NumPy array indexing a 2D matrix - python

I've a little issue while working on same big data. But for now, let's assume I've got an NumPy array filled with zeros
>>> x = np.zeros((3,3))
>>> x
array([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
Now I want to change some of these zeros with specific values. I've given the index of the cells I want to change.
>>> y = np.array([[0,0],[1,1],[2,2]])
>>> y
array([[0, 0],
[1, 1],
[2, 2]])
And I've got an array with the desired (for now random) numbers, as follow
>>> z = np.array(np.random.rand(3))
>>> z
array([ 0.04988558, 0.87512891, 0.4288157 ])
So now I thought I can do the following:
>>> x[y] = z
But than it's filling the whole array like this
>>> x
array([[ 0.04988558, 0.87512891, 0.4288157 ],
[ 0.04988558, 0.87512891, 0.4288157 ],
[ 0.04988558, 0.87512891, 0.4288157 ]])
But I was hoping to get
>>> x
array([[ 0.04988558, 0, 0 ],
[ 0, 0.87512891, 0 ],
[ 0, 0, 0.4288157 ]])
EDIT
Now I've used a diagonal index, but what in the case my index is not just diagonal. I was hoping following works:
>>> y = np.array([[0,1],[1,2],[2,0]])
>>> x[y] = z
>>> x
>>> x
array([[ 0, 0.04988558, 0 ],
[ 0, 0, 0.87512891 ],
0.4288157, 0, 0 ]])
But it's filling whole array just like above

Array indexing works a bit differently on multidimensional arrays
If you have a vector, you can access the first three elements by using
x[np.array([0,1,2])]
but when you're using this on a matrix, it will return the first few rows. Upon first sight, using
x[np.array([0,0],[1,1],[2,2]])]
sounds reasonable. However, NumPy array indexing works differently: It still treats all those indices in a 1D fashion, but returns the values from the vector in the same shape as your index vector.
To properly access 2D matrices you have to split both components into two separate arrays:
x[np.array([0,1,2]), np.array([0,1,2])]
This will fetch all elements on the main diagonal of your matrix. Assignments using this method is possible, too:
x[np.array([0,1,2]), np.array([0,1,2])] = 1
So to access the elements you've mentioned in your edit, you have to do the following:
x[np.array([0,1,2]), np.array([1,2,0])]

Related

How to efficiently filter maximum elements of a matrix per row

Given a 2D array, I'm looking for a pythonic way to get an array of same shape, with only the maximum element per each row.
See max_row_filter function below
def max_row_filter(mat2d):
m = np.zeros(mat2d.shape)
for r in range(mat2d.shape[0]):
c = np.argmax(mat2d[r])
m[r,c]=mat2d[r,c]
return m
p = np.array([[1,2,3],[5,4,3,],[9,10,3]])
max_row_filter(p)
Out: array([[ 0., 0., 3.],
[ 5., 0., 0.],
[ 0., 10., 0.]])
I'm looking for an efficient way to do this, suitable to be done on big arrays.
Alternative answer (this will keep duplicates):
p * (p==p.max(axis=1, keepdims=True))
If there are no duplicates, you could use numpy.argmax:
import numpy as np
p = np.array([[1, 2, 3],
[5, 4, 3, ],
[9, 10, 3]])
result = np.zeros_like(p)
rows, cols = zip(*enumerate(np.argmax(p, axis=1)))
result[rows, cols] = p[rows, cols]
print(result)
Output
[[ 0 0 3]
[ 5 0 0]
[ 0 10 0]]
Note that, for multiple occurrences argmax return the first occurence.

Efficiently index 2d numpy array using two 1d arrays

I have a large 2d numpy array and two 1d arrays that represent x/y indexes within the 2d array. I want to use these 1d arrays to perform an operation on the 2d array.
I can do this with a for loop, but it's very slow when working on a large array. Is there a faster way? I tried using the 1d arrays simply as indexes but that didn't work. See this example:
import numpy as np
# Two example 2d arrays
cnt_a = np.zeros((4,4))
cnt_b = np.zeros((4,4))
# 1d arrays holding x and y indices
xpos = [0,0,1,2,1,2,1,0,0,0,0,1,1,1,2,2,3]
ypos = [3,2,1,1,3,0,1,0,0,1,2,1,2,3,3,2,0]
# This method works, but is very slow for a large array
for i in range(0,len(xpos)):
cnt_a[xpos[i],ypos[i]] = cnt_a[xpos[i],ypos[i]] + 1
# This method is fast, but gives incorrect answer
cnt_b[xpos,ypos] = cnt_b[xpos,ypos]+1
# Print the results
print 'Good:'
print cnt_a
print ''
print 'Bad:'
print cnt_b
The output from this is:
Good:
[[ 2. 1. 2. 1.]
[ 0. 3. 1. 2.]
[ 1. 1. 1. 1.]
[ 1. 0. 0. 0.]]
Bad:
[[ 1. 1. 1. 1.]
[ 0. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 0. 0. 0.]]
For the cnt_b array numpy is obviously not summing correctly, but I'm unsure how to fix this without resorting to the (v. inefficient) for loop used to calculate cnt_a.
Another approach by using 1D indexing (suggested by #Shai) extended to answer the actual question:
>>> out = np.zeros((4, 4))
>>> idx = np.ravel_multi_index((xpos, ypos), out.shape) # extract 1D indexes
>>> x = np.bincount(idx, minlength=out.size)
>>> out.flat += x
np.bincount calculates how many times each of the index is present in the xpos, ypos and stores them in x.
Or, as suggested by #Divakar:
>>> out.flat += np.bincount(idx, minlength=out.size)
We could compute the linear indices, then accumulate into zeros-initialized output array with np.add.at. Thus, with xpos and ypos as arrays, here's one implementation -
m,n = xpos.max()+1, ypos.max()+1
out = np.zeros((m,n),dtype=int)
np.add.at(out.ravel(), xpos*n+ypos, 1)
Sample run -
In [95]: # 1d arrays holding x and y indices
...: xpos = np.array([0,0,1,2,1,2,1,0,0,0,0,1,1,1,2,2,3])
...: ypos = np.array([3,2,1,1,3,0,1,0,0,1,2,1,2,3,3,2,0])
...:
In [96]: cnt_a = np.zeros((4,4))
In [97]: # This method works, but is very slow for a large array
...: for i in range(0,len(xpos)):
...: cnt_a[xpos[i],ypos[i]] = cnt_a[xpos[i],ypos[i]] + 1
...:
In [98]: m,n = xpos.max()+1, ypos.max()+1
...: out = np.zeros((m,n),dtype=int)
...: np.add.at(out.ravel(), xpos*n+ypos, 1)
...:
In [99]: cnt_a
Out[99]:
array([[ 2., 1., 2., 1.],
[ 0., 3., 1., 2.],
[ 1., 1., 1., 1.],
[ 1., 0., 0., 0.]])
In [100]: out
Out[100]:
array([[2, 1, 2, 1],
[0, 3, 1, 2],
[1, 1, 1, 1],
[1, 0, 0, 0]])
you can iterate on both lists at once, and increment for each couple (if you are not used to it, zip can combine lists)
for x, y in zip(xpos, ypos):
cnt_b[x][y] += 1
But this will be about the same speed as your solution A.
If your lists xpos/ypos are of length n, I don't see how you can update your matrix in less than o(n) since you'll have to check each pair one way or an other.
Other solution: you could count (with collections.Counter possibly) the similar index pairs (ex: (0, 3) etc...) and update the matrix with the count value. But I doubt it would be much faster, since you the time gained on updating the matrix would be lost on counting multiple occurrences.
Maybe I am totally wrong tho, in which case I'd be curious too to see a not o(n) answer
I think you are looking for ravel_multi_index funciton
lidx = np.ravel_multi_index((xpos, ypos), cnt_a.shape)
converts to "flatten" 1D indices into cnt_a and cnt_b:
np.add.at( cnt_b, lidx, 1 )

Python: Counting identical rows in an array (without any imports)

For example, given:
import numpy as np
data = np.array(
[[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 0, 1],
[0, 1, 1],
[0, 0, 0]])
I want to get a 3-dimensional array, looking like:
result = array([[[ 2., 0.],
[ 0., 2.]],
[[ 0., 2.],
[ 0., 0.]]])
One way is:
for row in data
newArray[ row[0] ][ row[1] ][ row[2] ] += 1
What I'm trying to do is the following:
for i in dimension1
for j in dimension2
for k in dimension3
result[i,j,k] = (data[data[data[:,0]==i, 1]==j, 2]==k).sum()
This doesn't seem to work and I would like to achieve the desired result by sticking to my implementation rather than the one mentioned in the beginning (or using any extra imports, eg counter).
Thanks.
You can also use numpy.histogramdd for this:
>>> np.histogramdd(data, bins=(2, 2, 2))[0]
array([[[ 2., 0.],
[ 0., 2.]],
[[ 0., 2.],
[ 0., 0.]]])
The problem is that data[data[data[:,0]==i, 1]==j, 2]==k is not what you expect it to be.
Let's take this apart for the case (i,j,k) == (0,0,0)
data[:,0]==0 is [True, True, False, False, True, True], and data[data[:,0]==0] correctly gives us the lines where the first number is 0.
Now from those lines we get the lines where the second number is 0: data[data[:,0]==0, 1]==0, which gives us [True, False, False, True]. And this is the problem. Because if we take those indices from data, i.e., data[data[data[:,0]==0, 1]==0] we do not get the rows where the first and second number are 0, but the 0th and 3rd row instead:
In [51]: data[data[data[:,0]==0, 1]==0]
Out[51]: array([[0, 0, 0],
[1, 0, 1]])
And if we now filter for the rows where the third number is 0, we get the wrong result w.r.t. the orignal data.
And that's why your approach does not work. For better methods, see the other answers.
You can do something like the following
#Get output dimension and construct output array.
>>> dshape = tuple(data.max(axis=0)+1)
>>> dshape
(2, 2, 2)
>>> out = np.zeros(shape)
If you have numpy 1.8+:
out.flat[np.ravel_multi_index(data.T, dshape)]+=1
Else:
#Get indices and unique the resulting array
>>> inds = np.ravel_multi_index(data.T, dshape)
>>> inds, inverse = np.unique(inds, return_inverse=True)
>>> values = np.bincount(inverse)
>>> values
array([2, 2, 2])
>>> out.flat[inds] = values
>>> out
array([[[ 2., 0.],
[ 0., 2.]],
[[ 0., 2.],
[ 0., 0.]]])
Numpy versions before numpy 1.7 do not have a add.at attribute and the top code will not work without it. As ravel_multi_index may not be the fastest algorithm ever you can look into taking the unique rows of a numpy array. In effect these two operations should be equivalent.
Don't fear the imports. They're what make Python awesome.
If question assumes that you already have the result matrix.
import numpy as np
data = np.array(
[[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 0, 1],
[0, 1, 1],
[0, 0, 0]]
)
result = np.zeros((2,2,2))
# range of each dim, aka allowable values for each dim
dim_ranges = zip(np.zeros(result.ndim), np.array(result.shape)-1)
dim_ranges
# Out[]:
# [(0.0, 2), (0.0, 2), (0.0, 2)]
# Multidimentional histogram will effectively "count" along each dim
sums,_ = np.histogramdd(data,bins=result.shape,range=dim_ranges)
result += sums
result
# Out[]:
# array([[[ 2., 0.],
# [ 0., 2.]],
#
# [[ 0., 2.],
# [ 0., 0.]]])
This solution solves for any "result" ndarray, no matter what the shape. Additionally, it works fine even if your "data" ndarray has indices which are out-of-bounds for your result matrix.

Convert 1-D array of discrete values to n-D array of continuous values in Numpy

What is best way of doing: given a 1-D array of discrete variables size N (here N=4) and X is the number of unique elements, I am trying to create a multidimensional array of size (N*X) where elements are 1 or 0 depending on the occurrence of elements in the 1-D array, e.g. Following array_1D (N=4 and X=3) will result in array_ND of size 3*4:
array_1D = np.array([x, y, z, x])
array_ND = [[1 0 0 1]
[0 1 0 0]
[0 0 1 0]]
Thanks,
Aso
Try this:
(np.unique(a)[..., None] == a).astype(np.int)
You can leave out the .astype(np.int) part if you want a boolean array. Here we have used broadcasting (the [..., None] part) to avoid explicit looping.
Broken down, as suggested in the comments:
>>> import numpy as np
>>> a = np.array([1, 2, 3, 1])
>>> unique_elements = np.unique(a)
>>> result = unique_elements[..., None] == a
>>> unique_elements
array([1, 2, 3])
>>> result
array([[ True, False, False, True],
[False, True, False, False],
[False, False, True, False]], dtype=bool)
If the initial array contains valid indexes from 0 to n - 1 then you can write
eye = np.eye(3)
array_1D = np.array([0, 1, 2, 0])
array_ND = eye[array_1D]
The resulting matrix will be
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 1., 0., 0.]])
which is the transpose of the one you expect.
What's happening here is that numpy uses the elements of array_1D as row indices of eye. So the resulting matrix contains as many rows as the elements of array_1D and each one of them relates to the respective element. (0 relates to 1 0 0, etc.)

Good ways to "expand" a numpy ndarray?

Are there good ways to "expand" a numpy ndarray? Say I have an ndarray like this:
[[1 2]
[3 4]]
And I want each row to contains more elements by filling zeros:
[[1 2 0 0 0]
[3 4 0 0 0]]
I know there must be some brute-force ways to do so (say construct a bigger array with zeros then copy elements from old smaller arrays), just wondering are there pythonic ways to do so. Tried numpy.reshape but didn't work:
import numpy as np
a = np.array([[1, 2], [3, 4]])
np.reshape(a, (2, 5))
Numpy complains that: ValueError: total size of new array must be unchanged
You can use numpy.pad, as follows:
>>> import numpy as np
>>> a=[[1,2],[3,4]]
>>> np.pad(a, ((0,0),(0,3)), mode='constant', constant_values=0)
array([[1, 2, 0, 0, 0],
[3, 4, 0, 0, 0]])
Here np.pad says, "Take the array a and add 0 rows above it, 0 rows below it, 0 columns to the left of it, and 3 columns to the right of it. Fill these columns with a constant specified by constant_values".
There are the index tricks r_ and c_.
>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> z = np.zeros((2, 3), dtype=a.dtype)
>>> np.c_[a, z]
array([[1, 2, 0, 0, 0],
[3, 4, 0, 0, 0]])
If this is performance critical code, you might prefer to use the equivalent np.concatenate rather than the index tricks.
>>> np.concatenate((a,z), axis=1)
array([[1, 2, 0, 0, 0],
[3, 4, 0, 0, 0]])
There are also np.resize and np.ndarray.resize, but they have some limitations (due to the way numpy lays out data in memory) so read the docstring on those ones. You will probably find that simply concatenating is better.
By the way, when I've needed to do this I usually just do it the basic way you've already mentioned (create an array of zeros and assign the smaller array inside it), I don't see anything wrong with that!
Just to be clear: there's no "good" way to extend a NumPy array, as NumPy arrays are not expandable. Once the array is defined, the space it occupies in memory, a combination of the number of its elements and the size of each element, is fixed and cannot be changed. The only thing you can do is to create a new array and replace some of its elements by the elements of the original array.
A lot of functions are available for convenience (the np.concatenate function and its np.*stack shortcuts, the np.column_stack, the indexes routines np.r_ and np.c_...), but there are just that: convenience functions. Some of them are optimized at the C level (the np.concatenate and others, I think), some are not.
Note that there's nothing at all with your initial suggestion of creating a large array 'by hand' (possibly filled with zeros) and filling it yourself with your initial array. It might be more readable that more complicated solutions.
A simple way:
# what you want to expand
x = np.ones((3, 3))
# expand to what shape
target = np.zeros((6, 6))
# do expand
target[:x.shape[0], :x.shape[1]] = x
# print target
array([[ 1., 1., 1., 0., 0., 0.],
[ 1., 1., 1., 0., 0., 0.],
[ 1., 1., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.]])
Functional way:
borrow from https://stackoverflow.com/a/35751427/1637673, with a little modification.
def pad(array, reference_shape, offsets=None):
"""
array: Array to be padded
reference_shape: tuple of size of narray to create
offsets: list of offsets (number of elements must be equal to the dimension of the array)
will throw a ValueError if offsets is too big and the reference_shape cannot handle the offsets
"""
if not offsets:
offsets = np.zeros(array.ndim, dtype=np.int32)
# Create an array of zeros with the reference shape
result = np.zeros(reference_shape, dtype=np.float32)
# Create a list of slices from offset to offset + shape in each dimension
insertHere = [slice(offsets[dim], offsets[dim] + array.shape[dim]) for dim in range(array.ndim)]
# Insert the array in the result at the specified offsets
result[insertHere] = array
return result
You should use np.column_stack or append
import numpy as np
p = np.array([ [1,2] , [3,4] ])
p = np.column_stack( [ p , [ 0 , 0 ],[0,0] ] )
p
Out[277]:
array([[1, 2, 0, 0],
[3, 4, 0, 0]])
Append seems to be faster though:
timeit np.column_stack( [ p , [ 0 , 0 ],[0,0] ] )
10000 loops, best of 3: 61.8 us per loop
timeit np.append(p, [[0,0],[0,0]],1)
10000 loops, best of 3: 48 us per loop
And a comparison with np.c_ and np.hstack [append still seems to be the fastest]:
In [295]: z=np.zeros((2, 2), dtype=a.dtype)
In [296]: timeit np.c_[a, z]
10000 loops, best of 3: 47.2 us per loop
In [297]: timeit np.append(p, z,1)
100000 loops, best of 3: 13.1 us per loop
In [305]: timeit np.hstack((p,z))
10000 loops, best of 3: 20.8 us per loop
and np.concatenate [that is a even a bit faster than append]:
In [307]: timeit np.concatenate((p, z), axis=1)
100000 loops, best of 3: 11.6 us per loop
there are also similar methods like np.vstack, np.hstack, np.dstack. I like these over np.concatente as it makes it clear what dimension is being "expanded".
temp = np.array([[1, 2], [3, 4]])
np.hstack((temp, np.zeros((2,3))))
it's easy to remember becase numpy's first axis is vertical so vstack expands the first axis and 2nd axis is horizontal so hstack.

Categories

Resources