I am an engineering grad student currently making the transition from MATLAB to Python for the purposes of numerical simulation. I was under the impression that for basic array manipulation, Numpy would be as fast as MATLAB. However, it appears for two different programs I write that MATLAB is a little under twice as fast as Numpy. The test code I am using for Numpy (Python 3.3) is:
import numpy as np
import time
a = np.random.rand(5000,5000,3)
tic = time.time()
a[:,:,0] = a[:,:,1]
a[:,:,2] = a[:,:,0]
a[:,:,1] = a[:,:,2]
toc = time.time() - tic
print(toc)
Whereas for MATLAB 2012a I am using:
a = rand(5000,5000,3);
tic;
a(:,:,1) = a(:,:,2);
a(:,:,3) = a(:,:,1);
a(:,:,2) = a(:,:,3);
toc
The algorithm I am using is the one used on a NASA website comparing Numpy and MATLAB. The website shows that Numpy surpasses MATLAB in terms of speed for this algorithm. Yet my results show a 0.49 s simulation time for Numpy and a 0.29 s simulation time for MATLAB. I also have run a Gauss-Seidel solver on both Numpy and Matlab and I get similar results (16.5 s vs. 9.5 s)
I am brand new to Python and am not extremely literate in terms of programming. I am using the WinPython 64 bit Python distribution but have also tried Pythonxy to no avail.
One thing I have read which should improve performance is building Numpy using MKL. Unfortunately I have no idea how to do this on Windows. Do I even need to do this?
Any suggestions?
That comparison ends up being apples to oranges due to caching, because it is more efficient to transfer or do some work on contiguous chunks of memory. This particular benchmark is memory bound, since in fact no computation is done, and thus the percentage of cache hits is key to achieve good performance.
Matlab lays the data in column-major order (Fortran order), so a(:,:,k) is a contiguous chunk of memory, which is fast to copy.
Numpy defaults to row-major order (C order), so in a[:,:,k] there are big jumps between elements and that slows down the memory transfer. Actually, the data layout can be chosen. In my laptop, creating the array with a = np.asfortranarray(np.random.rand(5000,5000,3)) leds to a 5x speed up (1 s vs 0.19 s).
This result should be very similar both for numpy-MKL and plain numpy because MKL is a fast LAPACK implementation and here you're not calling any function that uses it (MKL definitely helps when solving linear systems, computing dot products...).
I don't really know what's going on on the Gauss Seidel solver, but some time ago I wrote an answer to a question titled Numpy running at half the speed of MATLAB that talks a little bit about MKL, FFT and Matlab's JIT.
You are attempting to recreate the NASA experiment, however you have changed many of the variables. For example:
Your hardware and operating system is different (www.nccs.nasa.gov/dali_front.html)
Your Python version is different (2.5.3 vs 3.3)
Your MATLAB version is different (2008 vs 2012)
Assuming the NASA results are correct, the difference in results is due to one or more of these changed variables. I recommend you:
Retest with the SciPy prebuilt binaries.
Research if any improvements were made to MATLAB relative to this type of calculation.
Also, you may find this link useful.
Related
I have been trying different sparse solvers available in Python 3 and comparing the performance between them and also against Octave and Matlab. I have chosen both direct and iterative approaches, I will explain this more in detail below.
To generate a proper sparse matrix, with a banded structure, a Poisson's problem is solved using finite elements with squared grids of N=250, N=500 and N=1000. This results in dimensions of a matrix A=N^2xN^2 and a vector b=N^2x1, i.e., the largest NxN is a million. If one is interested in replicating my results, I have uploaded the matrices A and the vectors b in the following link (it will expire en 30 days) Get systems used here. The matrices are stored in triplets I,J,V, i.e. the first two columns are the indices for the rows and columns, respectively, and the third column are the values corresponding to such indices. Observe that there are some values in V, which are nearly zero, are left on purpose. Still, the banded structure is preserved after a "spy" matrix command in both Matlab and Python.
For comparison, I have used the following solvers:
Matlab and Octave, direct solver: The canonical x=A\b.
Matlab and Octave, pcg solver: The preconditioned conjugated gradient, pcg solver pcg(A,b,1e-5,size(b,1)) (not preconditioner is used).
Scipy (Python), direct solver: linalg.spsolve(A, b) where A is previously formatted in csr_matrix format.
Scipy (Python), pcg solver: sp.linalg.cg(A, b, x0=None, tol=1e-05)
Scipy (Python), UMFPACK solver: spsolve(A, b) using from scikits.umfpack import spsolve. This solver is apparently available (only?) under Linux, since it make use of the libsuitesparse [Timothy Davis, Texas A&M]. In ubuntu, this has to first be installed as sudo apt-get install libsuitesparse-dev.
Furthermore, the aforementioned python solvers are tested in:
Windows.
Linux.
Mac OS.
Conditions:
Timing is done right before and after the solution of the systems. I.e., the overhead for reading the matrices is not considered.
Timing is done ten times for each system and an average and a standard deviation is computed.
Hardware:
Windows and Linux: Dell intel (R) Core(TM) i7-8850H CPU #2.6GHz 2.59GHz, 32 Gb RAM DDR4.
Mac OS: Macbook Pro retina mid 2014 intel (R) quad-core(TM) i7 2.2GHz 16 Gb Ram DDR3.
Results:
Observations:
Matlab A\b is the fastest despite being in an older computer.
There are notable differences between Linux and Windows versions. See for instance the direct solver at NxN=1e6. This is despite Linux is running under windows (WSL).
One can have a huge scatter in Scipy solvers. This is, if the same solution is run several times, one of the times can just increase more than twice.
The fastest option in python can be nearly four times slower than the Matlab running in a more limited hardware. Really?
If you want to reproduce the tests, I leave here very simple scripts.
For matlab/octave:
IJS=load('KbN1M.txt');
b=load('FbN1M.txt');
I=IJS(:,1);
J=IJS(:,2);
S=IJS(:,3);
Neval=10;
tsparse=zeros(Neval,1);
tsolve_direct=zeros(Neval,1);
tsolve_sparse=zeros(Neval,1);
tsolve_pcg=zeros(Neval,1);
for i=1:Neval
tic
A=sparse(I,J,S);
tsparse(i)=toc;
tic
x=A\b;
tsolve_direct(i)=toc;
tic
x2=pcg(A,b,1e-5,size(b,1));
tsolve_pcg(i)=toc;
end
save -ascii octave_n1M_tsparse.txt tsparse
save -ascii octave_n1M_tsolvedirect.txt tsolve_direct
save -ascii octave_n1M_tsolvepcg.txt tsolve_pcg
For python:
import time
from scipy import sparse as sp
from scipy.sparse import linalg
import numpy as np
from scikits.umfpack import spsolve, splu #NEEDS LINUX
b=np.loadtxt('FbN1M.txt')
triplets=np.loadtxt('KbN1M.txt')
I=triplets[:,0]-1
J=triplets[:,1]-1
V=triplets[:,2]
I=I.astype(int)
J=J.astype(int)
NN=int(b.shape[0])
Neval=10
time_sparse=np.zeros((Neval,1))
time_direct=np.zeros((Neval,1))
time_conj=np.zeros((Neval,1))
time_umfpack=np.zeros((Neval,1))
for i in range(Neval):
t = time.time()
A=sp.coo_matrix((V, (I, J)), shape=(NN, NN))
A=sp.csr_matrix(A)
time_sparse[i,0]=time.time()-t
t = time.time()
x=linalg.spsolve(A, b)
time_direct[i,0] = time.time() - t
t = time.time()
x2=sp.linalg.cg(A, b, x0=None, tol=1e-05)
time_conj[i,0] = time.time() - t
t = time.time()
x3 = spsolve(A, b) #ONLY IN LINUX
time_umfpack[i,0] = time.time() - t
np.savetxt('pythonlinux_n1M_tsparse.txt',time_sparse,fmt='%.18f')
np.savetxt('pythonlinux_n1M_tsolvedirect.txt',time_direct,fmt='%.18f')
np.savetxt('pythonlinux_n1M_tsolvepcg.txt',time_conj,fmt='%.18f')
np.savetxt('pythonlinux_n1M_tsolveumfpack.txt',time_umfpack,fmt='%.18f')
Is there a way to further improve sparse solution times using python? or at least be in a similar order of performance as Matlab? I am open to suggestions using C/C++ or Fortran and a wrapper for python, but I belive it will not get much better than the UMFPACK choice. Suggestions are very welcome.
P.S. I am aware of previous posts, e.g. scipy slow sparse matrix solver
Issues using the scipy.sparse.linalg linear system solvers
How to use Numba to speed up sparse linear system solvers in Python that are provided in scipy.sparse.linalg?
But I think none is as comprehensive as this one, highlighting even more issues between operative systems when using python libraries.
EDIT_1:
I add a new plot with results using the QR solver from intel MKL using a python wrapper as suggested in the comments. This is, however, still behind Matlab's performance.
To do this, one needs to add:
from sparse_dot_mkl import sparse_qr_solve_mkl
and
sparse_qr_solve_mkl(A.astype(np.float32), b.astype(np.float32))
to the scripts provided in the original post. The ".astype(np.float32)" can be omitted, and the performance gets slighlty worse (about 10 %) for this system.
I will try to answer to myself. To provide an answer, I tried an even more demanding example, with a matrix of size of (N,N) of about half a million by half a million and the corresponding vector (N,1). This, however, is much less sparse (more dense) than the one provided in the question. This matrix stored in ascii is of about 1.7 Gb, compared to the one of the example, which is of about 0.25 Gb (despite its "size" is larger). See its shape here,
Then, I tried to solve Ax=b using again Matlab, Octave and Python using the aforementioned the direct solvers from scipy, the intel MKL wrapper, the UMFPACK from Tim Davis.
My first surprise is that both Matlab and Octave could solve the systems using the A\b, which is not for certain that it is a direct solver, since it chooses the best solver based on the characteristics of the matrix, see Matlab's x=A\b. However, the python's linalg.spsolve , the MKL wrapper and the UMFPACK were throwing out-of-memory errors in Windows and Linux. In mac, the linalg.spsolve was somehow computing a solution, and alghouth it was with a very poor performance, it never through memory errors. I wonder if the memory is handled differently depending on the OS. To me, it seems that mac swapped memory to the hard drive rather than using it from the RAM. The performance of the CG solver in Python was rather poor, compared to the matlab. However, to improve the performance in the CG solver in python, one can get a huge improvement in performance if A=0.5(A+A') is computed first (if one obviously, have a symmetric system). Using a preconditioner in Python did not help. I tried using the sp.linalg.spilu method together with sp.linalg.LinearOperator to compute a preconditioner, but the performance was rather poor. In matlab, one can use the incomplete Cholesky decomposition.
For the out-of-memory problem the solution was to use an LU decomposition and solve two nested systems, such as Ax=b, A=LL', y=L\b and x=y\L'.
I put here the min. solution times,
Matlab mac, A\b = 294 s.
Matlab mac, PCG (without conditioner)= 17.9 s.
Matlab mac, PCG (with incomplete Cholesky conditioner) = 9.8 s.
Scipy mac, direct = 4797 s.
Octave, A\b = 302 s.
Octave, PCG (without conditioner)= 28.6 s.
Octave, PCG (with incomplete Cholesky conditioner) = 11.4 s.
Scipy, PCG (without A=0.5(A+A'))= 119 s.
Scipy, PCG (with A=0.5(A+A'))= 12.7 s.
Scipy, LU decomposition using UMFPACK (Linux) = 3.7 s total.
So the answer is YES, there are ways to improve the solution times in scipy. The use of the wrappers for UMFPACK (Linux) or intel MKL QR solver is highly recommended, if the memmory of the workstation allows it. Otherwise, performing A=0.5(A+A') prior to using the conjugate gradient solver can have a positive effect in the solution performance if one is dealing with symmetric systems.
Let me know if someone would be interested in having this new system, so I can upload it.
I am making some benchmarks with CUDA, C++, C#, Java, and using MATLAB for verification and matrix generation. When I perform matrix multiplication with MATLAB, 2048x2048 and even bigger matrices are almost instantly multiplied.
1024x1024 2048x2048 4096x4096
--------- --------- ---------
CUDA C (ms) 43.11 391.05 3407.99
C++ (ms) 6137.10 64369.29 551390.93
C# (ms) 10509.00 300684.00 2527250.00
Java (ms) 9149.90 92562.28 838357.94
MATLAB (ms) 75.01 423.10 3133.90
Only CUDA is competitive, but I thought that at least C++ will be somewhat close and not 60 times slower. I also don't know what to think about the C# results. The algorithm is just the same as C++ and Java, but there's a giant jump 2048 from 1024.
How is MATLAB performing matrix multiplication so fast?
C++ Code:
float temp = 0;
timer.start();
for(int j = 0; j < rozmer; j++)
{
for (int k = 0; k < rozmer; k++)
{
temp = 0;
for (int m = 0; m < rozmer; m++)
{
temp = temp + matice1[j][m] * matice2[m][k];
}
matice3[j][k] = temp;
}
}
timer.stop();
This kind of question is recurring and should be answered more clearly than "MATLAB uses highly optimized libraries" or "MATLAB uses the MKL" for once on Stack Overflow.
History:
Matrix multiplication (together with Matrix-vector, vector-vector multiplication and many of the matrix decompositions) is (are) the most important problems in linear algebra. Engineers have been solving these problems with computers since the early days.
I'm not an expert on the history, but apparently back then, everybody just rewrote his FORTRAN version with simple loops. Some standardization then came along, with the identification of "kernels" (basic routines) that most linear algebra problems needed in order to be solved. These basic operations were then standardized in a specification called: Basic Linear Algebra Subprograms (BLAS). Engineers could then call these standard, well-tested BLAS routines in their code, making their work much easier.
BLAS:
BLAS evolved from level 1 (the first version which defined scalar-vector and vector-vector operations) to level 2 (vector-matrix operations) to level 3 (matrix-matrix operations), and provided more and more "kernels" so standardized more and more of the fundamental linear algebra operations. The original FORTRAN 77 implementations are still available on Netlib's website.
Towards better performance:
So over the years (notably between the BLAS level 1 and level 2 releases: early 80s), hardware changed, with the advent of vector operations and cache hierarchies. These evolutions made it possible to increase the performance of the BLAS subroutines substantially. Different vendors then came along with their implementation of BLAS routines which were more and more efficient.
I don't know all the historical implementations (I was not born or a kid back then), but two of the most notable ones came out in the early 2000s: the Intel MKL and GotoBLAS. Your Matlab uses the Intel MKL, which is a very good, optimized BLAS, and that explains the great performance you see.
Technical details on Matrix multiplication:
So why is Matlab (the MKL) so fast at dgemm (double-precision general matrix-matrix multiplication)? In simple terms: because it uses vectorization and good caching of data. In more complex terms: see the article provided by Jonathan Moore.
Basically, when you perform your multiplication in the C++ code you provided, you are not at all cache-friendly. Since I suspect you created an array of pointers to row arrays, your accesses in your inner loop to the k-th column of "matice2": matice2[m][k] are very slow. Indeed, when you access matice2[0][k], you must get the k-th element of the array 0 of your matrix. Then in the next iteration, you must access matice2[1][k], which is the k-th element of another array (the array 1). Then in the next iteration you access yet another array, and so on... Since the entire matrix matice2 can't fit in the highest caches (it's 8*1024*1024 bytes large), the program must fetch the desired element from main memory, losing a lot of time.
If you just transposed the matrix, so that accesses would be in contiguous memory addresses, your code would already run much faster because now the compiler can load entire rows in the cache at the same time. Just try this modified version:
timer.start();
float temp = 0;
//transpose matice2
for (int p = 0; p < rozmer; p++)
{
for (int q = 0; q < rozmer; q++)
{
tempmat[p][q] = matice2[q][p];
}
}
for(int j = 0; j < rozmer; j++)
{
for (int k = 0; k < rozmer; k++)
{
temp = 0;
for (int m = 0; m < rozmer; m++)
{
temp = temp + matice1[j][m] * tempmat[k][m];
}
matice3[j][k] = temp;
}
}
timer.stop();
So you can see how just cache locality increased your code's performance quite substantially. Now real dgemm implementations exploit that to a very extensive level: They perform the multiplication on blocks of the matrix defined by the size of the TLB (Translation lookaside buffer, long story short: what can effectively be cached), so that they stream to the processor exactly the amount of data it can process. The other aspect is vectorization, they use the processor's vectorized instructions for optimal instruction throughput, which you can't really do from your cross-platform C++ code.
Finally, people claiming that it's because of Strassen's or Coppersmith–Winograd algorithm are wrong, both these algorithms are not implementable in practice, because of hardware considerations mentioned above.
Here's my results using MATLAB R2011a + Parallel Computing Toolbox on a machine with a Tesla C2070:
>> A = rand(1024); gA = gpuArray(A);
% warm up by executing the operations a couple of times, and then:
>> tic, C = A * A; toc
Elapsed time is 0.075396 seconds.
>> tic, gC = gA * gA; toc
Elapsed time is 0.008621 seconds.
MATLAB uses highly optimized libraries for matrix multiplication which is why the plain MATLAB matrix multiplication is so fast. The gpuArray version uses MAGMA.
Update using R2014a on a machine with a Tesla K20c, and the new timeit and gputimeit functions:
>> A = rand(1024); gA = gpuArray(A);
>> timeit(#()A*A)
ans =
0.0324
>> gputimeit(#()gA*gA)
ans =
0.0022
Update using R2018b on a WIN64 machine with 16 physical cores and a Tesla V100:
>> timeit(#()A*A)
ans =
0.0229
>> gputimeit(#()gA*gA)
ans =
4.8019e-04
(NB: at some point (I forget when exactly) gpuArray switched from MAGMA to cuBLAS - MAGMA is still used for some gpuArray operations though)
Update using R2022a on a WIN64 machine with 32 physical cores and an A100 GPU:
>> timeit(#()A*A)
ans =
0.0076
>> gputimeit(#()gA*gA)
ans =
2.5344e-04
This is why. MATLAB doesn't perform a naive matrix multiplication by looping over every single element the way you did in your C++ code.
Of course I'm assuming that you just used C=A*B instead of writing a multiplication function yourself.
Matlab incorporated LAPACK some time ago, so I assume their matrix multiplication uses something at least that fast. LAPACK source code and documentation is readily available.
You might also look at Goto and Van De Geijn's paper "Anatomy of High-Performance Matrix
Multiplication" at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1785&rep=rep1&type=pdf
The answer is LAPACK and BLAS libraries make MATLAB blindingly fast at matrix operations, not any proprietary code by the folks at MATLAB.
Use the LAPACK and/or BLAS libraries in your C++ code for matrix operations and you should get similar performance as MATLAB. These libraries should be freely available on any modern system and parts were developed over decades in academia. Note that there are multiple implementations, including some closed source such as Intel MKL.
A discussion of how BLAS gets high performance is available here.
BTW, it's a serious pain in my experience to call LAPACK libraries directly from c (but worth it). You need to read the documentation VERY precisely.
When doing matrix multiplying, you use naive multiplication method which takes time of O(n^3).
There exist matrix multiplication algorithm which takes O(n^2.4). Which means that at n=2000 your algorithm requires ~100 times as much computation as the best algorithm.
You should really check the wikipedia page for matrix multiplication for further information on the efficient ways to implement it.
Depending on your version of Matlab, I believe it might be using your GPU already.
Another thing; Matlab keeps track of many properties of your matrix; wether its diagonal, hermetian, and so forth, and specializes its algorithms based thereon. Maybe its specializing based on the zero matrix you are passing it, or something like that? Maybe it is caching repeated function calls, which messes up your timings? Perhaps it optimizes out repeated unused matrix products?
To guard against such things happening, use a matrix of random numbers, and make sure you force execution by printing the result to screen or disk or somesuch.
The general answer to "Why is matlab faster at doing xxx than other programs" is that matlab has a lot of built in, optimized functions.
The other programs that are used often do not have these functions so people apply their own creative solutions, which are suprisingly slower than professionally optimized code.
This can be interpreted in two ways:
1) The common/theoretical way: Matlab is not significantly faster, you are just doing the benchmark wrong
2) The realistic way: For this stuff Matlab is faster in practice because languages as c++ are just too easily used in ineffective ways.
MATLAB uses a highly optimized implementation of LAPACK from Intel known as Intel Math Kernel Library (Intel MKL) - specifically the dgemm function. The speed This library takes advantage of processor features including SIMD instructions and multi-core processors. They don't document which specific algorithm they use. If you were to call Intel MKL from C++ you should see similar performance.
I am not sure what library MATLAB uses for GPU multiplication but probably something like nVidia CUBLAS.
The sharp contrast is not only due to Matlab's amazing optimization (as discussed by many other answers already), but also in the way you formulated matrix as an object.
It seems like you made matrix a list of lists? A list of lists contains pointers to lists which then contain your matrix elements. The locations of the contained lists are assigned arbitrarily. As you are looping over your first index (row number?), the time of memory access is very significant. In comparison, why don't you try implement matrix as a single list/vector using the following method?
#include <vector>
struct matrix {
matrix(int x, int y) : n_row(x), n_col(y), M(x * y) {}
int n_row;
int n_col;
std::vector<double> M;
double &operator()(int i, int j);
};
And
double &matrix::operator()(int i, int j) {
return M[n_col * i + j];
}
The same multiplication algorithm should be used so that the number of flop is the same. (n^3 for square matrices of size n)
I'm asking you to time it so that the result is comparable to what you had earlier (on the same machine). With the comparison, you will show exactly how significant memory access time can be!
It's slow in C++ because you are not using multithreading. Essentially, if A = B C, where they are all matrices, the first row of A can be computed independently from the 2nd row, etc. If A, B, and C are all n by n matrices, you can speed up the multiplication by a factor of n^2, as
a_{i,j} = sum_{k} b_{i,k} c_{k,j}
If you use, say, Eigen [ http://eigen.tuxfamily.org/dox/GettingStarted.html ], multithreading is built-in and the number of threads is adjustable.
Because MATLAB is a programming language at first developed for numerical linear algebra (matrix manipulations), which has libraries especially developed for matrix multiplications. And now MATLAB can also use the GPUs (Graphics processing unit) for this additionally.
And if we look at your computation results:
1024x1024 2048x2048 4096x4096
--------- --------- ---------
CUDA C (ms) 43.11 391.05 3407.99
C++ (ms) 6137.10 64369.29 551390.93
C# (ms) 10509.00 300684.00 2527250.00
Java (ms) 9149.90 92562.28 838357.94
MATLAB (ms) 75.01 423.10 3133.90
then we can see that not only MATLAB is so fast in matrix multiplication: CUDA C (programming language from NVIDIA) has some better results than MATLAB. CUDA C has also libraries especially developed for matrix multiplications and it uses the GPUs.
Short history of MATLAB
Cleve Moler, the chairman of the computer science department at the University of New Mexico, started developing MATLAB in the late 1970s. He designed it to give his students access to LINPACK (a software library for performing numerical linear algebra) and EISPACK (is a software library for numerical computation of linear algebra) without them having to learn Fortran. It soon spread to other universities and found a strong audience within the applied mathematics community. Jack Little, an engineer, was exposed to it during a visit Moler made to Stanford University in 1983. Recognizing its commercial potential, he joined with Moler and Steve Bangert. They rewrote MATLAB in C and founded MathWorks in 1984 to continue its development. These rewritten libraries were known as JACKPAC. In 2000, MATLAB was rewritten to use a newer set of libraries for matrix manipulation, LAPACK (is a standard software library for numerical linear algebra).
Source
What is CUDA C
CUDA C uses also libraries especially developed for matrix multiplications like OpenGL (Open Graphics Library). It uses also GPU and Direct3D (on MS Windows).
The CUDA platform is designed to work with programming languages such as C, C++, and Fortran. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL, which required advanced skills in graphics programming. Also, CUDA supports programming frameworks such as OpenACC and OpenCL.
Example of CUDA processing flow:
Copy data from main memory to GPU memory
CPU initiates the GPU compute kernel
GPU's CUDA cores execute the kernel in parallel
Copy the resulting data from GPU memory to main memory
Comparing CPU and GPU Execution Speeds
We ran a benchmark in which we measured the amount of time it took to execute 50 time steps for grid sizes of 64, 128, 512, 1024, and 2048 on an Intel Xeon Processor X5650 and then using an NVIDIA Tesla C2050 GPU.
For a grid size of 2048, the algorithm shows a 7.5x decrease in compute time from more than a minute on the CPU to less than 10 seconds on the GPU. The log scale plot shows that the CPU is actually faster for small grid sizes. As the technology evolves and matures, however, GPU solutions are increasingly able to handle smaller problems, a trend that we expect to continue.
Source
From introduction for CUDA C Programming Guide:
Driven by the insatiable market demand for realtime, high-definition 3D graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly parallel, multithreaded, manycore processor with tremendous computational horsepower and very high memory bandwidth, as illustrated by Figure 1 and Figure 2.
Figure 1. Floating-Point Operations per Second for the CPU and GPU
Figure 2. Memory Bandwidth for the CPU and GPU
The reason behind the discrepancy in floating-point capability between the CPU and the GPU is that the GPU is specialized for compute-intensive, highly parallel computation - exactly what graphics rendering is about - and therefore designed such that more transistors are devoted to data processing rather than data caching and flow control, as schematically illustrated by Figure 3.
Figure 3. The GPU Devotes More Transistors to Data Processing
More specifically, the GPU is especially well-suited to address problems that can be expressed as data-parallel computations - the same program is executed on many data elements in parallel - with high arithmetic intensity - the ratio of arithmetic operations to memory operations. Because the same program is executed for each data element, there is a lower requirement for sophisticated flow control, and because it is executed on many data elements and has high arithmetic intensity, the memory access latency can be hidden with calculations instead of big data caches.
Data-parallel processing maps data elements to parallel processing threads. Many applications that process large data sets can use a data-parallel programming model to speed up the computations. In 3D rendering, large sets of pixels and vertices are mapped to parallel threads. Similarly, image and media processing applications such as post-processing of rendered images, video encoding and decoding, image scaling, stereo vision, and pattern recognition can map image blocks and pixels to parallel processing threads. In fact, many algorithms outside the field of image rendering and processing are accelerated by data-parallel processing, from general signal processing or physics simulation to computational finance or computational biology.
Source
Advanced reading
GPUs (Graphics processing unit)
MATLAB
CUDA C Programming Guide
Using GPUs in MATLAB
Basic Linear Algebra Subprograms (BLAS)
Anatomy of High-Performance Matrix Multiplication, from Kazushige Goto and Robert A. Van De Geijn
Some interesting facs
I've written C++ matrix multiplication that is as fast as Matlab's but it took some care. (Before Matlab was using GPUs for this).
Сitation from this answer.
I have a simple problem: multiply a matrix by a vector. However, the implementation of the multiplication is complicated because the matrix is 18 gb (3000^2 by 500).
Some info:
The matrix is stored in HDF5 format. It's Matlab output. It's dense so no sparsity savings there.
I have to do this matrix multiplication roughly 2000 times over the course of my algorithm (MCMC Bayesian Inversion)
My program is a combination of Python and C, where the Python code handles most of the MCMC procedure: keeping track of the random walk, generating perturbations, checking MH Criteria, saving accepted proposals, monitoring the burnout, etc. The C code is simply compiled into a separate executable and called when I need to solve the forward (acoustic wave) problem. All communication between the Python and C is done via the file system. All this is to say I don't already have ctype stuff going on.
The C program is already parallelized using MPI, but I don't think that's an appropriate solution for this MV multiplication problem.
Our program is run mainly on linux, but occasionally on OSX and Windows. Cross-platform capabilities without too much headache is a must.
Right now I have a single-thread implementation where the python code reads in the matrix a few thousand lines at a time and performs the multiplication. However, this is a significant bottleneck for my program since it takes so darn long. I'd like to multithread it to speed it up a bit.
I'm trying to get an idea of whether it would be faster (computation-time-wise, not implementation time) for python to handle the multithreading and to continue to use numpy operations to do the multiplication, or to code an MV multiplication function with multithreading in C and bind it with ctypes.
I will likely do both and time them since shaving time off of an extremely long running program is important. I was wondering if anyone had encountered this situation before, though, and had any insight (or perhaps other suggestions?)
As a side question, I can only find algorithmic improvements for nxn matrices for m-v multiplication. Does anyone know of one that can be used on an mxn matrix?
Hardware
As Sven Marnach wrote in the comments, your problem is most likely I/O bound since disk access is orders of magnitude slower than RAM access.
So the fastest way is probably to have a machine with enough memory to keep the whole matrix multiplication and the result in RAM. It would save lots of time if you read the matrix only once.
Replacing the harddisk with an SSD would also help, because that can read and write a lot faster.
Software
Barring that, for speeding up reads from disk, you could use the mmap module. This should help, especially once the OS figures out you're reading pieces of the same file over and over and starts to keep it in the cache.
Since the calculation can be done by row, you might benefit from using numpy in combination with a multiprocessing.Pool for that calculation. But only really if a single process cannot use all available disk read bandwith.
Here's the code I wrote for comparing performance of numpy vs Matlab. It just measures the average time taken for matrix multiplication (1701x576 matrix M1 * 576x576 matrix M2).
Matlab version : (M1 is (1701x576) while M2 is (576x576) matrix)
function r = benchmark(M1,M2)
total_time=0;
for i=1:4
for j=1:1500
tic;
a=M1*M2;
tim=toc;
total_time =total_time+tim;
end
end
avg_time = total_time/4
r=avg_time
end
Python version :
def benchmark():
iters = range(1500)
for i in range(4):
for j in iters:
tic = time.time()
a=M1.dot(M2);
toc = time.time() - tic
t_time=t_time+toc;
return t_time/4
Matlab version takes almost ~18.2s , while Python takes ~19.3s . Ive repeated this test multiple times , and Matlab was always performing better than Python (even if smaller difference) in all cases . My understanding is Numpy uses efficient and compiled code for vector operations , and is supposed to be faster than Matlab.
Then , why could Matlab perform faster than Numpy ? The test was done on a 32 core machine .
Where did I go wrong ? or is this expected for Numpy to be slower than Matlab.
Are there ways to improve the performance for Python ?
Edit : Updated the matlab code to fix the loop index/return value error . The error was the result of me trying to edit the names in the snipper to make it presentable just before posting(a bad idea everytime :) ).
[edited to remove the mention of loops; that was my mistake]
Couple things--
First, the multicore nature of the machine doesn't really matter unless you're explicitly using those extra cores (or linking NumPy against a BLAS library that uses multiple cores -- thanks #ali_m). If you're not, it'll run about as fast on a 32-core machine as it will on a 4-core machine (assuming the clock speeds of the cores themselves are roughly equal).
Second, using purely off-the-shelf Matlab vs off-the-shelf NumPy, Matlab generally beats out NumPy. This is a very general statement, though; YMMV. Also, speaking of Matlab, there does indeed appear to be a bug in the looping indices.
Third, this may not be the best benchmark for performance; there may be some unseen caching issues taking place under the hood that aren't obvious. A better one would be to randomly generate the matrices on-the-fly in each iteration and multiply them, but even this could be problematic depending on the random number generator.
There are two major issues I can see with the test.
The first is that you are using global variable lookup in Python while you are using local variable lookup in MATLAB. Global variable lookup in Python is relatively slow. Making sure the variables are local like they are in MATLAB will affect the performance.
The second is that you are re-doing the same calculation over and over. MATLAB has a JIT for loops and numpy has a cache for calculations, both of which can reduce the time for repeated calculations.
So to make the comparisons more equal and reliable, you should create new, random matrices each time through the loop. This will prevent caching and JIT from messing up your results, and will make sure the variables are all local.
There is a bug in your Matlab code. It appears that you are using the same loop control variable in nested loops.
The outer loop actually only runs once.
Edit: The outer loop actually runs the correct number of times. The two loop control variables seem to be independent.
Benchmarks of different languages and related questions are everywhere on the Internet. However, I still cannot figure out an answer of whether I should switch to C in my program.
Basically, The most time consuming part in my program involves a lot of matrix inverse and matrix multiplication. I have several plans:
stick with numpy.
use C with LAPACK/BLAS.
rewrite my python program and change the most time consuming part into C and then use python to call C.
I know numpy is just something wrapped around LAPACK/BLAS. So will 2 or 3 be substantially(500%) faster than 1?
I just wanted to ask a very similar question when i saw yours. I have tested this question from various directions. From quite some time I am trying to beat numpy.dot function by my code.
I have large complex matrices and their multiplication is the primary bottleneck of my program. I have tested following methods
simple c code.
cython code with various optimizations, using cblas.
python 32 bit and 64 bit versions and found that 64 bit version is 1.5-2 times faster than the 32 bit.
ananconda's MKL implementation but no luck there also.
einsum for the matrix multiplication
python 3 and python 2.7 are same python 3 # operator is also same
numpy.dot(a,b,c) is marginally faster than c=numpy.dot(a,b)
by far the numpy.dot is the best. It beat every other method, sometimes marginally (einsum) but mostly significantly.
During my research i come across one article namely
Ultrafast matrix multiplication which tells that apple's altivec implementation can multiply 2500x2500 matrix in less than a second. On my PC with intel core i3 4th generation 2.3 GHZ 4 gb ram it took 73 seconds using numpy.dot hence I am still searching for faster implementation on PC.