append 2 hex values in python - python

I am trying to append some hex values in python and I always seem to get 0x between the number. From what I searched, either this is not possible without converting it into a lit of values ?? I am not sure.
a = 0x7b
b = 0x80000
hex(a) + hex(b) = 0x7b0x80000
I dont want the 0x in the middle - I need, 0x7b80000. is there any other way to do this? If I convert to integer I get the sum of the two and converting it to hex is a different value than 0x7b80000

I don't think you want to "append" them. Doing integer arithmetic by using strings is a bad idea. I think you want to bit-shift a into the right place and OR them together:
>>> a = 0x7B
>>> b = 0x80000
>>>
>>> hex( (a<<20) | b )
'0x7b80000'
Perhaps if you were more specific about what these numbers are and what exactly you're trying to accomplish I could provide a more general answer.

You can use f-string formatting with Python 3:
>>> a = 0x7b
>>> b = 0x80000
>>> f'0x{a:x}{b:x}'
'0x7b80000'

This is a more generic way to append hex / int / bin values.
Only works for positive values of b.
a = 0x7b
b = 0x80000
def append_hex(a, b):
sizeof_b = 0
# get size of b in bits
while((b >> sizeof_b) > 0):
sizeof_b += 1
# align answer to nearest 4 bits (hex digit)
sizeof_b += sizeof_b % 4
return (a << sizeof_b) | b
print(hex(append_hex(a, b)))
Basically you have to find the highest set bit that b has.
Align that number to the highest multiple of 4 since that's what hex chars are.
Append the a to the front of the highest multiple of 4 that was found before.

It's been 7 years but the accepted answer is wrong and this post still appears in the first place in google searches; so here is a correct answer:
import math
def append_hex(a, b):
sizeof_b = 0
# get size of b in bits
while((b >> sizeof_b) > 0):
sizeof_b += 1
# every position in hex in represented by 4 bits
sizeof_b_hex = math.ceil(sizeof_b/4) * 4
return (a << sizeof_b_hex) | b
The accepted answer doesn't make sense (you can check it with values a=10, b=1a). In this solution, we search for the nearest divider of 4 - since every hex value is represented by 4 bits - and then move the first value this time of bits.

Related

I want to save a string of 0's and 1's as bits to a file in Python, so it'll take less space [duplicate]

I'd simply like to convert a base-2 binary number string into an int, something like this:
>>> '11111111'.fromBinaryToInt()
255
Is there a way to do this in Python?
You use the built-in int() function, and pass it the base of the input number, i.e. 2 for a binary number:
>>> int('11111111', 2)
255
Here is documentation for Python 2, and for Python 3.
Just type 0b11111111 in python interactive interface:
>>> 0b11111111
255
Another way to do this is by using the bitstring module:
>>> from bitstring import BitArray
>>> b = BitArray(bin='11111111')
>>> b.uint
255
Note that the unsigned integer (uint) is different from the signed integer (int):
>>> b.int
-1
Your question is really asking for the unsigned integer representation; this is an important distinction.
The bitstring module isn't a requirement, but it has lots of performant methods for turning input into and from bits into other forms, as well as manipulating them.
Using int with base is the right way to go. I used to do this before I found int takes base also. It is basically a reduce applied on a list comprehension of the primitive way of converting binary to decimal ( e.g. 110 = 2**0 * 0 + 2 ** 1 * 1 + 2 ** 2 * 1)
add = lambda x,y : x + y
reduce(add, [int(x) * 2 ** y for x, y in zip(list(binstr), range(len(binstr) - 1, -1, -1))])
If you wanna know what is happening behind the scene, then here you go.
class Binary():
def __init__(self, binNumber):
self._binNumber = binNumber
self._binNumber = self._binNumber[::-1]
self._binNumber = list(self._binNumber)
self._x = [1]
self._count = 1
self._change = 2
self._amount = 0
print(self._ToNumber(self._binNumber))
def _ToNumber(self, number):
self._number = number
for i in range (1, len (self._number)):
self._total = self._count * self._change
self._count = self._total
self._x.append(self._count)
self._deep = zip(self._number, self._x)
for self._k, self._v in self._deep:
if self._k == '1':
self._amount += self._v
return self._amount
mo = Binary('101111110')
Here's another concise way to do it not mentioned in any of the above answers:
>>> eval('0b' + '11111111')
255
Admittedly, it's probably not very fast, and it's a very very bad idea if the string is coming from something you don't have control over that could be malicious (such as user input), but for completeness' sake, it does work.
A recursive Python implementation:
def int2bin(n):
return int2bin(n >> 1) + [n & 1] if n > 1 else [1]
If you are using python3.6 or later you can use f-string to do the
conversion:
Binary to decimal:
>>> print(f'{0b1011010:#0}')
90
>>> bin_2_decimal = int(f'{0b1011010:#0}')
>>> bin_2_decimal
90
binary to octal hexa and etc.
>>> f'{0b1011010:#o}'
'0o132' # octal
>>> f'{0b1011010:#x}'
'0x5a' # hexadecimal
>>> f'{0b1011010:#0}'
'90' # decimal
Pay attention to 2 piece of information separated by colon.
In this way, you can convert between {binary, octal, hexadecimal, decimal} to {binary, octal, hexadecimal, decimal} by changing right side of colon[:]
:#b -> converts to binary
:#o -> converts to octal
:#x -> converts to hexadecimal
:#0 -> converts to decimal as above example
Try changing left side of colon to have octal/hexadecimal/decimal.
For large matrix (10**5 rows and up) it is better to use a vectorized matmult. Pass in all rows and cols in one shot. It is extremely fast. There is no looping in python here. I originally designed it for converting many binary columns like 0/1 for like 10 different genre columns in MovieLens into a single integer for each example row.
def BitsToIntAFast(bits):
m,n = bits.shape
a = 2**np.arange(n)[::-1] # -1 reverses array of powers of 2 of same length as bits
return bits # a
For the record to go back and forth in basic python3:
a = 10
bin(a)
# '0b1010'
int(bin(a), 2)
# 10
eval(bin(a))
# 10

I need help making a program in python that turns an integer into 8-bit binary

Ive been give a task, it is as follows:
write a function called decToBin that takes in an integer and converts it to an 8-bit binary number represented as a string
As I am new to this im very lost! Having no introduction to my task as thrown me off a little and I really need some help!
I have tried the following code:
#function
def decTobin(integer)
return bin
#main program
decToBin(3)
decToBin(4)
decToBin(5)
However I had no sucess, could someone point me in the right direction, it would be much appreciated, thank you!
Please try to keep your questions tidy. Also, judging from your other questions, you should look at some basic python tutorials. Happy coding!
Try to learn about base conversions. Here is a great place to find a step by step walkthrough for doing it manually.
You will need to use the modulo (%) operator. The modulo operator is a binary operator, meaning it has two inputs. You use it like so:
a % b
It returns the remainder when a is divided by b:
10 % 7 = 3
The following code will do what you need:
def decToBin(x):
if x == 0:
return "00000000"
bits = []
while x:
bits.append(str(x % 2))
x >>= 1
return "".join(bits).zfill(8)
I will explain line by line.
def decToBin(x):
This declares the function.
if x == 0:
return "00000000"
This returns a string of eight zeros if the input is zero. We need this because the while loop only operates when x is not equal to zero.
bits = []
This initializes the array of bits. During the while loop, we will add to this with the append function.
while x:
This begins a while loop, which runs until x is false (or zero).
bits.append(str(x % 2))
This adds to the bits array the remainder when x is divided by 2. str() converts it to a string.
x >>= 1
>>= 1 Shifts the bits in x to the right one time like so:
Before: 1 1 0 1 0 1
After: 0 1 1 0 1 0
It is the same as dividing by 2, without keeping the remainder.
return "".join(bits).zfill(8)
Breakdown:
"abc".join(l)
Joins all the strings in list l, separating it with abc.
"2345".zfill(i)
adds zeros to the beginning of a string until there are i numbers. So
return "".join(bits).zfill(8)
returns the array of bits as one string, and pads the beginning until there are eight characters.

count number of ones in a given integer

How do you count the number of ones in a given integer's binary representation.
Say you are given a number 20, which is 10100 in binary, so number of ones is 2.
What you're looking for is called the Hamming weight, and there are a lot of algorithms to do it. Here's another straightforward one:
def ones(n):
w = 0
while (n):
w += 1
n &= n - 1
return w
Use the awesome collections module.
>>> from collections import Counter
>>> binary = bin(20)[2:]
>>> Counter(binary)
Counter({'0': 3, '1': 2})
Or you can use the built-in function count():
>>> binary = bin(20)[2:]
>>> binary.count('1')
2
Or even:
>>> sum(1 for i in bin(20)[2:] if i == '1')
2
But that last solution is slower than using count()
>>> num = 20
>>> bin(num)[2:].count('1')
2
The usual way to make this blinding fast is to use lookup tables:
table = [bin(i)[2:].count('1') for i in range(256)]
def pop_count(n):
cnt = 0
while n > 0:
cnt += table[n & 255]
n >>= 8
return cnt
In Python, any solution using bin and list.count will be faster, but this is nice if you want to write it in assembler.
The int type has a new method int.bit_count() since python 3.10a, returning the number of ones in the binary expansion of a given integer, also known as the population count as follows:
n = 20
bin(n)
'0b10100'
n.bit_count() returns 2 as it has 2 ones in the binary representation.
The str.count method and bin function make short work of this little challenge:
>>> def ones(x):
"Count the number of ones in an integer's binary representation"
return bin(x).count('1')
>>> ones(20)
2
You can do this using bit shifting >> and bitwise and & to inspect the least significant bit, like this:
def count_ones(x):
result = 0
while x > 0:
result += x & 1
x = x >> 1
return result
This works by shifting the bits right until the value becomes zero, counting the number of times the least significant bit is 1 along the way.
I am a new coder and I found this one logic simple. Might be easier for newbies to understand.
def onesInDecimal(n):
count = 0
while(n!=0):
if (n%2!=0):
count = count+1
n = n-1
n = n/2
else:
n = n/2
return count
For a special case when you need to check quickly whether the binary form of the integer x has only a single 1 (and thus is a power of 2), you can use this check:
if x == -(x | (-x)):
...
The expression -(x | (-x)) is the number that you get if you replace all 1s except the last one (the least significant bit) in the binary representation of x with 0.
Example:
12 = 1100 in binary
-12 = ...110100 in binary (with an infinite number of leading 1s)
12 | (-12) = ...111100 in binary (with an infinite number of leading 1s)
-(12 | (-12)) = 100 in binary
If the input number is 'number'
number =20
len(bin(number)[2:].replace('0',''))
Another solution is
from collections import Counter
Counter(list(bin(number))[2:])['1']

What does & mean in python [duplicate]

This question already has answers here:
Bitwise operation and usage
(17 answers)
Closed 10 months ago.
I came across the following code
numdigits = len(cardNumber)
oddeven = numdigits & 1
what exactly is going on here? I'm not sure what the "&" is doing.
Answer
The & symbol is a bitwise AND operator. Used with 1, it basically masks the value to extract the lowest bit, or in other words will tell you if the value is even or odd.
More Info on Python's & operator
For more information, see: http://wiki.python.org/moin/BitwiseOperators
Why it Works to check Odd vs. Even
EDIT: Adding this section since this answer is getting some love
The reason why ANDing a value with 1 tells if the value is odd or even may not be obvious at first.
The binary representation of a number is essentially the sum of a series of YES or NO for each power of 2 moving leftward starting in the rightmost digit with 1, 2, 4, 8, ...
There is only one way to represent any number in this way. E.g. the number 13 (base 10) can be written in binary as "1101" (or hexadecimal as 0xD, but that's beside the point). See here:
1 1 0 1
x x x x
8 4 2 1
= = = =
8 + 4 + 0 + 1 = 13
Notice that aside from the rightmost binary digit, all other 1 digits will add an even number (i.e. a multiple of 2) to the sum. So the only way to get an odd final sum is to add that odd 1 from the rightmost digit. So if we're curious if a number is odd or even, we can look at its binary representation and ignore everything except for the rightmost digit.
To do this, we use the bitwise AND operator. The value 1 in binary is expressed as 1:
0 0 0 1
x x x x
8 4 2 1
= = = =
0 + 0 + 0 + 1 = 1
ANDing a value with 1 like this will result in 1 if the value's rightmost bit is set, and 0 if it is not.
And because 0 is generally considered "false" in most languages, and non-zero values considered "true", we can simply say as a shortcut:
if (value & 1): do_something_with_odd_value()...
& is also used for taking the intersection of two Python sets:
set1 = {0,1,2,3}
set2 = {2,3,4,5}
print(set1 & set2)
>>>set([2, 3])
More generally, Python allows operator overloading, meaning you can write classes that re-interpret what the & operator does. This is how libraries such as Pandas and Numpy hijack &.
It's a bitwise operation, in this case assigning zero to oddeven if cardNumber has an even number of elements (and one otherwise).
As an example: suppose len(cardNumber) == 235. Then numdigits == 235, which is 0b11101011 in binary. Now 1 is '0b00000001' in binary, and when you "AND" them, bitwise, you'll get:
11101011
&
00000001
----------
= 00000001
Similarly, if numdigits were 234, you would get:
11101010
&
00000001
----------
= 00000000
So, it's basically a obfuscated way of checking if len(cardNumber) % 2. Probably written by someone with a C background, because it is not very pythonic - readability counts!
& is a bitwise and, which is an efficient way to do bit-level calculations. It is taking numdigits and and-ing it with 1, bit-by-bit.
It's a binary bitwise AND operator.

Binary numbers in Python

How can I add, subtract, and compare binary numbers in Python without converting to decimal?
You can convert between a string representation of the binary using bin() and int()
>>> bin(88)
'0b1011000'
>>> int('0b1011000', 2)
88
>>>
>>> a=int('01100000', 2)
>>> b=int('00100110', 2)
>>> bin(a & b)
'0b100000'
>>> bin(a | b)
'0b1100110'
>>> bin(a ^ b)
'0b1000110'
I think you're confused about what binary is. Binary and decimal are just different representations of a number - e.g. 101 base 2 and 5 base 10 are the same number. The operations add, subtract, and compare operate on numbers - 101 base 2 == 5 base 10 and addition is the same logical operation no matter what base you're working in. The fact that your python interpreter may store things as binary internally doesn't affect how you work with it - if you have an integer type, just use +, -, etc.
If you have strings of binary digits, you'll have to either write your own implementation or convert them using the int(binaryString, 2) function.
If you're talking about bitwise operators, then you're after:
~ Not
^ XOR
| Or
& And
Otherwise, binary numbers work exactly the same as decimal numbers, because numbers are numbers, no matter how you look at them. The only difference between decimal and binary is how we represent that data when we are looking at it.
Binary, decimal, hexadecimal... the base only matters when reading or outputting numbers, adding binary numbers is just the same as adding decimal number : it is just a matter of representation.
Below is a re-write of a previously posted function:
def addBinary(a, b): # Example: a = '11' + b =' 100' returns as '111'.
for ch in a: assert ch in {'0','1'}, 'bad digit: ' + ch
for ch in b: assert ch in {'0','1'}, 'bad digit: ' + ch
sumx = int(a, 2) + int(b, 2)
return bin(sumx)[2:]
'''
I expect the intent behind this assignment was to work in binary string format.
This is absolutely doable.
'''
def compare(bin1, bin2):
return bin1.lstrip('0') == bin2.lstrip('0')
def add(bin1, bin2):
result = ''
blen = max((len(bin1), len(bin2))) + 1
bin1, bin2 = bin1.zfill(blen), bin2.zfill(blen)
carry_s = '0'
for b1, b2 in list(zip(bin1, bin2))[::-1]:
count = (carry_s, b1, b2).count('1')
carry_s = '1' if count >= 2 else '0'
result += '1' if count % 2 else '0'
return result[::-1]
if __name__ == '__main__':
print(add('101', '100'))
I leave the subtraction func as an exercise for the reader.
For example, 00000011 - 00000001 = 00000010
You can remove the zeroes and then add them again after you do your calculation! This works very easy.
If your binary is stored as a string then you can convert to int which will automatically strip the zeroes from the start. After you have your answer you can turn it back into a string and add the zeroes to the start.
Not sure if helpful, but I leave my solution here:
class Solution:
# #param A : string
# #param B : string
# #return a strings
def addBinary(self, A, B):
num1 = bin(int(A, 2))
num2 = bin(int(B, 2))
bin_str = bin(int(num1, 2)+int(num2, 2))
b_index = bin_str.index('b')
return bin_str[b_index+1:]
s = Solution()
print(s.addBinary("11", "100"))
x = x + 1
print(x)
a = x + 5
print(a)
I think you're confused about what binary is. Binary and decimal are just different representations of a number - e.g. 101 base 2 and 5 base 10 are the same number. The operations add, subtract, and compare operate on numbers - 101 base 2 == 5 base 10 and addition is the same logical operation no matter what base you're working in.

Categories

Resources