Multiprocessing.Pool makes Numpy matrix multiplication slower - python

So, I am playing around with multiprocessing.Pool and Numpy, but it seems I missed some important point. Why is the pool version much slower? I looked at htop and I can see several processes be created, but they all share one of the CPUs adding up to ~100%.
$ cat test_multi.py
import numpy as np
from timeit import timeit
from multiprocessing import Pool
def mmul(matrix):
for i in range(100):
matrix = matrix * matrix
return matrix
if __name__ == '__main__':
matrices = []
for i in range(4):
matrices.append(np.random.random_integers(100, size=(1000, 1000)))
pool = Pool(8)
print timeit(lambda: map(mmul, matrices), number=20)
print timeit(lambda: pool.map(mmul, matrices), number=20)
$ python test_multi.py
16.0265390873
19.097837925
[update]
changed to timeit for benchmarking processes
init Pool with a number of my cores
changed computation so that there is more computation and less memory transfer (I hope)
Still no change. pool version is still slower and I can see in htop that only one core is used also several processes are spawned.
[update2]
At the moment I am reading about #Jan-Philip Gehrcke's suggestion to use multiprocessing.Process() and Queue. But in the meantime I would like to know:
Why does my example work for tiago? What could be the reason it is not working on my machine1?
Is in my example code any copying between the processes? I intended my code to give each thread one matrix of the matrices list.
Is my code a bad example, because I use Numpy?
I learned that often one gets better answer, when the others know my end goal so: I have a lot of files, which are atm loaded and processed in a serial fashion. The processing is CPU intense, so I assume much could be gained by parallelization. My aim is it to call the python function that analyses a file in parallel. Furthermore this function is just an interface to C code, I assume, that makes a difference.
1 Ubuntu 12.04, Python 2.7.3, i7 860 # 2.80 - Please leave a comment if you need more info.
[update3]
Here are the results from Stefano's example code. For some reason there is no speed up. :/
testing with 16 matrices
base 4.27
1 5.07
2 4.76
4 4.71
8 4.78
16 4.79
testing with 32 matrices
base 8.82
1 10.39
2 10.58
4 10.73
8 9.46
16 9.54
testing with 64 matrices
base 17.38
1 19.34
2 19.62
4 19.59
8 19.39
16 19.34
[update 4] answer to Jan-Philip Gehrcke's comment
Sorry that I haven't made myself clearer. As I wrote in Update 2 my main goal is it to parallelize many serial calls of a 3rd party Python library function. This function is an interface to some C code. I was recommended to use Pool, but this didn't work, so I tried something simpler, the shown above example with numpy. But also there I could not achieve a performance improvement, even though it looks for me 'emberassing parallelizable`. So I assume I must have missed something important. This information is what I am looking for with this question and bounty.
[update 5]
Thanks for all your tremendous input. But reading through your answers only creates more questions for me. For that reason I will read about the basics and create new SO questions when I have a clearer understanding of what I don't know.

Regarding the fact that all of your processes are running on the same CPU, see my answer here.
During import, numpy changes the CPU affinity of the parent process, such that when you later use Pool all of the worker processes that it spawns will end up vying for for the same core, rather than using all of the cores available on your machine.
You can call taskset after you import numpy to reset the CPU affinity so that all cores are used:
import numpy as np
import os
from timeit import timeit
from multiprocessing import Pool
def mmul(matrix):
for i in range(100):
matrix = matrix * matrix
return matrix
if __name__ == '__main__':
matrices = []
for i in range(4):
matrices.append(np.random.random_integers(100, size=(1000, 1000)))
print timeit(lambda: map(mmul, matrices), number=20)
# after importing numpy, reset the CPU affinity of the parent process so
# that it will use all cores
os.system("taskset -p 0xff %d" % os.getpid())
pool = Pool(8)
print timeit(lambda: pool.map(mmul, matrices), number=20)
Output:
$ python tmp.py
12.4765810966
pid 29150's current affinity mask: 1
pid 29150's new affinity mask: ff
13.4136221409
If you watch CPU useage using top while you run this script, you should see it using all of your cores when it executes the 'parallel' part. As others have pointed out, in your original example the overhead involved in pickling data, process creation etc. probably outweigh any possible benefit from parallelisation.
Edit: I suspect that part of the reason why the single process seems to be consistently faster is that numpy may have some tricks for speeding up that element-wise matrix multiplication that it cannot use when the jobs are spread across multiple cores.
For example, if I just use ordinary Python lists to compute the Fibonacci sequence, I can get a huge speedup from parallelisation. Likewise, if I do element-wise multiplication in a way that takes no advantage of vectorization, I get a similar speedup for the parallel version:
import numpy as np
import os
from timeit import timeit
from multiprocessing import Pool
def fib(dummy):
n = [1,1]
for ii in xrange(100000):
n.append(n[-1]+n[-2])
def silly_mult(matrix):
for row in matrix:
for val in row:
val * val
if __name__ == '__main__':
dt = timeit(lambda: map(fib, xrange(10)), number=10)
print "Fibonacci, non-parallel: %.3f" %dt
matrices = [np.random.randn(1000,1000) for ii in xrange(10)]
dt = timeit(lambda: map(silly_mult, matrices), number=10)
print "Silly matrix multiplication, non-parallel: %.3f" %dt
# after importing numpy, reset the CPU affinity of the parent process so
# that it will use all CPUS
os.system("taskset -p 0xff %d" % os.getpid())
pool = Pool(8)
dt = timeit(lambda: pool.map(fib,xrange(10)), number=10)
print "Fibonacci, parallel: %.3f" %dt
dt = timeit(lambda: pool.map(silly_mult, matrices), number=10)
print "Silly matrix multiplication, parallel: %.3f" %dt
Output:
$ python tmp.py
Fibonacci, non-parallel: 32.449
Silly matrix multiplication, non-parallel: 40.084
pid 29528's current affinity mask: 1
pid 29528's new affinity mask: ff
Fibonacci, parallel: 9.462
Silly matrix multiplication, parallel: 12.163

The unpredictable competition between communication overhead and computation speedup is definitely the issue here. What you are observing is perfectly fine. Whether you get a net speed-up depends on many factors and is something that has to be quantified properly (as you did).
So why is multiprocessing so "unexpectedly slow" in your case? multiprocessing's map and map_async functions actually pickle Python objects back and forth through pipes that connect the parent with the child processes. This may take a considerable amount of time. During that time, the child processes have almost nothing to do, which is what to see in htop. Between different systems, there might be a considerable pipe transport performance difference, which is also why for some people your pool code is faster than your single CPU code, although for you it is not (other factors might come into play here, this is just an example in order to explain the effect).
What can you do to make it faster?
Don't pickle the input on POSIX-compliant systems.
If you are on Unix, you can get around the parent->child communication overhead via taking advantage of POSIX' process fork behavior (copy memory on write):
Create your job input (e.g. a list of large matrices) to work on in the parent process in a globally accessible variable. Then create worker processes by calling multiprocessing.Process() yourself. In the children, grab the job input from the global variable. Simply expressed, this makes the child access the memory of the parent without any communication overhead (*, explanation below). Send the result back to the parent, through e.g. a multiprocessing.Queue. This will save a lot of communication overhead, especially if the output is small compared to the input. This method won't work on e.g. Windows, because multiprocessing.Process() there creates an entirely new Python process that does not inherit the state of the parent.
Make use of numpy multithreading.
Depending on your actual calculation task, it might happen that involving multiprocessing won't help at all. If you compile numpy yourself and enable OpenMP directives, then operations on larges matrices might become very efficiently multithreaded (and distributed over many CPU cores; the GIL is no limiting factor here) by themselves. Basically, this is the most efficient usage of multiple CPU cores you can get in the context of numpy/scipy.
*The child cannot directly access the parent's memory in general. However, after fork(), parent and child are in an equivalent state. It would be stupid to copy the entire memory of the parent to another place in the RAM. That's why the copy-on-write principle jumps in. As long as the child does not change its memory state, it actually accesses the parent's memory. Only upon modification, the corresponding bits and pieces are copied into the memory space of the child.
Major edit:
Let me add a piece of code that crunches a large amount of input data with multiple worker processes and follows the advice "1. Don't pickle the input on POSIX-compliant systems.". Furthermore, the amount of information transferred back to the worker manager (the parent process) is quite low. The heavy computation part of this example is a single value decomposition. It can make heavy use of OpenMP. I have executed the example multiple times:
Once with 1, 2, or 4 worker processes and OMP_NUM_THREADS=1, so each worker process creates a maximum load of 100 %. There, the mentioned number-of-workers-compute-time scaling behavior is almost linear and the net speedup factor up corresponds to the number of workers involved.
Once with 1, 2, or 4 worker processes and OMP_NUM_THREADS=4, so that each process creates a maximum load of 400 % (via spawning 4 OpenMP threads). My machine has 16 real cores, so 4 processes with max 400 % load each will almost get the maximum performance out of the machine. The scaling is not perfectly linear anymore and the speedup factor is not the number of workers involved, but the absolute calculation time becomes significantly reduced compared to OMP_NUM_THREADS=1 and time still decreases significantly with the number of worker processes.
Once with larger input data, 4 cores, and OMP_NUM_THREADS=4. It results in an average system load of 1253 %.
Once with same setup as last, but OMP_NUM_THREADS=5. It results in an average system load of 1598 %, which suggests that we got everything from that 16 core machine. However, the actual computation wall time does not improve compared to the latter case.
The code:
import os
import time
import math
import numpy as np
from numpy.linalg import svd as svd
import multiprocessing
# If numpy is compiled for OpenMP, then make sure to control
# the number of OpenMP threads via the OMP_NUM_THREADS environment
# variable before running this benchmark.
MATRIX_SIZE = 1000
MATRIX_COUNT = 16
def rnd_matrix():
offset = np.random.randint(1,10)
stretch = 2*np.random.rand()+0.1
return offset + stretch * np.random.rand(MATRIX_SIZE, MATRIX_SIZE)
print "Creating input matrices in parent process."
# Create input in memory. Children access this input.
INPUT = [rnd_matrix() for _ in xrange(MATRIX_COUNT)]
def worker_function(result_queue, worker_index, chunk_boundary):
"""Work on a certain chunk of the globally defined `INPUT` list.
"""
result_chunk = []
for m in INPUT[chunk_boundary[0]:chunk_boundary[1]]:
# Perform single value decomposition (CPU intense).
u, s, v = svd(m)
# Build single numeric value as output.
output = int(np.sum(s))
result_chunk.append(output)
result_queue.put((worker_index, result_chunk))
def work(n_workers=1):
def calc_chunksize(l, n):
"""Rudimentary function to calculate the size of chunks for equal
distribution of a list `l` among `n` workers.
"""
return int(math.ceil(len(l)/float(n)))
# Build boundaries (indices for slicing) for chunks of `INPUT` list.
chunk_size = calc_chunksize(INPUT, n_workers)
chunk_boundaries = [
(i, i+chunk_size) for i in xrange(0, len(INPUT), chunk_size)]
# When n_workers and input list size are of same order of magnitude,
# the above method might have created less chunks than workers available.
if n_workers != len(chunk_boundaries):
return None
result_queue = multiprocessing.Queue()
# Prepare child processes.
children = []
for worker_index in xrange(n_workers):
children.append(
multiprocessing.Process(
target=worker_function,
args=(
result_queue,
worker_index,
chunk_boundaries[worker_index],
)
)
)
# Run child processes.
for c in children:
c.start()
# Create result list of length of `INPUT`. Assign results upon arrival.
results = [None] * len(INPUT)
# Wait for all results to arrive.
for _ in xrange(n_workers):
worker_index, result_chunk = result_queue.get(block=True)
chunk_boundary = chunk_boundaries[worker_index]
# Store the chunk of results just received to the overall result list.
results[chunk_boundary[0]:chunk_boundary[1]] = result_chunk
# Join child processes (clean up zombies).
for c in children:
c.join()
return results
def main():
durations = []
n_children = [1, 2, 4]
for n in n_children:
print "Crunching input with %s child(ren)." % n
t0 = time.time()
result = work(n)
if result is None:
continue
duration = time.time() - t0
print "Result computed by %s child process(es): %s" % (n, result)
print "Duration: %.2f s" % duration
durations.append(duration)
normalized_durations = [durations[0]/d for d in durations]
for n, normdur in zip(n_children, normalized_durations):
print "%s-children speedup: %.2f" % (n, normdur)
if __name__ == '__main__':
main()
The output:
$ export OMP_NUM_THREADS=1
$ /usr/bin/time python test2.py
Creating input matrices in parent process.
Crunching input with 1 child(ren).
Result computed by 1 child process(es): [5587, 8576, 11566, 12315, 7453, 23245, 6136, 12387, 20634, 10661, 15091, 14090, 11997, 20597, 21991, 7972]
Duration: 16.66 s
Crunching input with 2 child(ren).
Result computed by 2 child process(es): [5587, 8576, 11566, 12315, 7453, 23245, 6136, 12387, 20634, 10661, 15091, 14090, 11997, 20597, 21991, 7972]
Duration: 8.27 s
Crunching input with 4 child(ren).
Result computed by 4 child process(es): [5587, 8576, 11566, 12315, 7453, 23245, 6136, 12387, 20634, 10661, 15091, 14090, 11997, 20597, 21991, 7972]
Duration: 4.37 s
1-children speedup: 1.00
2-children speedup: 2.02
4-children speedup: 3.81
48.75user 1.75system 0:30.00elapsed 168%CPU (0avgtext+0avgdata 1007936maxresident)k
0inputs+8outputs (1major+809308minor)pagefaults 0swaps
$ export OMP_NUM_THREADS=4
$ /usr/bin/time python test2.py
Creating input matrices in parent process.
Crunching input with 1 child(ren).
Result computed by 1 child process(es): [22735, 5932, 15692, 14129, 6953, 12383, 17178, 14896, 16270, 5591, 4174, 5843, 11740, 17430, 15861, 12137]
Duration: 8.62 s
Crunching input with 2 child(ren).
Result computed by 2 child process(es): [22735, 5932, 15692, 14129, 6953, 12383, 17178, 14896, 16270, 5591, 4174, 5843, 11740, 17430, 15861, 12137]
Duration: 4.92 s
Crunching input with 4 child(ren).
Result computed by 4 child process(es): [22735, 5932, 15692, 14129, 6953, 12383, 17178, 14896, 16270, 5591, 4174, 5843, 11740, 17430, 15861, 12137]
Duration: 2.95 s
1-children speedup: 1.00
2-children speedup: 1.75
4-children speedup: 2.92
106.72user 3.07system 0:17.19elapsed 638%CPU (0avgtext+0avgdata 1022240maxresident)k
0inputs+8outputs (1major+841915minor)pagefaults 0swaps
$ /usr/bin/time python test2.py
Creating input matrices in parent process.
Crunching input with 4 child(ren).
Result computed by 4 child process(es): [21762, 26806, 10148, 22947, 20900, 8161, 20168, 17439, 23497, 26360, 6789, 11216, 12769, 23022, 26221, 20480, 19140, 13757, 23692, 19541, 24644, 21251, 21000, 21687, 32187, 5639, 23314, 14678, 18289, 12493, 29766, 14987, 12580, 17988, 20853, 4572, 16538, 13284, 18612, 28617, 19017, 23145, 11183, 21018, 10922, 11709, 27895, 8981]
Duration: 12.69 s
4-children speedup: 1.00
174.03user 4.40system 0:14.23elapsed 1253%CPU (0avgtext+0avgdata 2887456maxresident)k
0inputs+8outputs (1major+1211632minor)pagefaults 0swaps
$ export OMP_NUM_THREADS=5
$ /usr/bin/time python test2.py
Creating input matrices in parent process.
Crunching input with 4 child(ren).
Result computed by 4 child process(es): [19528, 17575, 21792, 24303, 6352, 22422, 25338, 18183, 15895, 19644, 20161, 22556, 24657, 30571, 13940, 18891, 10866, 21363, 20585, 15289, 6732, 10851, 11492, 29146, 12611, 15022, 18967, 25171, 10759, 27283, 30413, 14519, 25456, 18934, 28445, 12768, 28152, 24055, 9285, 26834, 27731, 33398, 10172, 22364, 12117, 14967, 18498, 8111]
Duration: 13.08 s
4-children speedup: 1.00
230.16user 5.98system 0:14.77elapsed 1598%CPU (0avgtext+0avgdata 2898640maxresident)k
0inputs+8outputs (1major+1219611minor)pagefaults 0swaps

Your code is correct. I just ran it my system (with 2 cores, hyperthreading) and obtained the following results:
$ python test_multi.py
30.8623809814
19.3914041519
I looked at the processes and, as expected, the parallel part showing several processes working at near 100%. This must be something in your system or python installation.

By default, Pool only uses n processes, where n is the number of CPUs on your machine. You need to specify how many processes you want it to use, like Pool(5).
See here for more info

Measuring arithmetic throughput is a very difficult task: basically your test case is too simple, and I see many problems.
First you are testing integer arithmetic: is there a special reason? With floating point you get results that are comparable across many different architectures.
Second matrix = matrix*matrix overwrites the input parameter (matrices are passed by ref and not by value), and each sample has to work on different data...
Last tests should be conducted over a wider range of problem size and number of workers, in order to grasp general trends.
So here is my modified test script
import numpy as np
from timeit import timeit
from multiprocessing import Pool
def mmul(matrix):
mymatrix = matrix.copy()
for i in range(100):
mymatrix *= mymatrix
return mymatrix
if __name__ == '__main__':
for n in (16, 32, 64):
matrices = []
for i in range(n):
matrices.append(np.random.random_sample(size=(1000, 1000)))
stmt = 'from __main__ import mmul, matrices'
print 'testing with', n, 'matrices'
print 'base',
print '%5.2f' % timeit('r = map(mmul, matrices)', setup=stmt, number=1)
stmt = 'from __main__ import mmul, matrices, pool'
for i in (1, 2, 4, 8, 16):
pool = Pool(i)
print "%4d" % i,
print '%5.2f' % timeit('r = pool.map(mmul, matrices)', setup=stmt, number=1)
pool.close()
pool.join()
and my results:
$ python test_multi.py
testing with 16 matrices
base 5.77
1 6.72
2 3.64
4 3.41
8 2.58
16 2.47
testing with 32 matrices
base 11.69
1 11.87
2 9.15
4 5.48
8 4.68
16 3.81
testing with 64 matrices
base 22.36
1 25.65
2 15.60
4 12.20
8 9.28
16 9.04
[UPDATE] I run this example at home on a different computer, obtaining a consistent slow-down:
testing with 16 matrices
base 2.42
1 2.99
2 2.64
4 2.80
8 2.90
16 2.93
testing with 32 matrices
base 4.77
1 6.01
2 5.38
4 5.76
8 6.02
16 6.03
testing with 64 matrices
base 9.92
1 12.41
2 10.64
4 11.03
8 11.55
16 11.59
I have to confess that I do not know who is to blame (numpy, python, compiler, kernel)...

Solution
Set the following environment variables before any calculation (you may need to set them before doing import numpy for some earlier versions of numpy):
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
How does it work
The implementation of numpy is already using multithreading with optimization libraries such as OpenMP or MKL or OpenBLAS, etc. That's why we don't see much improvement by implementing multiprocessing ourselves. Even worse, we suffer too many threads. For example, if my machine has 8 CPU cores, when I write single-processing code, numpy may use 8 threads for the calculation. Then I use multiprocessing to start 8 processes, I get 64 threads. This is not beneficial, and context switching between threads and other overhead can cost more time. By setting the above environment variables, we limit the number of threads per process to 1, so we get the most efficient number of total threads.
Code Example
from timeit import timeit
from multiprocessing import Pool
import sys
import os
import numpy as np
def matmul(_):
matrix = np.ones(shape=(1000, 1000))
_ = np.matmul(matrix, matrix)
def mixed(_):
matrix = np.ones(shape=(1000, 1000))
_ = np.matmul(matrix, matrix)
s = 0
for i in range(1000000):
s += i
if __name__ == '__main__':
if sys.argv[1] == "--set-num-threads":
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
if sys.argv[2] == "matmul":
f = matmul
elif sys.argv[2] == "mixed":
f = mixed
print("Serial:")
print(timeit(lambda: list(map(f, [0] * 8)), number=20))
with Pool(8) as pool:
print("Multiprocessing:")
print(timeit(lambda: pool.map(f, [0] * 8), number=20))
I tested the code on an AWS p3.2xlarge instance which has 8 vCPUs (which doesn't necessarily mean 8 cores):
$ python test_multi.py --no-set-num-threads matmul
Serial:
3.3447616740000115
Multiprocessing:
3.5941055110000093
$ python test_multi.py --set-num-threads matmul
Serial:
9.464500446000102
Multiprocessing:
2.570238267999912
Before setting those environment variables, the serial version and multiprocessing version didn't make much difference, all about 3 seconds, often the multiprocessing version was slower, just like what is demonstrated by the OP. After setting the number of threads, we see the serial version took 9.46 seconds, becoming much slower! This is proof that numpy is utilizing multithreading even when a single process is used. The multiprocessing version took 2.57 seconds, improved a bit, this may be because cross-thread data transferring time was saved in my implementation.
This example didn't show much power of multiprocessing since numpy is already using parallelizing. Multiprocessing is most beneficial when normal Python intensive CPU calculation is mixed with numpy operations. For example
$ python test_multi.py --no-set-num-threads mixed
Serial:
12.380275611000116
Multiprocessing:
8.190792100999943
$ python test_multi.py --set-num-threads mixed
Serial:
18.512066430999994
Multiprocessing:
4.8058130150000125
Here multiprocessing with the number of threads set to 1 is the fastest.
Remark: this also works for some other CPU computation libraries such as PyTorch.

Since you mention that you have a lot of files, I would suggest the following solution;
Make a list of filenames.
Write a function that loads and processes a single file named as the input parameter.
Use Pool.map() to apply the function to the list of files.
Since every instance now loads its own file, the only data passed around are filenames, not (potentially large) numpy arrays.

I also noticed that when I ran numpy matrix multiplication inside of a Pool.map() function, it ran much slower on certain machines. My goal was to parallelize my work using Pool.map(), and run a process on each core of my machine. When things were running fast, the numpy matrix multiplication was only a small part of the overall work performed in parallel. When I looked at the CPU usage of the processes, I could see that each process could use e.g. 400+% CPU on the machines where it ran slow, but always <=100% on the machines where it ran fast. For me, the solution was to stop numpy from multithreading. It turns out that numpy was set up to multithread on exactly the machines where my Pool.map() was running slow. Evidently, if you are already parallelizing using Pool.map(), then having numpy also parallelize just creates interference. I just called export MKL_NUM_THREADS=1 before running my Python code and it worked fast everywhere.

Related

Why is multiprocessing slower than single-core? Would using joblib or dask make a difference?

The issue
I am trying to optimise some calculations which lend themselves to so-called embarrassingly parallel calculations, but I am finding that using python's multiprocessing package actually slows things down.
My question is: am I doing something wrong, or is there an intrinsic reason why parallelisation actually slows things down? Is it because I am using numba? Would other packages like joblib or dak make much of a difference?
There are loads of similar questions, in which the answer is always that the overhead costs more than the time savings, but all those questions tend to revolve around very simple functions, whereas I would have expected something with nested loops to lend itself better to parallelisation. I have also not found comparisons among joblib, multiprocessing and dask.
My function
I have a function which takes a one-dimensional numpy array as argument of shape n, and outputs a numpy array of shape (n x t), where each row is independent, i.e. row 0 of the output depends only on item 0 of the input, row 1 on item 1, etc. Something like this:
The underlying calculation is optimised with numba , which speeds things up by various orders of magnitude.
Toy example - results
I cannot share the exact code, so I have come up with a toy example. The calculation defined in my_fun_numba is actually irrelevant, it's just some very banal number crunching to keep the CPU busy.
With the toy example, the results on my PC are these, and they are very similar to what I get with my actual code.
As you can see, splitting the input array into different chunks and sending each of them to multiprocessing.pool actually slows things down vs just using numba on a single core.
What I have tried
I have tried various combinations of the cache and nogil options in the numba.jit decorator, but the difference is minimal.
I have profiled the code (not the timeit.Timer part, just a single run) with PyCharm and, if I understand the output correctly, it seems most of the time is spent waiting for the pool.
Sorted by time:
Sorted by own time:
Toy example - the code
import numpy as np
import pandas as pd
import multiprocessing
from multiprocessing import Pool
import numba
import timeit
#numba.jit(nopython = True, nogil = True, cache = True)
def my_fun_numba(x):
dim2 = 10
out = np.empty((len(x), dim2))
n = len(x)
for r in range(n):
for c in range(dim2):
out[r,c] = np.cos(x[r]) ** 2 + np.sin(x[r]) ** 2
return out
def my_fun_non_numba(x):
dim2 = 10
out = np.empty((len(x), dim2))
n = len(x)
for r in range(n):
for c in range(dim2):
out[r,c] = np.cos(x[r]) ** 2 + np.sin(x[r]) ** 2
return out
def my_func_parallel(inp, func, cpus = None):
if cpus == None:
cpus = max(1, multiprocessing.cpu_count() - 1)
else:
cpus = cpus
inp_split = np.array_split(inp,cpus)
pool = Pool(cpus)
out = np.vstack(pool.map(func, inp_split) )
pool.close()
pool.join()
return out
if __name__ == "__main__":
inputs = np.array([100,10e3,1e6] ).astype(int)
res = pd.DataFrame(index = inputs, columns =['no paral, no numba','no paral, numba','numba 6 cores','numba 12 cores'])
r = 3
n = 1
for i in inputs:
my_arg = np.arange(0,i)
res.loc[i, 'no paral, no numba'] = min(
timeit.Timer("my_fun_non_numba(my_arg)", globals=globals()).repeat(repeat=r, number=n)
)
res.loc[i, 'no paral, numba'] = min(
timeit.Timer("my_fun_numba(my_arg)", globals=globals()).repeat(repeat=r, number=n)
)
res.loc[i, 'numba 6 cores'] = min(
timeit.Timer("my_func_parallel(my_arg, my_fun_numba, cpus = 6)", globals=globals()).repeat(repeat=r, number=n)
)
res.loc[i, 'numba 12 cores'] = min(
timeit.Timer("my_func_parallel(my_arg, my_fun_numba, cpus = 12)", globals=globals()).repeat(repeat=r, number=n)
)

How to use multiprocessing in Python on for loop to generate nested dictionary?

I am currently generating a nested dictionary that saves some arrays by using a nested for loop. Unfortunately, it takes quite some time; I realized that the server I am working on has a few cores available, so I was wondering if Python's multiprocessing library could be helpful to speed up the creation of the dictionary.
The nested for loop looks something like this (the actual computation is heavier and more complex):
import numpy as np
data_dict = {}
for s in range(1,5):
data_dict[s] = {}
for d in range(1,5):
if s * d > 4:
data_dict[s][d] = np.zeros((s,d))
else:
data_dict[s][d] = np.ones((s,d))
So this is what I tried:
from multiprocessing import Pool
import numpy as np
data_dict = {}
def process():
#sci=fits.open('{}.fits'.format(name))
for s in range(1,5):
data_dict[s] = {}
for d in range(1,5):
if s * d > 4:
data_dict[s][d] = np.zeros((s,d))
else:
data_dict[s][d] = np.ones((s,d))
if __name__ == '__main__':
pool = Pool() # Create a multiprocessing Pool
pool.map(process)
But pool.map (last line) seems to require an iterable, which I'm not sure what to insert there.
In my opinion, the real problem is what kind of processing is needed to compute entries of the dictionary and how many entries are there.
The kind of processing is essential to understand if multiprocessing can significantly speed up the creation of the dictionary. If your computation is I/O bound, you should use multithreading, while if it's CPU bound you should use multiprocessing. You can find more bout this here.
Assuming that the value of each entry can be computed independently and that this computation is CPU bound, let's benchmark the difference between single process and multiprocess implementation (based on multiprocessing library).
The following code is used to test the two approaches in some scenarios, varying the complexity of the computation needed for each entry and the number of entries (for the multiprocess implementation, 7 processes were used).
import timeit
import numpy as np
def some_fun(s, d, n=1):
"""A function with an adaptable complexity"""
a = s * np.ones(np.random.randint(1, 10, (2,))) / (d + 1)
for _ in range(n):
a += np.random.random(a.shape)
return a
# Code to create dictionary with only one process
setup_simple = "from __main__ import some_fun, n_first_level, n_second_level, complexity"
code_simple = """
data_dict = {}
for s in range(n_first_level):
data_dict[s] = {}
for d in range(n_second_level):
data_dict[s][d] = some_fun(s, d, n=complexity)
"""
# Code to create a dictionary with multiprocessing: we are going to use all the available cores except 1
setup_mp = """import numpy as np
import multiprocessing as mp
import itertools
from functools import partial
from __main__ import some_fun, n_first_level, n_second_level, complexity
n_processes = mp.cpu_count() - 1
# Uncomment if you want to know how many concurrent processes are you going to use
# print(f'{n_processes} concurrent processes')
"""
code_mp = """
with mp.Pool(processes=n_processes) as pool:
dict_values = pool.starmap(partial(some_fun, n=complexity), itertools.product(range(n_first_level), range(n_second_level)))
data_dict = {
k: dict(zip(range(n_second_level), dict_values[k * n_second_level: (k + 1) * n_second_level]))
for k in range(n_first_level)
}
"""
# Time the code with different settings
print('Execution time on 10 repetitions: mean [std]')
for label, complexity, n_first_level, n_second_level in (
("TRIVIAL FUNCTION", 0, 10, 10),
("TRIVIAL FUNCTION", 0, 500, 500),
("SIMPLE FUNCTION", 5, 500, 500),
("COMPLEX FUNCTION", 50, 100, 100),
("HEAVY FUNCTION", 1000, 10, 10),
):
print(f'\n{label}, {n_first_level * n_second_level} dictionary entries')
for l, t in (
('Single process', timeit.repeat(stmt=code_simple, setup=setup_simple, number=1, repeat=10)),
('Multiprocess', timeit.repeat(stmt=code_mp, setup=setup_mp, number=1, repeat=10)),
):
print(f'\t{l}: {np.mean(t):.3e} [{np.std(t):.3e}] seconds')
These are the results:
Execution time on 10 repetitions: mean [std]
TRIVIAL FUNCTION, 100 dictionary entries
Single process: 7.752e-04 [7.494e-05] seconds
Multiprocess: 1.163e-01 [2.024e-03] seconds
TRIVIAL FUNCTION, 250000 dictionary entries
Single process: 7.077e+00 [7.098e-01] seconds
Multiprocess: 1.383e+00 [7.752e-02] seconds
SIMPLE FUNCTION, 250000 dictionary entries
Single process: 1.405e+01 [1.422e+00] seconds
Multiprocess: 2.858e+00 [5.742e-01] seconds
COMPLEX FUNCTION, 10000 dictionary entries
Single process: 1.557e+00 [4.330e-02] seconds
Multiprocess: 5.383e-01 [5.330e-02] seconds
HEAVY FUNCTION, 100 dictionary entries
Single process: 3.181e-01 [5.026e-03] seconds
Multiprocess: 1.171e-01 [2.494e-03] seconds
As you can see, assuming that you have a CPU bounded computation, the multiprocess approach achieves better results in most of the scenarios. Only if you have a very light computation for each entry and/or a very limited number of entries, the single process approach should be preferred.
On the other hand, the improvement provided by multiprocessing comes with a cost: for example, if your computation for each entry uses a significant amount of memory, you could incur an OutOfMemory error, meaning that you have to improve your code and make it more complex to avoid it, finding the right balance between memory occupation and decrease in execution time. If you look around, there are a lot of questions asking how to solve memory issues caused by a non-optimal use of multiprocessing. In other words, this means that your code will be less easy to read and maintain.
To sum up, you should judge if the improvement in execution time is worthed, even if it is possible.

"Processes" or "Threads" strategy to fill independant blocks into global array?

In python2, I would like to fill a global array by filling with parallel processes (or threads) different sub-arrays (there is a total 16 blocks). I must precise that each block doesn't depend of the others, I mean when I perfom the assignement of each cells of the current block.
1) From what I have found, I would have a great benefit from a CPU multi-cores by using different "processes" but it seems a little bit complicated to share the global array by all others processes.
2) From another point of view, I can use "threads" instead of "processes" since the implementation is less hard. I have found out the libray "ThreadPool" from "multiprocessing.dummy" allows to share this global array by all others concurrent threads.
For example, with python2.7, the following code works :
from multiprocessing.dummy import Pool as ThreadPool
## discretization along x-axis and y-axis for each block
arrayCross_k = np.linspace(kMIN, kMAX, dimPoints)
arrayCross_mu = np.linspace(-1, 1, dimPoints)
# Build all big matrix with N total blocks = dimBlock*dimBlock = 16 here
arrayFullCross = np.zeros((dimBlocks, dimBlocks, arrayCross_k.size, arrayCross_mu.size))
dimBlocks = 4
# Size of dimension along k and mu axis
dimPoints = 100
# dimension along one dimension of global arrayFullCross
dimMatCovCross = dimBlocks*dimPoints
# Build cross-correlation matrix
def buildCrossMatrix_loop(params_array):
# rows indices
xb = params_array[0]
# columns indices
yb = params_array[1]
# Current redshift
z = zrange[params_array[2]]
# Loop inside block
for ub in range(dimPoints):
for vb in range(dimPoints):
# Diagonal blocs
if (xb == yb):
# Fill the (xb,yb) su-block of global array by
arrayFullCross[xb][xb][ub][vb] = 2*P_obs_cross(arrayCross_k[ub], arrayCross_mu[vb] , z, 10**P_m(np.log10(arrayCross_k[ub])),
...
...
# End of function buildCrossMatrix_loop
# Main loop
while i < len(zrange):
def generatorCrossMatrix(index):
for igen in range(dimBlocks):
for lgen in range(dimBlocks):
yield igen, lgen, index
if __name__ == '__main__':
# Use 20 threads
pool = ThreadPool(20)
pool.map(buildCrossMatrix_loop, generatorCrossMatrix(i))
# Increment index "i"
i = i+1
But unfortunately, even by using 20 threads, I realize that the cores of my CPU are not fully running (actually, with 'top' or 'htop' command, I only see a single process at 100%).
3) What is the strategy that I have to chose if I want to full exploit the 16 cores of my CPU (like this is the case with pool.map(function, generator)) but with also the sharing of global array ?
4) some people told me to do I/O for each sub-array (basically, write each block in a file and gather all sub-arrays by reading them and get the full array filled). This solution is handy but I would like to avoid I/O (unless there is really not other solutions).
5) I have practised MPI library with C language and the operation of filling sub-array and finally gather them to build a big array, is not very complicated. However, I wouldn't like to use MPI with Python language (I don't know even if it exists).
6) I tried also to use Process with target equal to my filling function (buildCrossMatrix_loop) like this into while Main loop above :
from multiprocessing import Process
# Main loop on z range
while i < len(zrange):
params_p = []
for ip in range(4):
for jp in range(4):
params_p.append(ip)
params_p.append(jp)
params_p.append(i)
p = Process(target=buildCrossMatrix_loop, args=(params_p,))
params_p = []
p.start()
# Finished : wait everybody
p.join()
...
...
i = i+1
# End of main while loop
But the final 2D global array is filled only of zeros. So I must deduce that Process function doesn't share the array to fill ?
7) So which strategy I have to look for ? :
1. The using of "pool processes" and find a way to share the global array knowing all my 16-cores will be running
2. The using of "Threads" and share the global array but performances, at first sight, seems to be less good than with "pool processes". Maybe there is a way to increase the power of each "Threads", I mean like with "pool processes" ?
I tried to follow the different examples on https://docs.python.org/2/library/multiprocessing.html but without success, this is to say, without relevant performances from a speed-up point of view.
I think that in my case, the major issue is the gathering of all sub-arrays OR the fact that the global array arrayFullCross is not shared by other processes or threads.
If someone had a simple example of the sharing of global variable in a multi-threading context (here an array), this would nice to put it here.
UPDATE 1: I made test with the Threading (and not multiprocessing) but performances remain rather bad. GIL is not apparently unlocked, i.e only one process appears in htop command (maybe the version of Threading library is not the right one).
So I am going to try to handle my issue with using the "return" method.
Naively, I tried to return the whole array at the end of the function on which I apply the map function, like this :
# Build cross-correlation matrix
def buildCrossMatrix_loop(params_array):
# rows indices
xb = params_array[0]
# columns indices
yb = params_array[1]
# Current redshift
z = zrange[params_array[2]]
# Loop inside block
for ub in range(dimPoints):
for vb in range(dimPoints):
# Diagonal blocs
if (xb == yb):
arrayFullCross[xb][xb][ub][vb] = 2*P_obs_cross(arrayCross_k[ub], arrayCross_mu[vb])
...
... #others assignments on arrayFullCross elements
# Return global array to main process
return arrayFullCross
Then, I tried to receive this global array from map like this :
if __name__ == '__main__':
pool = Pool(16)
outputArray = pool.map(buildCrossMatrix_loop, generatorCrossMatrix(i))
pool.terminate()
## Print outputArray
print 'outputArray = ', outputArray
## Reshape 4D outputArray to 2D array
arrayFullCross2D_swap = np.array(outputArray).swapaxes(1,2).reshape(dimMatCovCross,dimMatCovCross)
Unfortunately, when I print the outputArray, I get :
outputArray = [None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
This is not the 4D outputArray expected, just a list of 16 None (I think that number of 16 correspond to the number of processes provided by generatorCrossMatrix(i)).
How could I get back the whole 4D array once map is launched and when it has finished ?
First of all I believe multiprocessing.ThreadPool is a private API so you should avoid it. Now multiprocessing.dummy is a useless module. It does not do any multithreading/processing that's why you don't see any benefit. You should use the "plain" multiprocessing module.
The second code does not work because it is using multiple processes. Processes do not share memory, so the changes you do in a subprocess are not reflected in the other subprocesses or the main process. You either want to:
Return the value and combine them together in the main process, for example using multiprocessing.Pool.map
Use threading instead of multiprocessing: just replaceimport multiprocessingwithimport threadingandmultiprocessing.Processwiththreading.Thread` and the code should work.
Note that the threading version will work only because numpy releases the GIL during computations, otherwise it would be stuck at 1 CPU.
You may want to look at this similar question which I answered a couple of minutes ago.

Multiprocessing from joblib doesn't parallelize?

Since I moved from python3.5 to 3.6 the Parallel computation using joblib is not reducing the computation time.
Here are the librairies installed versions:
- python: 3.6.3
- joblib: 0.11
- numpy: 1.14.0
Based on a very well known example, I give below a sample code to reproduce the problem:
import time
import numpy as np
from joblib import Parallel, delayed
def square_int(i):
return i * i
ndata = 1000000
ti = time.time()
results = []
for i in range(ndata):
results.append(square_int(i))
duration = np.round(time.time() - ti,4)
print(f"standard computation: {duration} s" )
for njobs in [1,2,3,4] :
ti = time.time()
results = []
results = Parallel(n_jobs=njobs, backend="multiprocessing")\
(delayed(square_int)(i) for i in range(ndata))
duration = np.round(time.time() - ti,4)
print(f"{njobs} jobs computation: {duration} s" )
I got the following ouput:
standard computation: 0.2672 s
1 jobs computation: 352.3113 s
2 jobs computation: 6.9662 s
3 jobs computation: 7.2556 s
4 jobs computation: 7.097 s
While I am increasing by a factor of 10 the number of ndata and removing the 1 core computation, I get those results:
standard computation: 2.4739 s
2 jobs computation: 77.8861 s
3 jobs computation: 79.9909 s
4 jobs computation: 83.1523 s
Does anyone have an idea in which direction I should investigate ?
I think the primary reason is that your overhead from parallel beats the benefits. In another word, your square_int is too simple to earn any performance improvement via parallel. The square_int is so simple that passing input and output between processes may take more time than executing the function square_int.
I modified your code by creating a square_int_batch function. It reduced the computation time a lot, though it is still more than the serial implementation.
import time
import numpy as np
from joblib import Parallel, delayed
def square_int(i):
return i * i
def square_int_batch(a,b):
results=[]
for i in range(a,b):
results.append(square_int(i))
return results
ndata = 1000000
ti = time.time()
results = []
for i in range(ndata):
results.append(square_int(i))
# results = [square_int(i) for i in range(ndata)]
duration = np.round(time.time() - ti,4)
print(f"standard computation: {duration} s" )
batch_num = 3
batch_size=int(ndata/batch_num)
for njobs in [2,3,4] :
ti = time.time()
results = []
a = list(range(ndata))
# results = Parallel(n_jobs=njobs, )(delayed(square_int)(i) for i in range(ndata))
# results = Parallel(n_jobs=njobs, backend="multiprocessing")(delayed(
results = Parallel(n_jobs=njobs)(delayed(
square_int_batch)(i*batch_size,(i+1)*batch_size) for i in range(batch_num))
duration = np.round(time.time() - ti,4)
print(f"{njobs} jobs computation: {duration} s" )
And the computation timings are
standard computation: 0.3184 s
2 jobs computation: 0.5079 s
3 jobs computation: 0.6466 s
4 jobs computation: 0.4836 s
A few other suggestions that will help reduce the time.
Use list comprehension results = [square_int(i) for i in range(ndata)] to replace for loop in your specific case, it is faster. I tested.
Set batch_num to a reasonable size. The larger this value is, the more overhead. It started to get significantly slower when batch_num exceed 1000 in my case.
I used the default backend loky instead of multiprocessing. It is slightly faster, at least in my case.
From a few other SO questions, I read that the multiprocessing is good for cpu-heavy tasks, for which I don't have an official definition. You can explore that yourself.

Is ipython or numpy secretly parallelizing matrix multiplication?

So the case is the following:
I wanted to compare the runtime for a matrix multiplication
with ipython parallel and just running on a single core.
Code for normal execution:
import numpy as np
n = 13
dim_1, dim_2, dim_3, dim_4 = 2**n, 2**n, 2**n, 2**n
A = np.random.random((dim_1, dim_2))
B = np.random.random((dim_3, dim_4))
start = timeit.time.time()
C = np.matmul(A,B)
dur = timeit.time.time() - start
well this amounts to about 24 seconds on my notebook
If I do the same thing trying to parallize it.
I start four engines using: ipcluster start -n 4 (I have 4 cores).
Then I run in my notebook:
from ipyparallel import Client
c = Client()
dview = c.load_balanced_view()
%px import numpy
def pdot(view_obj, A_mat, B_mat):
view_obj['B'] = B
view_obj.scatter('A', A)
view_obj.execute('C=A.dot(B)')
return view_obj.gather('C', block=True)
start = timeit.time.time()
pdot(dview, A, B)
dur1 = timeit.time.time() - start
dur1
which takes approximately 34 seconds.
When I view in the system monitor I can see, that in both
cases all cores are used. In the parallel case there seems to
be an overhead where they aren't on 100 % usage (I suppose that's
the part where they get scattered across the engines).
In the non parallel part immediately all cores are on 100 % usage.
This surprises me as I always thought python was intrinsically
run on a single core.
Would be happy if somebody has more insight into this.

Categories

Resources