}
if (z * z == zz && z <= limit) {
result.add(new Triple(x, y, z));
}
++y;
}
}
return result;
}
Note that x * x is calculated in the outer loop (although I didn't bother to cache z * z); similar optimizations are done in the other variations.
I'll be glad to provide the Java source code on request for the other variations I timed, in case I've mis-implemented anything.
Substantially faster than any of the solutions so far. Finds triplets via a ternary tree.
Wolfram says:
Hall (1970) and Roberts (1977) prove that (a, b, c) is a primitive Pythagorean triple if and only if
(a,b,c)=(3,4,5)M
where M is a finite product of the matrices U, A, D.
And there we have a formula to generate every primitive triple.
In the above formula, the hypotenuse is ever growing so it's pretty easy to check for a max length.
In Python:
import numpy as np
def gen_prim_pyth_trips(limit=None):
u = np.mat(' 1 2 2; -2 -1 -2; 2 2 3')
a = np.mat(' 1 2 2; 2 1 2; 2 2 3')
d = np.mat('-1 -2 -2; 2 1 2; 2 2 3')
uad = np.array([u, a, d])
m = np.array([3, 4, 5])
while m.size:
m = m.reshape(-1, 3)
if limit:
m = m[m[:, 2] <= limit]
yield from m
m = np.dot(m, uad)
If you'd like all triples and not just the primitives:
def gen_all_pyth_trips(limit):
for prim in gen_prim_pyth_trips(limit):
i = prim
for _ in range(limit//prim[2]):
yield i
i = i + prim
list(gen_prim_pyth_trips(10**4)) took 2.81 milliseconds to come back with 1593 elements while list(gen_all_pyth_trips(10**4)) took 19.8 milliseconds to come back with 12471 elements.
For reference, the accepted answer (in Python) took 38 seconds for 12471 elements.
Just for fun, setting the upper limit to one million list(gen_all_pyth_trips(10**6)) returns in 2.66 seconds with 1980642 elements (almost 2 million triples in 3 seconds). list(gen_all_pyth_trips(10**7)) brings my computer to its knees as the list gets so large it consumes every last bit of RAM. Doing something like sum(1 for _ in gen_all_pyth_trips(10**7)) gets around that limitation and returns in 30 seconds with 23471475 elements.
For more information on the algorithm used, check out the articles on Wolfram and Wikipedia.
You should define x < y < z.
for x in range (1, 1000):
for y in range (x + 1, 1000):
for z in range(y + 1, 1000):
Another good optimization would be to only use x and y and calculate zsqr = x * x + y * y. If zsqr is a square number (or z = sqrt(zsqr) is a whole number), it is a triplet, else not. That way, you need only two loops instead of three (for your example, that's about 1000 times faster).
The previously listed algorithms for generating Pythagorean triplets are all modifications of the naive approach derived from the basic relationship a^2 + b^2 = c^2 where (a, b, c) is a triplet of positive integers. It turns out that Pythagorean triplets satisfy some fairly remarkable relationships that can be used to generate all Pythagorean triplets.
Euclid discovered the first such relationship. He determined that for every Pythagorean triple (a, b, c), possibly after a reordering of a and b there are relatively prime positive integers m and n with m > n, at least one of which is even, and a positive integer k such that
a = k (2mn)
b = k (m^2 - n^2)
c = k (m^2 + n^2)
Then to generate Pythagorean triplets, generate relatively prime positive integers m and n of differing parity, and a positive integer k and apply the above formula.
struct PythagoreanTriple {
public int a { get; private set; }
public int b { get; private set; }
public int c { get; private set; }
public PythagoreanTriple(int a, int b, int c) : this() {
this.a = a < b ? a : b;
this.b = b < a ? a : b;
this.c = c;
}
public override string ToString() {
return String.Format("a = {0}, b = {1}, c = {2}", a, b, c);
}
public static IEnumerable<PythagoreanTriple> GenerateTriples(int max) {
var triples = new List<PythagoreanTriple>();
for (int m = 1; m <= max / 2; m++) {
for (int n = 1 + (m % 2); n < m; n += 2) {
if (m.IsRelativelyPrimeTo(n)) {
for (int k = 1; k <= max / (m * m + n * n); k++) {
triples.Add(EuclidTriple(m, n, k));
}
}
}
}
return triples;
}
private static PythagoreanTriple EuclidTriple(int m, int n, int k) {
int msquared = m * m;
int nsquared = n * n;
return new PythagoreanTriple(k * 2 * m * n, k * (msquared - nsquared), k * (msquared + nsquared));
}
}
public static class IntegerExtensions {
private static int GreatestCommonDivisor(int m, int n) {
return (n == 0 ? m : GreatestCommonDivisor(n, m % n));
}
public static bool IsRelativelyPrimeTo(this int m, int n) {
return GreatestCommonDivisor(m, n) == 1;
}
}
class Program {
static void Main(string[] args) {
PythagoreanTriple.GenerateTriples(1000).ToList().ForEach(t => Console.WriteLine(t));
}
}
The Wikipedia article on Formulas for generating Pythagorean triples contains other such formulae.
Algorithms can be tuned for speed, memory usage, simplicity, and other things.
Here is a pythagore_triplets algorithm tuned for speed, at the cost of memory usage and simplicity. If all you want is speed, this could be the way to go.
Calculation of list(pythagore_triplets(10000)) takes 40 seconds on my computer, versus 63 seconds for ΤΖΩΤΖΙΟΥ's algorithm, and possibly days of calculation for Tafkas's algorithm (and all other algorithms which use 3 embedded loops instead of just 2).
def pythagore_triplets(n=1000):
maxn=int(n*(2**0.5))+1 # max int whose square may be the sum of two squares
squares=[x*x for x in xrange(maxn+1)] # calculate all the squares once
reverse_squares=dict([(squares[i],i) for i in xrange(maxn+1)]) # x*x=>x
for x in xrange(1,n):
x2 = squares[x]
for y in xrange(x,n+1):
y2 = squares[y]
z = reverse_squares.get(x2+y2)
if z != None:
yield x,y,z
>>> print list(pythagore_triplets(20))
[(3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15), (12, 16, 20)]
Note that if you are going to calculate the first billion triplets, then this algorithm will crash before it even starts, because of an out of memory error. So ΤΖΩΤΖΙΟΥ's algorithm is probably a safer choice for high values of n.
BTW, here is Tafkas's algorithm, translated into python for the purpose of my performance tests. Its flaw is to require 3 loops instead of 2.
def gcd(a, b):
while b != 0:
t = b
b = a%b
a = t
return a
def find_triple(upper_boundary=1000):
for c in xrange(5,upper_boundary+1):
for b in xrange(4,c):
for a in xrange(3,b):
if (a*a + b*b == c*c and gcd(a,b) == 1):
yield a,b,c
def pyth_triplets(n=1000):
"Version 1"
for x in xrange(1, n):
x2= x*x # time saver
for y in xrange(x+1, n): # y > x
z2= x2 + y*y
zs= int(z2**.5)
if zs*zs == z2:
yield x, y, zs
>>> print list(pyth_triplets(20))
[(3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15), (12, 16, 20)]
V.1 algorithm has monotonically increasing x values.
EDIT
It seems this question is still alive :)
Since I came back and revisited the code, I tried a second approach which is almost 4 times as fast (about 26% of CPU time for N=10000) as my previous suggestion since it avoids lots of unnecessary calculations:
def pyth_triplets(n=1000):
"Version 2"
for z in xrange(5, n+1):
z2= z*z # time saver
x= x2= 1
y= z - 1; y2= y*y
while x < y:
x2_y2= x2 + y2
if x2_y2 == z2:
yield x, y, z
x+= 1; x2= x*x
y-= 1; y2= y*y
elif x2_y2 < z2:
x+= 1; x2= x*x
else:
y-= 1; y2= y*y
>>> print list(pyth_triplets(20))
[(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20)]
Note that this algorithm has increasing z values.
If the algorithm was converted to C —where, being closer to the metal, multiplications take more time than additions— one could minimalise the necessary multiplications, given the fact that the step between consecutive squares is:
(x+1)² - x² = (x+1)(x+1) - x² = x² + 2x + 1 - x² = 2x + 1
so all of the inner x2= x*x and y2= y*y would be converted to additions and subtractions like this:
def pyth_triplets(n=1000):
"Version 3"
for z in xrange(5, n+1):
z2= z*z # time saver
x= x2= 1; xstep= 3
y= z - 1; y2= y*y; ystep= 2*y - 1
while x < y:
x2_y2= x2 + y2
if x2_y2 == z2:
yield x, y, z
x+= 1; x2+= xstep; xstep+= 2
y-= 1; y2-= ystep; ystep-= 2
elif x2_y2 < z2:
x+= 1; x2+= xstep; xstep+= 2
else:
y-= 1; y2-= ystep; ystep-= 2
Of course, in Python the extra bytecode produced actually slows down the algorithm compared to version 2, but I would bet (without checking :) that V.3 is faster in C.
Cheers everyone :)
I juste extended Kyle Gullion 's answer so that triples are sorted by hypothenuse, then longest side.
It doesn't use numpy, but requires a SortedCollection (or SortedList) such as this one
def primitive_triples():
""" generates primitive Pythagorean triplets x<y<z
sorted by hypotenuse z, then longest side y
through Berggren's matrices and breadth first traversal of ternary tree
:see: https://en.wikipedia.org/wiki/Tree_of_primitive_Pythagorean_triples
"""
key=lambda x:(x[2],x[1])
triples=SortedCollection(key=key)
triples.insert([3,4,5])
A = [[ 1,-2, 2], [ 2,-1, 2], [ 2,-2, 3]]
B = [[ 1, 2, 2], [ 2, 1, 2], [ 2, 2, 3]]
C = [[-1, 2, 2], [-2, 1, 2], [-2, 2, 3]]
while triples:
(a,b,c) = triples.pop(0)
yield (a,b,c)
# expand this triple to 3 new triples using Berggren's matrices
for X in [A,B,C]:
triple=[sum(x*y for (x,y) in zip([a,b,c],X[i])) for i in range(3)]
if triple[0]>triple[1]: # ensure x<y<z
triple[0],triple[1]=triple[1],triple[0]
triples.insert(triple)
def triples():
""" generates all Pythagorean triplets triplets x<y<z
sorted by hypotenuse z, then longest side y
"""
prim=[] #list of primitive triples up to now
key=lambda x:(x[2],x[1])
samez=SortedCollection(key=key) # temp triplets with same z
buffer=SortedCollection(key=key) # temp for triplets with smaller z
for pt in primitive_triples():
z=pt[2]
if samez and z!=samez[0][2]: #flush samez
while samez:
yield samez.pop(0)
samez.insert(pt)
#build buffer of smaller multiples of the primitives already found
for i,pm in enumerate(prim):
p,m=pm[0:2]
while True:
mz=m*p[2]
if mz < z:
buffer.insert(tuple(m*x for x in p))
elif mz == z:
# we need another buffer because next pt might have
# the same z as the previous one, but a smaller y than
# a multiple of a previous pt ...
samez.insert(tuple(m*x for x in p))
else:
break
m+=1
prim[i][1]=m #update multiplier for next loops
while buffer: #flush buffer
yield buffer.pop(0)
prim.append([pt,2]) #add primitive to the list
the code is available in the math2 module of my Python library. It is tested against some series of the OEIS (code here at the bottom), which just enabled me to find a mistake in A121727 :-)
I wrote that program in Ruby and it similar to the python implementation. The important line is:
if x*x == y*y + z*z && gcd(y,z) == 1:
Then you have to implement a method that return the greatest common divisor (gcd) of two given numbers. A very simple example in Ruby again:
def gcd(a, b)
while b != 0
t = b
b = a%b
a = t
end
return a
end
The full Ruby methon to find the triplets would be:
def find_triple(upper_boundary)
(5..upper_boundary).each {|c|
(4..c-1).each {|b|
(3..b-1).each {|a|
if (a*a + b*b == c*c && gcd(a,b) == 1)
puts "#{a} \t #{b} \t #{c}"
end
}
}
}
end
Old Question, but i'll still input my stuff.
There are two general ways to generate unique pythagorean triples. One Is by Scaling, and the other is by using this archaic formula.
What scaling basically does it take a constant n, then multiply a base triple, lets say 3,4,5 by n. So taking n to be 2, we get 6,8,10 our next triple.
Scaling
def pythagoreanScaled(n):
triplelist = []
for x in range(n):
one = 3*x
two = 4*x
three = 5*x
triple = (one,two,three)
triplelist.append(triple)
return triplelist
The formula method uses the fact the if we take a number x, calculate 2m, m^2+1, and m^2-1, those three will always be a pythagorean triplet.
Formula
def pythagoreantriple(n):
triplelist = []
for x in range(2,n):
double = x*2
minus = x**2-1
plus = x**2+1
triple = (double,minus,plus)
triplelist.append(triple)
return triplelist
Yes, there is.
Okay, now you'll want to know why. Why not just constrain it so that z > y? Try
for z in range (y+1, 1000)
from math import sqrt
from itertools import combinations
#Pythagorean triplet - a^2 + b^2 = c^2 for (a,b) <= (1999,1999)
def gen_pyth(n):
if n >= 2000 :
return
ELEM = [ [ i,j,i*i + j*j ] for i , j in list(combinations(range(1, n + 1 ), 2)) if sqrt(i*i + j*j).is_integer() ]
print (*ELEM , sep = "\n")
gen_pyth(200)
for a in range(1,20):
for b in range(1,20):
for c in range(1,20):
if a>b and c and c>b:
if a**2==b**2+c**2:
print("triplets are:",a,b,c)
in python we can store square of all numbers in another list.
then find permutation of pairs of all number given
square them
finally check if any pair sum of square matches the squared list
Version 5 to Joel Neely.
Since X can be max of 'N-2' and Y can be max of 'N-1' for range of 1..N. Since Z max is N and Y max is N-1, X can be max of Sqrt ( N * N - (N-1) * (N-1) ) = Sqrt ( 2 * N - 1 ) and can start from 3.
MaxX = ( 2 * N - 1 ) ** 0.5
for x in 3..MaxX {
y = x+1
z = y+1
m = x*x + y*y
k = z * z
while z <= N {
while k < m {
z = z + 1
k = k + (2*z) - 1
}
if k == m and z <= N then {
// use x, y, z
}
y = y + 1
m = m + (2 * y) - 1
}
}
Just checking, but I've been using the following code to make pythagorean triples. It's very fast (and I've tried some of the examples here, though I kind of learned them and wrote my own and came back and checked here (2 years ago)). I think this code correctly finds all pythagorean triples up to (name your limit) and fairly quickly too. I used C++ to make it.
ullong is unsigned long long and I created a couple of functions to square and root
my root function basically said if square root of given number (after making it whole number (integral)) squared not equal number give then return -1 because it is not rootable.
_square and _root do as expected as of description above, I know of another way to optimize it but I haven't done nor tested that yet.
generate(vector<Triple>& triplist, ullong limit) {
cout<<"Please wait as triples are being generated."<<endl;
register ullong a, b, c;
register Triple trip;
time_t timer = time(0);
for(a = 1; a <= limit; ++a) {
for(b = a + 1; b <= limit; ++b) {
c = _root(_square(a) + _square(b));
if(c != -1 && c <= limit) {
trip.a = a; trip.b = b; trip.c = c;
triplist.push_back(trip);
} else if(c > limit)
break;
}
}
timer = time(0) - timer;
cout<<"Generated "<<triplist.size()<<" in "<<timer<<" seconds."<<endl;
cin.get();
cin.get();
}
Let me know what you all think. It generates all primitive and non-primitive triples according to the teacher I turned it in for. (she tested it up to 100 if I remember correctly).
The results from the v4 supplied by a previous coder here are
Below is a not-very-scientific set of timings (using Java under Eclipse on my older laptop with other stuff running...), where the "use x, y, z" was implemented by instantiating a Triple object with the three values and putting it in an ArrayList. (For these runs, N was set to 10,000, which produced 12,471 triples in each case.)
Version 4: 46 sec.
using square root: 134 sec.
array and map: 400 sec.
The results from mine is
How many triples to generate: 10000
Please wait as triples are being generated.
Generated 12471 in 2 seconds.
That is before I even start optimizing via the compiler. (I remember previously getting 10000 down to 0 seconds with tons of special options and stuff). My code also generates all the triples with 100,000 as the limit of how high side1,2,hyp can go in 3.2 minutes (I think the 1,000,000 limit takes an hour).
I modified the code a bit and got the 10,000 limit down to 1 second (no optimizations). On top of that, with careful thinking, mine could be broken down into chunks and threaded upon given ranges (for example 100,000 divide into 4 equal chunks for 3 cpu's (1 extra to hopefully consume cpu time just in case) with ranges 1 to 25,000 (start at 1 and limit it to 25,000), 25,000 to 50,000 , 50,000 to 75,000, and 75,000 to end. I may do that and see if it speeds it up any (I will have threads premade and not include them in the actual amount of time to execute the triple function. I'd need a more precise timer and a way to concatenate the vectors. I think that if 1 3.4 GHZ cpu with 8 gb ram at it's disposal can do 10,000 as lim in 1 second then 3 cpus should do that in 1/3 a second (and I round to higher second as is atm).
It should be noted that for a, b, and c you don't need to loop all the way to N.
For a, you only have to loop from 1 to int(sqrt(n**2/2))+1, for b, a+1 to int(sqrt(n**2-a**2))+1, and for c from int(sqrt(a**2+b**2) to int(sqrt(a**2+b**2)+2.
# To find all pythagorean triplets in a range
import math
n = int(input('Enter the upper range of limit'))
for i in range(n+1):
for j in range(1, i):
k = math.sqrt(i*i + j*j)
if k % 1 == 0 and k in range(n+1):
print(i,j,int(k))
U have to use Euclid's proof of Pythagorean triplets. Follow below...
U can choose any arbitrary number greater than zero say m,n
According to Euclid the triplet will be a(m*m-n*n), b(2*m*n), c(m*m+n*n)
Now apply this formula to find out the triplets, say our one value of triplet is 6 then, other two? Ok let’s solve...
a(m*m-n*n), b(2*m*n) , c(m*m+n*n)
It is sure that b(2*m*n) is obviously even. So now
(2*m*n)=6 =>(m*n)=3 =>m*n=3*1 =>m=3,n=1
U can take any other value rather than 3 and 1, but those two values should hold the product of two numbers which is 3 (m*n=3)
Now, when m=3 and n=1 Then,
a(m*m-n*n)=(3*3-1*1)=8 , c(m*m-n*n)=(3*3+1*1)=10
6,8,10 is our triplet for value, this our visualization of how generating triplets.
if given number is odd like (9) then slightly modified here, because b(2*m*n)
will never be odd. so, here we have to take
a(m*m-n*n)=7, (m+n)*(m-n)=7*1, So, (m+n)=7, (m-n)=1
Now find m and n from here, then find the other two values.
If u don’t understand it, read it again carefully.
Do code according this, it will generate distinct triplets efficiently.
A non-numpy version of the Hall/Roberts approach is
def pythag3(limit=None, all=False):
"""generate Pythagorean triples which are primitive (default)
or without restriction (when ``all`` is True). The elements
returned in the tuples are sorted with the smallest first.
Examples
========
>>> list(pythag3(20))
[(3, 4, 5), (8, 15, 17), (5, 12, 13)]
>>> list(pythag3(20, True))
[(3, 4, 5), (6, 8, 10), (9, 12, 15), (12, 16, 20), (8, 15, 17), (5, 12, 13)]
"""
if limit and limit < 5:
return
m = [(3,4,5)] # primitives stored here
while m:
x, y, z = m.pop()
if x > y:
x, y = y, x
yield (x, y, z)
if all:
a, b, c = x, y, z
while 1:
c += z
if c > limit:
break
a += x
b += y
yield a, b, c
# new primitives
a = x - 2*y + 2*z, 2*x - y + 2*z, 2*x - 2*y + 3*z
b = x + 2*y + 2*z, 2*x + y + 2*z, 2*x + 2*y + 3*z
c = -x + 2*y + 2*z, -2*x + y + 2*z, -2*x + 2*y + 3*z
for d in (a, b, c):
if d[2] <= limit:
m.append(d)
It's slower than the numpy-coded version but the primitives with largest element less than or equal to 10^6 are generated on my slow machine in about 1.4 seconds. (And the list m never grew beyond 18 elements.)
In c language -
#include<stdio.h>
int main()
{
int n;
printf("How many triplets needed : \n");
scanf("%d\n",&n);
for(int i=1;i<=2000;i++)
{
for(int j=i;j<=2000;j++)
{
for(int k=j;k<=2000;k++)
{
if((j*j+i*i==k*k) && (n>0))
{
printf("%d %d %d\n",i,j,k);
n=n-1;
}
}
}
}
}
You can try this
triplets=[]
for a in range(1,100):
for b in range(1,100):
for c in range(1,100):
if a**2 + b**2==c**2:
i=[a,b,c]
triplets.append(i)
for i in triplets:
i.sort()
if triplets.count(i)>1:
triplets.remove(i)
print(triplets)
Given the sequence f0, f1, f2, ... given by the recurrence relations f0 = 0, f1 = 1, f2 = 2 and fk = f (k-1) + f (k-3)
Write a program that calculates the n elements of this sequence with the numbers k1, k2, ..., kn.
Input format
The first line of the input contains an integer n (1 <= n <= 1000)
The second line contains n non-negative integers ki (0 <= ki <= 16000), separated by spaces.
Output format
Output space-separated values for fk1, fk2, ... fkn.
Memory Limit: 10MB
Time limit: 1 second
The problem is that the recursive function at large values goes beyond the limit.
def f (a):
if a <= 2:
return a
return f (a - 1) + f (a - 3)
n = int (input ())
nums = list (map (int, input (). split ()))
for i in range (len (nums)):
if i <len (nums) - 1:
print (f (nums [i]), end = '')
else:
print (f (nums [i]))
I also tried to solve through a cycle, but the task does not go through time (1 second):
fk1 = 0
fk2 = 0
fk3 = 0
n = int (input ())
nums = list (map (int, input (). split ()))
a = []
for i in range (len (nums)):
itog = 0
for j in range (1, nums [i] + 1):
if j <= 2:
itog = j
else:
if j == 3:
itog = 0 + 2
fk1 = itog
fk2 = 2
fk3 = 1
else:
itog = fk1 + fk3
fk1, fk2, fk3 = itog, fk1, fk2
if i <len (nums) - 1:
print (itog, end = '')
else:
print (itog)
How else can you solve this problem so that it is optimal in time and memory?
Concerning the memory, the best solution probably is the iterative one. I think you are not far from the answer. The idea would be to first check for the simple cases f(k) = k (ie, k <= 2), for all other cases k > 2 you can simply compute fi using (fi-3, fi-2, fi-1) until i = k. What you need to do during this process is indeed to keep track of the last three values (similar to what you did in the line fk1, fk2, fk3 = itog, fk1, fk2).
On the other hand, there is one thing that you need to do here. If you just perform computations of fk1, fk2, ... fkn independently, then you are screwed (unless you use a super fast machine or a Cython implementation). On the other hand, there is no reason to perform n independent computations, you can just compute fx for x = max(k1, k2, ..., kn) and on the way you'll store every answer for fk1, fk2, ..., fkn (this will slow down the computation of fx by a little bit, but instead of doing this n times you'll do it only once). This way it can be solved under 1s even for n = 1000.
On my machine, independent calculations for f15000, f15001, ..., f16000 takes roughly 30s, the "all at once" solution takes roughly 0.035s.
Honestly, that's not such an easy exercise, it would be interesting to show your solution on a site like code review to get some feedback on your solution once you found one :).
First, you have to sort the numbers. Then calculate values of the sequence one by one:
while True:
a3 = a2 + a0
a0 = a3 + a1
a1 = a0 + a2
a2 = a1 + a3
Lastly, return values in beginning order. To do that you have to remember position of every number. From [45, 22, 14, 33] make [[45,0], [22,1], [14,2], [33,3]] and then sort, calculate values and change them with argument [[f45,0], [f22,1], [f14,2], [f33,3]], then sort by second value.
Suppose we have a defined function as following, and we would like to iterate over n from 1 to L, I've suffered a lot for a vectorization code, since this code is rather slow due to for loop needed outside to call this function.
Details: L, K are large integers e.g. 1000 and H_n is float value.
def multifrac_Brownian_motion(n, L, K, list_hurst, ind_hurst):
t_ks = np.asarray(sorted(-np.array(range(1, K + 1))*(1./L)))
t_ns = np.linspace(0, 1, num=L+1)
t_n = t_ns[n]
chi_k = np.random.randn(K)
chi_lminus1 = np.random.randn(L)
H_n = get_hurst_value(t_n, list_hurst, ind_hurst)
part1 = 1./(np.random.gamma(0.5 + H_n))
sums1 = np.dot((t_n - t_ks)**(H_n - 0.5) - ((-t_ks)**(H_n - 0.5)), chi_k)
sums2 = np.dot((t_n - t_ns[:n])**(H_n - 0.5), chi_lminus1[:n])
return part1*(1./np.sqrt(L))*(sums1 + sums2)
for n in range(1, L + 1):
onelist.append(multifrac_Brownian_motion(n, L, K, list_hurst, ind_hurst=ind_hurst))
Update:
def list_hurst_funcs(M, seg_size=10):
"""Generate a list of Hurst function components
Args:
M: Int, number of hurst functions
seg_size: Int, number of segmentations of interval [0, 1]
Returns:
list_hurst: List, list of hurst function components
"""
list_hurst = []
for i in range(M):
seg_points = sorted(np.random.uniform(size=seg_size))
funclist = np.random.uniform(size=seg_size + 1)
list_hurst.append((seg_points, funclist))
return list_hurst
def get_hurst_value(x, list_hurst, ind):
if np.isscalar(x):
x = np.array(float(x), ndmin=1)
seg_points, funclist = list_hurst[ind]
condlist = [x < seg_points[0]] +\
[(x >= seg_points[s] and x < seg_points[s + 1])
for s in range(len(seg_points) - 1)] +\
[x >= seg_points[-1]]
return np.piecewise(x, condlist=condlist, funclist=funclist)
One way to tackle a problem like this is to (try) understand the big picture, and come with a different approach that treats everything as 2d or larger (LxK arrays). Another is to examine the multifrac_Brownian_motion, trying to speed it up, and where possible eliminate steps that depend on scalars or 1d arrays. In other words, work from the inside out. If we get enough of a speed improvement it may not matter that we have to call it in a loop. Even better the improvement suggests ways of operating in high dimensions.
As a start from inside out, I'd suggest replacing the t_ks calc with:
t_ks = -np.arange(K,0,-1)/L # 1./L if required by Py2 integer division
Since list_hurst, ind_hurst are the same for all n, I suspect you can move some time consuming parts of get_hurst_value outside the loop.
But I'd put most effort into improving that condlist construction. That's list comprehension buried deep inside your outer loop.
piecewise also loops over those seg_points.
I have an array of values, t, that is always in increasing order (but not always uniformly spaced). I have another single value, x. I need to find the index in t such that t[index] is closest to x. The function must return zero for x < t.min() and the max index (or -1) for x > t.max().
I've written two functions to do this. The first one, f1, is MUCH quicker in this simple timing test. But I like how the second one is just one line. This calculation will be done on a large array, potentially many times per second.
Can anyone come up with some other function with comparable timing to the first but with cleaner looking code? How about something quicker then the first (speed is most important)?
Thanks!
Code:
import numpy as np
import timeit
t = np.arange(10,100000) # Not always uniform, but in increasing order
x = np.random.uniform(10,100000) # Some value to find within t
def f1(t, x):
ind = np.searchsorted(t, x) # Get index to preserve order
ind = min(len(t)-1, ind) # In case x > max(t)
ind = max(1, ind) # In case x < min(t)
if x < (t[ind-1] + t[ind]) / 2.0: # Closer to the smaller number
ind = ind-1
return ind
def f2(t, x):
return np.abs(t-x).argmin()
print t, '\n', x, '\n'
print f1(t, x), '\n', f2(t, x), '\n'
print t[f1(t, x)], '\n', t[f2(t, x)], '\n'
runs = 1000
time = timeit.Timer('f1(t, x)', 'from __main__ import f1, t, x')
print round(time.timeit(runs), 6)
time = timeit.Timer('f2(t, x)', 'from __main__ import f2, t, x')
print round(time.timeit(runs), 6)
This seems much quicker (for me, Python 3.2-win32, numpy 1.6.0):
from bisect import bisect_left
def f3(t, x):
i = bisect_left(t, x)
if t[i] - x > 0.5:
i-=1
return i
Output:
[ 10 11 12 ..., 99997 99998 99999]
37854.22200356027
37844
37844
37844
37854
37854
37854
f1 0.332725
f2 1.387974
f3 0.085864
np.searchsorted is binary search (split the array in half each time). So you have to implement it in a way it return the last value smaller than x instead of returning zero.
Look at this algorithm (from here):
def binary_search(a, x):
lo=0
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
midval = a[mid]
if midval < x:
lo = mid+1
elif midval > x:
hi = mid
else:
return mid
return lo-1 if lo > 0 else 0
just replaced the last line (was return -1). Also changed the arguments.
As the loops are written in Python, it may be slower than the first one... (Not benchmarked)
Use searchsorted:
t = np.arange(10,100000) # Not always uniform, but in increasing order
x = np.random.uniform(10,100000)
print t.searchsorted(x)
Edit:
Ah yes, I see that's what you do in f1. Maybe f3 below is easier to read than f1.
def f3(t, x):
ind = t.searchsorted(x)
if ind == len(t):
return ind - 1 # x > max(t)
elif ind == 0:
return 0
before = ind-1
if x-t[before] < t[ind]-x:
ind -= 1
return ind
I know there is nothing wrong with writing with proper function structure, but I would like to know how can I find nth fibonacci number with most Pythonic way with a one-line.
I wrote that code, but It didn't seem to me best way:
>>> fib = lambda n:reduce(lambda x, y: (x[0]+x[1], x[0]), [(1,1)]*(n-2))[0]
>>> fib(8)
13
How could it be better and simplier?
fib = lambda n:reduce(lambda x,n:[x[1],x[0]+x[1]], range(n),[0,1])[0]
(this maintains a tuple mapped from [a,b] to [b,a+b], initialized to [0,1], iterated N times, then takes the first tuple element)
>>> fib(1000)
43466557686937456435688527675040625802564660517371780402481729089536555417949051
89040387984007925516929592259308032263477520968962323987332247116164299644090653
3187938298969649928516003704476137795166849228875L
(note that in this numbering, fib(0) = 0, fib(1) = 1, fib(2) = 1, fib(3) = 2, etc.)
(also note: reduce is a builtin in Python 2.7 but not in Python 3; you'd need to execute from functools import reduce in Python 3.)
A rarely seen trick is that a lambda function can refer to itself recursively:
fib = lambda n: n if n < 2 else fib(n-1) + fib(n-2)
By the way, it's rarely seen because it's confusing, and in this case it is also inefficient. It's much better to write it on multiple lines:
def fibs():
a = 0
b = 1
while True:
yield a
a, b = b, a + b
I recently learned about using matrix multiplication to generate Fibonacci numbers, which was pretty cool. You take a base matrix:
[1, 1]
[1, 0]
and multiply it by itself N times to get:
[F(N+1), F(N)]
[F(N), F(N-1)]
This morning, doodling in the steam on the shower wall, I realized that you could cut the running time in half by starting with the second matrix, and multiplying it by itself N/2 times, then using N to pick an index from the first row/column.
With a little squeezing, I got it down to one line:
import numpy
def mm_fib(n):
return (numpy.matrix([[2,1],[1,1]])**(n//2))[0,(n+1)%2]
>>> [mm_fib(i) for i in range(20)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181]
This is a closed expression for the Fibonacci series that uses integer arithmetic, and is quite efficient.
fib = lambda n:pow(2<<n,n+1,(4<<2*n)-(2<<n)-1)%(2<<n)
>> fib(1000)
4346655768693745643568852767504062580256466051737178
0402481729089536555417949051890403879840079255169295
9225930803226347752096896232398733224711616429964409
06533187938298969649928516003704476137795166849228875L
It computes the result in O(log n) arithmetic operations, each acting on integers with O(n) bits. Given that the result (the nth Fibonacci number) is O(n) bits, the method is quite reasonable.
It's based on genefib4 from http://fare.tunes.org/files/fun/fibonacci.lisp , which in turn was based on an a less efficient closed-form integer expression of mine (see: http://paulhankin.github.io/Fibonacci/)
If we consider the "most Pythonic way" to be elegant and effective then:
def fib(nr):
return int(((1 + math.sqrt(5)) / 2) ** nr / math.sqrt(5) + 0.5)
wins hands down. Why use a inefficient algorithm (and if you start using memoization we can forget about the oneliner) when you can solve the problem just fine in O(1) by approximation the result with the golden ratio? Though in reality I'd obviously write it in this form:
def fib(nr):
ratio = (1 + math.sqrt(5)) / 2
return int(ratio ** nr / math.sqrt(5) + 0.5)
More efficient and much easier to understand.
This is a non-recursive (anonymous) memoizing one liner
fib = lambda x,y=[1,1]:([(y.append(y[-1]+y[-2]),y[-1])[1] for i in range(1+x-len(y))],y[x])[1]
fib = lambda n, x=0, y=1 : x if not n else fib(n-1, y, x+y)
run time O(n), fib(0) = 0, fib(1) = 1, fib(2) = 1 ...
I'm Python newcomer, but did some measure for learning purposes. I've collected some fibo algorithm and took some measure.
from datetime import datetime
import matplotlib.pyplot as plt
from functools import wraps
from functools import reduce
from functools import lru_cache
import numpy
def time_it(f):
#wraps(f)
def wrapper(*args, **kwargs):
start_time = datetime.now()
f(*args, **kwargs)
end_time = datetime.now()
elapsed = end_time - start_time
elapsed = elapsed.microseconds
return elapsed
return wrapper
#time_it
def fibslow(n):
if n <= 1:
return n
else:
return fibslow(n-1) + fibslow(n-2)
#time_it
#lru_cache(maxsize=10)
def fibslow_2(n):
if n <= 1:
return n
else:
return fibslow_2(n-1) + fibslow_2(n-2)
#time_it
def fibfast(n):
if n <= 1:
return n
a, b = 0, 1
for i in range(1, n+1):
a, b = b, a + b
return a
#time_it
def fib_reduce(n):
return reduce(lambda x, n: [x[1], x[0]+x[1]], range(n), [0, 1])[0]
#time_it
def mm_fib(n):
return (numpy.matrix([[2, 1], [1, 1]])**(n//2))[0, (n+1) % 2]
#time_it
def fib_ia(n):
return pow(2 << n, n+1, (4 << 2 * n) - (2 << n)-1) % (2 << n)
if __name__ == '__main__':
X = range(1, 200)
# fibslow_times = [fibslow(i) for i in X]
fibslow_2_times = [fibslow_2(i) for i in X]
fibfast_times = [fibfast(i) for i in X]
fib_reduce_times = [fib_reduce(i) for i in X]
fib_mm_times = [mm_fib(i) for i in X]
fib_ia_times = [fib_ia(i) for i in X]
# print(fibslow_times)
# print(fibfast_times)
# print(fib_reduce_times)
plt.figure()
# plt.plot(X, fibslow_times, label='Slow Fib')
plt.plot(X, fibslow_2_times, label='Slow Fib w cache')
plt.plot(X, fibfast_times, label='Fast Fib')
plt.plot(X, fib_reduce_times, label='Reduce Fib')
plt.plot(X, fib_mm_times, label='Numpy Fib')
plt.plot(X, fib_ia_times, label='Fib ia')
plt.xlabel('n')
plt.ylabel('time (microseconds)')
plt.legend()
plt.show()
The result is usually the same.
Fiboslow_2 with recursion and cache, Fib integer arithmetic and Fibfast algorithms seems the best ones. Maybe my decorator not the best thing to measure performance, but for an overview it seemed good.
Another example, taking the cue from Mark Byers's answer:
fib = lambda n,a=0,b=1: a if n<=0 else fib(n-1,b,a+b)
I wanted to see if I could create an entire sequence, not just the final value.
The following will generate a list of length 100. It excludes the leading [0, 1] and works for both Python2 and Python3. No other lines besides the one!
(lambda i, x=[0,1]: [(x.append(x[y+1]+x[y]), x[y+1]+x[y])[1] for y in range(i)])(100)
Output
[1,
2,
3,
...
218922995834555169026,
354224848179261915075,
573147844013817084101]
Here's an implementation that doesn't use recursion, and only memoizes the last two values instead of the whole sequence history.
nthfib() below is the direct solution to the original problem (as long as imports are allowed)
It's less elegant than using the Reduce methods above, but, although slightly different that what was asked for, it gains the ability to to be used more efficiently as an infinite generator if one needs to output the sequence up to the nth number as well (re-writing slightly as fibgen() below).
from itertools import imap, islice, repeat
nthfib = lambda n: next(islice((lambda x=[0, 1]: imap((lambda x: (lambda setx=x.__setitem__, x0_temp=x[0]: (x[1], setx(0, x[1]), setx(1, x0_temp+x[1]))[0])()), repeat(x)))(), n-1, None))
>>> nthfib(1000)
43466557686937456435688527675040625802564660517371780402481729089536555417949051
89040387984007925516929592259308032263477520968962323987332247116164299644090653
3187938298969649928516003704476137795166849228875L
from itertools import imap, islice, repeat
fibgen = lambda:(lambda x=[0,1]: imap((lambda x: (lambda setx=x.__setitem__, x0_temp=x[0]: (x[1], setx(0, x[1]), setx(1, x0_temp+x[1]))[0])()), repeat(x)))()
>>> list(islice(fibgen(),12))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]
def fib(n):
x =[0,1]
for i in range(n):
x=[x[1],x[0]+x[1]]
return x[0]
take the cue from Jason S, i think my version have a better understanding.
Starting Python 3.8, and the introduction of assignment expressions (PEP 572) (:= operator), we can use and update a variable within a list comprehension:
fib = lambda n,x=(0,1):[x := (x[1], sum(x)) for i in range(n+1)][-1][0]
This:
Initiates the duo n-1 and n-2 as a tuple x=(0, 1)
As part of a list comprehension looping n times, x is updated via an assignment expression (x := (x[1], sum(x))) to the new n-1 and n-2 values
Finally, we return from the last iteration, the first part of the x
To solve this problem I got inspired by a similar question here in Stackoverflow Single Statement Fibonacci, and I got this single line function that can output a list of fibonacci sequence. Though, this is a Python 2 script, not tested on Python 3:
(lambda n, fib=[0,1]: fib[:n]+[fib.append(fib[-1] + fib[-2]) or fib[-1] for i in range(n-len(fib))])(10)
assign this lambda function to a variable to reuse it:
fib = (lambda n, fib=[0,1]: fib[:n]+[fib.append(fib[-1] + fib[-2]) or fib[-1] for i in range(n-len(fib))])
fib(10)
output is a list of fibonacci sequence:
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
I don't know if this is the most pythonic method but this is the best i could come up with:->
Fibonacci = lambda x,y=[1,1]:[1]*x if (x<2) else ([y.append(y[q-1] + y[q-2]) for q in range(2,x)],y)[1]
The above code doesn't use recursion, just a list to store the values.
My 2 cents
# One Liner
def nthfibonacci(n):
return long(((((1+5**.5)/2)**n)-(((1-5**.5)/2)**n))/5**.5)
OR
# Steps
def nthfibonacci(nth):
sq5 = 5**.5
phi1 = (1+sq5)/2
phi2 = -1 * (phi1 -1)
n1 = phi1**(nth+1)
n2 = phi2**(nth+1)
return long((n1 - n2)/sq5)
Why not use a list comprehension?
from math import sqrt, floor
[floor(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))) for n in range(100)]
Without math imports, but less pretty:
[int(((1+(5**0.5))**n-(1-(5**0.5))**n)/(2**n*(5**0.5))) for n in range(100)]
import math
sqrt_five = math.sqrt(5)
phi = (1 + sqrt_five) / 2
fib = lambda n : int(round(pow(phi, n) / sqrt_five))
print([fib(i) for i in range(1, 26)])
single line lambda fibonacci but with some extra variables
Similar:
def fibonacci(n):
f=[1]+[0]
for i in range(n):
f=[sum(f)] + f[:-1]
print f[1]
A simple Fibonacci number generator using recursion
fib = lambda x: 1-x if x < 2 else fib(x-1)+fib(x-2)
print fib(100)
This takes forever to calculate fib(100) in my computer.
There is also closed form of Fibonacci numbers.
fib = lambda n: int(1/sqrt(5)*((1+sqrt(5))**n-(1-sqrt(5))**n)/2**n)
print fib(50)
This works nearly up to 72 numbers due to precision problem.
Lambda with logical operators
fibonacci_oneline = lambda n = 10, out = []: [ out.append(i) or i if i <= 1 else out.append(out[-1] + out[-2]) or out[-1] for i in range(n)]
here is how i do it ,however the function returns None for the list comprehension line part to allow me to insert a loop inside ..
so basically what it does is appending new elements of the fib seq inside of a list which is over two elements
>>f=lambda list,x :print('The list must be of 2 or more') if len(list)<2 else [list.append(list[-1]+list[-2]) for i in range(x)]
>>a=[1,2]
>>f(a,7)
You can generate once a list with some values and use as needed:
fib_fix = []
fib = lambda x: 1 if x <=2 else fib_fix[x-3] if x-2 <= len(fib_fix) else (fib_fix.append(fib(x-2) + fib(x-1)) or fib_fix[-1])
fib_x = lambda x: [fib(n) for n in range(1,x+1)]
fib_100 = fib_x(100)
than for example:
a = fib_fix[76]