I've looked all over for an answer to this one, but nothing really seems to fit the bill. I've got very large files that I'm trying to read with ATpy, and the data comes in the form of numpy arrays. For smaller files the following code has been sufficient:
sat = atpy.Table('satellite_data.tbl')
From there I build up a number of variables that I have to manipulate later for plotting purposes. It's lots of these kinds of operations:
w1 = np.array([sat['w1_column']])
w2 = np.array([sat['w2_column']])
w3 = np.array([sat['w3_column']])
colorw1w2 = w1 - w2 #just subtracting w2 values from w1 values for each element
colorw1w3 = w1 - w3
etc.
But for very large files the computer can't handle it. I think all the data is getting stored in memory before parsing begins, and that's not feasible for 2GB files. So, what can I use instead to handle these large files?
I've seen lots of posts where people are breaking up the data into chunks and using for loops to iterate over each line, but I don't think that's going to work for me here given the nature of these files, and the kinds of operations I need to do on these arrays. I can't just do a single operation on every line of the file, because each line contains a number of parameters that are assigned to columns, and in some cases I need to do multiple operations with figures from a single column.
Honestly I don't really understand everything going on behind the scenes with ATpy and numpy. I'm new to Python, so I appreciate answers that spell it out clearly (i.e. not relying on lots of implicit coding knowledge). There has to be a clean way of parsing this, but I'm not finding it. Thanks.
For very large arrays (larger than your memory capacity) you can use pytables which stores arrays on disk in some clever ways (using the HDF5 format) so that manipulations can be done on them without loading the entire array into memory at once. Then, you won't have to manually break up your datasets or manipulate them one line at a time.
I know nothing about ATpy so you might be better off asking on an ATpy mailing list or at least some astronomy python users mailing list, as it's possible that ATpy has another solution built in.
From the pyables website:
PyTables is a package for managing hierarchical datasets and designed to efficiently and easily cope with extremely large amounts of data.
PyTables is built on top of the HDF5 library, using the Python language and the NumPy package.
... fast, yet extremely easy to use tool for interactively browse, process and search very large amounts of data. One important feature of PyTables is that it optimizes memory and disk resources so that data takes much less space...
Look into using pandas. It's built for this kind of work. But the data files need to be stored in a well structured binary format like hdf5 to get good performance with any solution.
Related
I`m trying to make a research in which the observations of my dataset are represented by matrices (arrays composed of numbers, similar to how images for deep learning are represented, but mine are not images) of different shapes.
What I`ve already tried is to write those arrays as lists in one column of a pandas dataframe and then save this as a csv\excel. After that I planned just to load such a file and convert those lists to arrays of appropriate shapes and then to convert a set of such arrays to a tensor which I finally will use for training the deep model in keras.
But it seems like this method is extremely inefficient, cause only 1/6 of my dataset has already occupied about 6 Gb of memory (pandas saved as csv) which is huge and I won't be able to load it in RAM (I'm using google colab to run my experiments).
So my question is: is there any other way of storing a set of arrays of different shapes, which won`t occupy so much memory? Maybe I can store tensors directly somehow? Or maybe there are some ways to store pandas in some compressed types of files which are not so heavy?
Yes, Avoid using csv/excel for big datasets, there are tons of data formats out there, for this case I would recommend to use a compressed format like pd.Dataframe.to_hdf, pd.Dataframe.to_parquet or pd.Dataframe.to_pickle.
There are even more formats to choose and compression options within the functions (for example to_hdf takes the argument complevel that you can set to 9 ).
Are you storing purely (or mostly) continuous variables? If so, maybe you could reduce the accuracy (i.e., from float64 to float32) these variables if you don't need need such an accurate value per datapoint.
There's a bunch of ways in reducing the size of your data that's being stored in your memory, and the what's written is one of the many ways to do so. Maybe you could break the process that you've mentioned into smaller chunks (i.e., storage of data, extraction of data), and work on each chunk/stage individually, which hopefully will reduce the overall size of your data!
Otherwise, you could perhaps take advantage of database management systems (SQL or NoSQL depending on which fits best) which might be better, though querying that amount of data might constitute yet another issue.
I'm by no means an expert in this but I'm just explaining more of how I've dealt with excessively large datasets (similar to what you're currently experiencing) in the past, and I'm pretty sure someone here will probably give you a more definitive answer as compared to my 'a little of everything' answer. All the best!
I have a 20GB library of images stored as a high-dimensional numpy array. This library allows me to these use images without having to generate them anew each time. Now my problem is that np.load("mylibrary") takes as much time as it would take to generate a couple of those images. Therefore my question is: Is there a way to store a numpy array such that it is readily accessible without having to load it?
Edit: I am using PyCharm
I would suggest h5py which is a Pythonic interface to the HDF5 binary data format.
It lets you store huge amounts of numerical data, and easily manipulate that data from NumPy. For example, you can slice into multi-terabyte datasets stored on disk, as if they were real NumPy arrays. Thousands of datasets can be stored in a single file, categorized and tagged however you want.
You can also use PyTables'. It is another HDF5 interface for python and numpy
PyTables is a package for managing hierarchical datasets and designed to efficiently and easily cope with extremely large amounts of data. You can download PyTables and use it for free. You can access documentation, some examples of use and presentations here.
numpy.memap is another option. It however would be slower than hdf5. Another condition is that a array should be limited to 2.5G
I have a 3.3gb file containing one long line. The values in the file are comma separated and either floats or ints. Most of the values are 10. I want to read the data into a numpy array. Currently, I'm using numpy.fromfile:
>>> import numpy
>>> f = open('distance_matrix.tmp')
>>> distance_matrix = numpy.fromfile(f, sep=',')
but that has been running for over an hour now and it's currently using ~1 Gig memory, so I don't think it's halfway yet.
Is there a faster way to read in large data that is on a single line?
This should probably be a comment... but I don't have enough reputation to put comments in.
I've used hdf files, via h5py, of sizes well over 200 gigs with very little processing time, on the order of a minute or two, for file accesses. In addition the hdf libraries support mpi and concurrent access.
This means that, assuming you can format your original one line file, as an appropriately hierarchic hdf file (e.g. make a group for every `large' segment of data) you can use the inbuilt capabilities of hdf to make use of multiple core processing of your data exploiting mpi to pass what ever data you need between the cores.
You need to be careful with your code and understand how mpi works in conjunction with hdf, but it'll speed things up no end.
Of course all of this depends on putting the data into an hdf file in a way that allows you to take advantage of mpi... so maybe not the most practical suggestion.
Consider dumping the data using some binary format. See something like http://docs.scipy.org/doc/numpy/reference/generated/numpy.save.html
This way it will be much faster because you don't need to parse the values.
If you can't change the file type (not the result of one of your programs) then there's not much you can do about it. Make sure your machine has lots of ram (at least 8GB) so that it doesn't need to use the swap at all. Defragmenting the harddrive might help as well, or using a SSD drive.
An intermediate solution might be a C++ binary to do the parsing and then dump it in a binary format. I don't have any links for examples on this one.
I am creating a Python desktop application that allows users to select different distributional forms to model agricultural yield data. I have the time series agricultural data - close to a million rows - saved in a SQLite database (although this is not set in stone if someone knows of a better choice). Once the user selects some data, say corn yields from 1990-2010 in Illinois, I want them to select a distributional form from a drop-down. Next, my function fits the distribution to the data and outputs 10,000 points drawn from that fitted distributional form in a Numpy array. I would like this data to be temporary during the execution of the program.
In an attempt to be efficient, I would only like to make this fit and the subsequent drawing of numbers one time for a specified region and distribution. I have been researching temporary files in Python, but I am not sure that is the best approach for saving many different Numpy arrays. PyTables also looks like an interesting approach and seems to be compatible with Numpy, but I am not sure it is good for handling temporary data. No SQL solutions, like MongoDB, seem to be very popular these days as well, which also interests me from a resume building perspective.
Edit: After reading the comment below and researching it, I am going to go with PyTables, but I am trying to find the best way to tackle this. Is it possible to create a table like below, where instead of Float32Col I can use createTimeSeriesTable() from the scikits time series class or do I need to create a datetime column for the date and a boolean column for the mask, in addition to the Float32Col below to hold the data. Or is there a better way to be going about this problem?
class Yield(IsDescription):
geography_id = UInt16Col()
data = Float32Col(shape=(50, 1)) # for 50 years of data
Any help on the matter would be greatly appreciated.
What's your use case for the temporary data? Are you just going to be reading it all in at once (and never wanting to just read in a subset)?
If so, just save the array to a temporary file (e.g. with numpy.save, or equivalently, pickle with a binary protocol). There's no need for fancier solutions in that case.
On a side note, I'd highly recommend PyTables over SQLite for storing your original time series data.
Based on what it sounds like you're doing, you're not going to need the "relational" parts of a relational database (e.g. joins). If you don't need to join or relate tables, you just need fast simple queries, and you want the data in memory as a numpy array, PyTables is an excellent option. PyTables uses HDF to store your data, which can be much more compact on disk than a SQLite database. PyTables is also considerably faster for loading large chunks of data into memory as numpy arrays.
I recently came across Pytables and find it to be very cool. It is clear that they are superior to a csv format for very large data sets. I am running some simulations using python. The output is not so large, say 200 columns and 2000 rows.
If someone has experience with both, can you suggest which format would be more convenient in the long run for such data sets that are not very large. Pytables has data manipulation capabilities and browsing of the data with Vitables, but the browser does not have as much functionality as, say Excel, which can be used for CSV. Similarly, do you find one better than the other for importing and exporting data, if working mainly in python? Is one more convenient in terms of file organization? Any comments on issues such as these would be helpful.
Thanks.
Have you considered Numpy arrays?
PyTables are wonderful when your data is too large to fit in memory, but a
200x2000 matrix of 8 byte floats only requires about 3MB of memory. So I think
PyTables may be overkill.
You can save numpy arrays to files using np.savetxt or np.savez (for compression), and can read them from files with np.loadtxt or np.load.
If you have many such arrays to store on disk, then I'd suggest using a database instead of numpy .npz files. By the way, to store a 200x2000 matrix in a database, you only need 3 table columns: row, col, value:
import sqlite3
import numpy as np
db = sqlite3.connect(':memory:')
cursor = db.cursor()
cursor.execute('''CREATE TABLE foo
(row INTEGER,
col INTEGER,
value FLOAT,
PRIMARY KEY (row,col))''')
ROWS=4
COLUMNS=6
matrix = np.random.random((ROWS,COLUMNS))
print(matrix)
# [[ 0.87050721 0.22395398 0.19473001 0.14597821 0.02363803 0.20299432]
# [ 0.11744885 0.61332597 0.19860043 0.91995295 0.84857095 0.53863863]
# [ 0.80123759 0.52689885 0.05861043 0.71784406 0.20222138 0.63094807]
# [ 0.01309897 0.45391578 0.04950273 0.93040381 0.41150517 0.66263562]]
# Store matrix in table foo
cursor.executemany('INSERT INTO foo(row, col, value) VALUES (?,?,?) ',
((r,c,value) for r,row in enumerate(matrix)
for c,value in enumerate(row)))
# Retrieve matrix from table foo
cursor.execute('SELECT value FROM foo ORDER BY row,col')
data=zip(*cursor.fetchall())[0]
matrix2 = np.fromiter(data,dtype=np.float).reshape((ROWS,COLUMNS))
print(matrix2)
# [[ 0.87050721 0.22395398 0.19473001 0.14597821 0.02363803 0.20299432]
# [ 0.11744885 0.61332597 0.19860043 0.91995295 0.84857095 0.53863863]
# [ 0.80123759 0.52689885 0.05861043 0.71784406 0.20222138 0.63094807]
# [ 0.01309897 0.45391578 0.04950273 0.93040381 0.41150517 0.66263562]]
If you have many such 200x2000 matrices, you just need one more table column to specify which matrix.
As far as importing/exporting goes, PyTables uses a standardized file format called HDF5. Many scientific software packages (like MATLAB) have built-in support for HDF5, and the C API isn't terrible. So any data you need to export from or import to one of these languages can simply be kept in HDF5 files.
PyTables does add some attributes of its own, but these shouldn't hurt you. Of course, if you store Python objects in the file, you won't be able to read them elsewhere.
The one nice thing about CSV files is that they're human readable. However, if you need to store anything other than simple numbers in them and communicate with others, you'll have issues. I receive CSV files from people in other organizations, and I've noticed that humans aren't good at making sure things like string quoting are done correctly. It's good that Python's CSV parser is as flexible as it is. One other issue is that floating point numbers can't be stored exactly in text using decimal format. It's usually good enough, though.
One big plus for PyTables is the storage of metadata, like variables etc.
If you run the simulations more often with different parameters you the store the results as an array entry in the h5 file.
We use it to store measurement data + experiment scripts to get the data so it is all self contained.
BTW: If you need to look quickly into a hdf5 file you can use HDFView. It's a Java app for free from the HDFGroup. It's easy to install.
i think its very hard to comapre pytables and csv.. pyTable is a datastructure ehile CSV is an exchange format for data.
This is actually quite related to another answer I've provided regarding reading / writing csv files w/ numpy:
Python: how to do basic data manipulation like in R?
You should definitely use numpy, no matter what else! The ease of indexing, etc. far outweighs the cost of the additional dependency (well, I think so). PyTables, of course, relies on numpy too.
Otherwise, it really depends on your application, your hardware and your audience. I suspect that reading in csv files of the size you're talking about won't matter in terms of speed compared to PyTables. But if that's a concern, write a benchmark! Read and write some random data 100 times. Or, if read times matter more, write once, read 100 times, etc.
I strongly suspect that PyTables will outperform SQL. SQL will rock on complex multi-table queries (especially if you do the same ones frequently), but even on single-table (so called "denormalized") table queries, pytables is hard to beat in terms of speed. I can't find a reference for this off-hand, but you may be able to dig something up if you mine the links here:
http://www.pytables.org/moin/HowToUse#HintsforSQLusers
I'm guessing execute performance for you at this stage will pale in comparison to coder performance. So, above all, pick something that makes the most sense to you!
Other points:
As with SQL, PyTables has an undo feature. CSV files won't have this, but you can keep them in version control, and you VCS doesn't need to be too smart (CSV files are text).
On a related note, CSV files will be much bigger than binary formats (you can certainly write your own tests for this too).
These are not "exclusive" choices.
You need both.
CSV is just a data exchange format. If you use pytables, you still need to import and export in CSV format.