I wrote a recursive function that exhaustively generates matrices of certain characteristics.
The function is as such:
def heavies(rowSums,colSums,colIndex,matH):
if colIndex == len(colSums) - 1:
for stuff in heavy_col_permutations(rowSums,colSums,colIndex):
matH[:,colIndex] = stuff[0]
yield matH.copy()
return
for stuff in heavy_col_permutations(rowSums,colSums,colIndex):
matH[:,colIndex] = stuff[0]
rowSums = stuff[1]
for matrix in heavies(rowSums,colSums,colIndex+1,matH):
yield matrix
and heavy_col_permutations is a function that just returns a column of a matrix with characteristics I need as well.
The problem is that as heavies is yielding a lot of matrices, it takes up too much memory.
I end up calling this from another function one by one, and eventually I take up too much RAM and my process is killed (I'm running this on a server with memory caps). How can I write this to make it use less memory?
The program looks something like:
r = int(argv[1])
n = int(argv[2])
m = numpy.zeros((r,r),numpy.dtype=int32)
for row,col in heavy_listing(r,n):
for matrix in heavies(row,col,0,m):
# do more stuff with matrix
And I know that the function heavies is where the large amount of memory sucking is happening, I just need to lessen it.
Things you can try:
Ensure that the matrix copies created by heavies() are not kept referenced in memory.
Look at the gc module, call collect() and play around with set_threshold()
Rewrite the function to be iterative instead of recursive
Related
I am having an issue with my attempt in speeding up the computation of my program. In the serialized python version of my code, I'm computing the values of a function f(x), which returns a float, for sliding windows of the NumPy array as can be seen below:
a = np.array([i for i in range(1, 10000000)]) # Some data here
N = 100
result = []
for i in range(N, len(a)):
result.append(f(a[i - N:i]))
Since the NumPy array is really large and f(x) runtime is high, I've tried to apply multiprocessing to speed up my code. Through my research, I found that charm4py might be a great solution and it has a Pool feature, which breaks up an array in chunks and distributes work between spawned processes. I've implemented charm4py's multiprocessing example and then, translated it to my case:
# Split an array into subarrays for sequential processing (takes only 5 seconds)
a = np.array([a[i - N:i] for i in range(N, len(a))])
result = charm.pool.map(f, a, chunksize=512, ncores=-1)
# I'm running this code through "charmrun +p18 example.py"
The issue that I've encountered is that code was running a lot slower, despite being executed on a more powerful instance (18 physical cores vs 6 physical cores).
I've expected to see ~3x improvement, but it didn't happen. While searching for solutions I've learned that there is some overhead for expensive deserialization/spinning up new processes, but I am not sure if this is the case.
I would really appreciate any feedback or suggestions on how one can implement fast parallel processing of a NumPy array (assuming that function f(x) is not vectorized, takes a pretty long time to compute, and internally makes a large number of specific/individual calls that cannot be parallelized)?
Thank you!
It sounds like you're trying to parallelize this operation with either Charm or Ray (it's not clear how you would use both together).
If you choose to use Ray, and your data is a numpy array, you can take advantage of zero-copy reads to avoid any deserialization overhead.
You may want to optimize your sliding window function a bit, but it will likely look like this:
#ray.remote
def apply_rolling(f, arr, start, end, window_size):
results_arr = []
for i in range(start, end - window_size):
results_arr.append(f(arr[i : i + windows_size])
return np.array(results_arr)
note that this structure lets us call f multiple times within a single task (aka batching).
To use our function:
# Some small setup
big_arr = np.arange(10000000)
big_arr_ref = ray.put(big_arr)
batch_size = len(big_arr) // ray.available_resources()["CPU"]
window_size = 100
# Kick off our tasks
result_refs = []
for i in range(0, big_arr, batch_size):
end_point = min(i + batch_size, len(big_arr))
ref = apply_rolling.remote(f, big_arr_ref, i, end_point)
result_refs.append(ref)
# Handle the results
flattened = []
for section in ray.get(result_refs):
flattened.extend(section)
I'm sure you'll want to customize this code, but here are 2 important and nice properties that you'll likely want to maintain.
Batching: We're utilizing batching to avoid starting too many tasks. In any system, parallelizing incurs overhead, so we always want to be careful and make sure we don't start too many tasks. Furthermore, we are calculating batch_size = len(big_arr) // ray.available_resources()["CPU"] to make sure we use exactly the same number of batches as we have CPUs.
Shared memory: Since Ray's object store supports zero copy reads from numpy arrays, calling ray.get or reading from a numpy array is pretty much free (on a single machine where there are no network costs). There is some overhead in serializing/calling ray.put though, so this approach only calls put (the expensive operation) once, and ray.get (which is implicitly called) many times.
Tip: Be careful when passing arrays as parameters directly into remote functions. It will call ray.put multiple times, even if you pass the same object.
Here's an example based off of your code snippet that uses Ray to parallelize the array computations.
Note that the best way to do this will depend on what your function f looks like.
import numpy as np
import ray
import time
ray.init()
N = 100000
a = np.arange(10**7)
a_id = ray.put(a)
#ray.remote
def f(array, index):
# Do processing
time.sleep(0.2)
return 1
result_ids = []
for i in range(len(a) // N):
result_ids.append(f.remote(a_id, i))
results = ray.get(result_ids)
When I compute function outputs with a mass of independent varying inputs, I used Pool for parallel computing and wrote code like
num_cores = int(multiprocessing.cpu_count())
with Pool(processes=num_cores) as pool:
results = pool.map(myfunc, xlist)
where xlist = [x1,x2,...,xn] is the input list.
This code goes pretty well with a short xlist as expected, but behaves extremely slow when input list gets large. What I actually mean is that the performance would degenerate sharply.
For example, if this code takes only T (second) for a list with length==10, then it take about 10T for a 10length list, and 100T for a 100length list. However, it may take 50000T or even much more time for a 1000T length list (My computer has a large enough memory storage).
Currently I split the long list into multiple short sub-lists piece by piece and make a success in avoiding the degeneration. But I wonder why this bizarre situation could happen. What should I do to directly feed the long list into the pool without any performance degeneration?
I'm working on implementing a randomized algorithm in python. Since this involves doing the same thing many (say N) times, it rather naturally parallelizes and I would like to make use of that. More specifically, I want to distribute the N iterations on all of the cores of my CPU. The problem in question involves computing the maximum of something and is thus something where every worker could compute their own maximum and then only report that one back to the parent process, which then only needs to figure out the global maximum out of those few local maxima.
Somewhat surprisingly, this does not seem to be an intended use-case of the multiprocessing module, but I'm not entirely sure how else to go about it. After some research I came up with the following solution (toy problem to find the maximum in a list that is structurally the same as my actual one):
import random
import multiprocessing
l = []
N = 100
numCores = multiprocessing.cpu_count()
# globals for every worker
mySendPipe = None
myRecPipe = None
def doWork():
pipes = zip(*[multiprocessing.Pipe() for i in range(numCores)])
pool = multiprocessing.Pool(numCores, initializeWorker, (pipes,))
pool.map(findMax, range(N))
results = []
# collate results
for p in pipes[0]:
if p.poll():
results.append(p.recv())
print(results)
return max(results)
def initializeWorker(pipes):
global mySendPipe, myRecPipe
# ID of a worker process; they are consistently named PoolWorker-i
myID = int(multiprocessing.current_process().name.split("-")[1])-1
# Modulo: When starting a second pool for the second iteration of doWork() they are named with IDs 5-8.
mySendPipe = pipes[1][myID%numCores]
myRecPipe = pipes[0][myID%numCores]
def findMax(count):
myMax = 0
if myRecPipe.poll():
myMax = myRecPipe.recv()
value = random.choice(l)
if myMax < value:
myMax = value
mySendPipe.send(myMax)
l = range(1, 1001)
random.shuffle(l)
max1 = doWork()
l = range(1001, 2001)
random.shuffle(l)
max2 = doWork()
return (max1, max2)
This works, sort of, but I've got a problem with it. Namely, using pipes to store the intermediate results feels rather silly (and is probably slow). But it also has the real problem, that I can't send arbitrarily large things through the pipe, and my application unfortunately sometimes exceeds this size (and deadlocks).
So, what I'd really like is a function analogue to the initializer that I can call once for every worker on the pool to return their local results to the parent process. I could not find such functionality, but maybe someone here has an idea?
A few final notes:
I use a global variable for the input because in my application the input is very large and I don't want to copy it to every process. Since the processes never write to it, I believe it should never be copied (or am I wrong there?). I'm open to suggestions to do this differently, but mind that I need to run this on changing inputs (sequentially though, just like in the example above).
I'd like to avoid using the Manager-class, since (by my understanding) it introduces synchronisation and locks, which in this problem should be completely unnecessary.
The only other similar question I could find is Python's multiprocessing and memory, but they wish to actually process the individual results of the workers, whereas I do not want the workers to return N things, but to instead only run a total of N times and return only their local best results.
I'm using Python 2.7.15.
tl;dr: Is there a way to use local memory for every worker process in a multiprocessing pool, so that every worker can compute a local optimum and the parent process only needs to worry about figuring out which one of those is best?
You might be overthinking this a little.
By making your worker-functions (in this case findMax) actually return a value instead of communicating it, you can store the result from calling pool.map() - it is just a parallel variant of map, after all! It will map a function over a list of inputs and return the list of results of that function call.
The simplest example illustrating my point follows your "distributed max" example:
import multiprocessing
# [0,1,2,3,4,5,6,7,8]
x = range(9)
# split the list into 3 chunks
# [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
input = zip(*[iter(x)]*3)
pool = multiprocessing.Pool(2)
# compute the max of each chunk:
# max((0,1,2)) == 2
# max((3,4,5)) == 5
# ...
res = pool.map(max, input)
print(res)
This returns [2, 5, 8].
Be aware that there is some light magic going on: I use the built-in max() function which expects iterables as input. Now, if I would only pool.map over a plain list of integers, say, range(9), that would result in calls to max(0), max(1) etc. - not very useful, huh? Instead, I partition my list into chunks, so effectively, when mapping, we now map over a list of tuples, thus feeding a tuple to max on each call.
So perhaps you have to:
return a value from your worker func
think about how you structure your input domain so that you feed meaningful chunks to each worker
PS: You wrote a great first question! Thank you, it was a pleasure reading it :) Welcome to StackOverflow!
During testing I find out in the following, MP method run a bit slower
def eat_time(j):
result = []
for j in range(10**4):
a = 0
for i in range(1000):
a += 101
result.append(a)
return result
if __name__ == '__main__':
#MP method
t = time.time()
pool = Pool()
result = []
data = pool.map(eat_time, [i for i in range(5)])
for d in data:
result += d
print(time.time()-t) #11s for my computer
#Normal method
t = time.time()
integers = []
for i in range(5):
integers += eat_time(i)
print(time.time()-t) #8s for my computer
However, if I don't require it to aggregate the data by changing eat_time() to
def eat_time(j):
result = []
for j in range(10**4):
a = 0
for i in range(1000):
a += 101
#result.append(a)
return result
The MP time is much faster and now for my computer just run 3s, while normal method still take 8s. (As expected)
It looks strange to me as result is declared individually in method, I don't expect appending completely ruin the MP.
May I know is there a correct way to do this? And why MP is slower when append involved?
Edited for comment
Thx for #torek and #akhavro clarify the point.
Yes, I understand creating process take times, that's why the problem raised.
Actually the original code put the for-loop outside and call the simple method again and again, it is a bit faster over normal method in significantly many task (my case more than 10**6 calls).
Therefore I change to put code inside and make the method a bit more complicated. By moving for j in range(10**4): this line into eat_time().
But it seems making the code complicated causes communication lag due to larger data size.
So, probably the answer is no way to solve it.
It is not append that causes your slowness but returning the result with appended elements. You can test it by changing your code to do the append but return only the first few elements of your result. Now it should work much faster again.
When you return your result from a Pool worker, this is in practice implemented as a queue from multiprocessing. It works but it is not a miracle performer, definitely much slower than just manipulating in-memory structures. When you return a lot of data, the queue needs to transmit a lot.
There is no easy workaround. You could try shared memory but I do not personally like it due to added complexity. The better way would be to redesign your application so that it does not need to transmit a lot of data between processes. For example, would it be possible to process data in your worker further so that you do not need to return it all but only a processed subset?
The upshot of the below is that I have an embarrassingly parallel for loop that I am trying to thread. There's a bit of rigamarole to explain the problem, but despite all the verbosity, I think this should be a rather trivial problem that the multiprocessing module is designed to solve easily.
I have a large length-N array of k distinct functions, and a length-N array of abcissa. Thanks to the clever solution provided by #senderle described in Efficient algorithm for evaluating a 1-d array of functions on a same-length 1d numpy array, I have a fast numpy-based algorithm that I can use to evaluate the functions at the abcissa to return a length-N array of ordinates:
def apply_indexed_fast(abcissa, func_indices, func_table):
""" Returns the output of an array of functions evaluated at a set of input points
if the indices of the table storing the required functions are known.
Parameters
----------
func_table : array_like
Length k array of function objects
abcissa : array_like
Length Npts array of points at which to evaluate the functions.
func_indices : array_like
Length Npts array providing the indices to use to choose which function
operates on each abcissa element. Thus func_indices is an array of integers
ranging between 0 and k-1.
Returns
-------
out : array_like
Length Npts array giving the evaluation of the appropriate function on each
abcissa element.
"""
func_argsort = func_indices.argsort()
func_ranges = list(np.searchsorted(func_indices[func_argsort], range(len(func_table))))
func_ranges.append(None)
out = np.zeros_like(abcissa)
for i in range(len(func_table)):
f = func_table[i]
start = func_ranges[i]
end = func_ranges[i+1]
ix = func_argsort[start:end]
out[ix] = f(abcissa[ix])
return out
What I'm now trying to do is use multiprocessing to parallelize the for loop inside this function. Before describing my approach, for clarity I'll briefly sketch how the algorithm #senderle developed works. If you can read the above code and understand it immediately, just skip the next paragraph of text.
First we find the array of indices that sorts the input func_indices, which we use to define the length-k func_ranges array of integers. The integer entries of func_ranges control the function that gets applied to the appropriate sub-array of the input abcissa, which works as follows. Let f be the i^th function in the input func_table. Then the slice of the input abcissa to which we should apply the function f is slice(func_ranges[i], func_ranges[i+1]). So once func_ranges is calculated, we can just run a simple for loop over the input func_table and successively apply each function object to the appropriate slice, filling our output array. See the code below for a minimal example of this algorithm in action.
def trivial_functional(i):
def f(x):
return i*x
return f
k = 250
func_table = np.array([trivial_functional(j) for j in range(k)])
Npts = 1e6
abcissa = np.random.random(Npts)
func_indices = np.random.random_integers(0,len(func_table)-1,Npts)
result = apply_indexed_fast(abcissa, func_indices, func_table)
So my goal now is to use multiprocessing to parallelize this calculation. I thought this would be straightforward using my usual trick for threading embarrassingly parallel for loops. But my attempt below raises an exception that I do not understand.
from multiprocessing import Pool, cpu_count
def apply_indexed_parallelized(abcissa, func_indices, func_table):
func_argsort = func_indices.argsort()
func_ranges = list(np.searchsorted(func_indices[func_argsort], range(len(func_table))))
func_ranges.append(None)
out = np.zeros_like(abcissa)
num_cores = cpu_count()
pool = Pool(num_cores)
def apply_funci(i):
f = func_table[i]
start = func_ranges[i]
end = func_ranges[i+1]
ix = func_argsort[start:end]
out[ix] = f(abcissa[ix])
pool.map(apply_funci, range(len(func_table)))
pool.close()
return out
result = apply_indexed_parallelized(abcissa, func_indices, func_table)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
I have seen this elsewhere on SO: Multiprocessing: How to use Pool.map on a function defined in a class?. One by one, I have tried each method proposed there; in all cases, I get a "too many files open" error because the threads were never closed, or the adapted algorithm simply hangs. This seems like there should be a simple solution since this is nothing more than threading an embarrassingly parallel for loop.
Warning/Caveat:
You may not want to apply multiprocessing to this problem. You'll find that relatively simple operations on large arrays, the problems will be memory bound with numpy. The bottleneck is moving data from RAM to the CPU caches. The CPU is starved for data, so throwing more CPUs at the problem doesn't help much. Furthermore, your current approach will pickle and make a copy of the entire array for every item in your input sequence, which adds lots of overhead.
There are plenty of cases where numpy + multiprocessing is very effective, but you need to make sure you're working with a CPU-bound problem. Ideally, it's a CPU-bound problem with relatively small inputs and outputs to alleviate the overhead of pickling the input and output. For many of the problems that numpy is most often used for, that's not the case.
Two Problems with Your Current Approach
On to answering your question:
Your immediate error is due to passing in a function that's not accessible from the global scope (i.e. a function defined inside a function).
However, you have another issue. You're treating the numpy arrays as though they're shared memory that can be modified by each process. Instead, when using multiprocessing the original array will be pickled (effectively making a copy) and passed to each process independently. The original array will never be modified.
Avoiding the PicklingError
As a minimal example to reproduce your error, consider the following:
import multiprocessing
def apply_parallel(input_sequence):
def func(x):
pass
pool = multiprocessing.Pool()
pool.map(func, input_sequence)
pool.close()
foo = range(100)
apply_parallel(foo)
This will result in:
PicklingError: Can't pickle <type 'function'>: attribute lookup
__builtin__.function failed
Of course, in this simple example, we could simply move the function definition back into the __main__ namespace. However, in yours, you need it to refer to data that's passed in. Let's look at an example that's a bit closer to what you're doing:
import numpy as np
import multiprocessing
def parallel_rolling_mean(data, window):
data = np.pad(data, window, mode='edge')
ind = np.arange(len(data)) + window
def func(i):
return data[i-window:i+window+1].mean()
pool = multiprocessing.Pool()
result = pool.map(func, ind)
pool.close()
return result
foo = np.random.rand(20).cumsum()
result = parallel_rolling_mean(foo, 10)
There are multiple ways you could handle this, but a common approach is something like:
import numpy as np
import multiprocessing
class RollingMean(object):
def __init__(self, data, window):
self.data = np.pad(data, window, mode='edge')
self.window = window
def __call__(self, i):
start = i - self.window
stop = i + self.window + 1
return self.data[start:stop].mean()
def parallel_rolling_mean(data, window):
func = RollingMean(data, window)
ind = np.arange(len(data)) + window
pool = multiprocessing.Pool()
result = pool.map(func, ind)
pool.close()
return result
foo = np.random.rand(20).cumsum()
result = parallel_rolling_mean(foo, 10)
Great! It works!
However, if you scale this up to large arrays, you'll soon find that it will either run very slow (which you can speed up by increasing chunksize in the pool.map call) or you'll quickly run out of RAM (once you increase the chunksize).
multiprocessing pickles the input so that it can be passed to separate and independent python processes. This means you're making a copy of the entire array for every i you operate on.
We'll come back to this point in a bit...
multiprocessing Does not share memory between processes
The multiprocessing module works by pickling the inputs and passing them to independent processes. This means that if you modify something in one process the other process won't see the modification.
However, multiprocessing also provides primitives that live in shared memory and can be accessed and modified by child processes. There are a few different ways of adapting numpy arrays to use a shared memory multiprocessing.Array. However, I'd recommend avoiding those at first (read up on false sharing if you're not familiar with it). There are cases where it's very useful, but it's typically to conserve memory, not to improve performance.
Therefore, it's best to do all modifications to a large array in a single process (this is also a very useful pattern for general IO). It doesn't have to be the "main" process, but it's easiest to think about that way.
As an example, let's say we wanted to have our parallel_rolling_mean function take an output array to store things in. A useful pattern is something similar to the following. Notice the use of iterators and modifying the output only in the main process:
import numpy as np
import multiprocessing
def parallel_rolling_mean(data, window, output):
def windows(data, window):
padded = np.pad(data, window, mode='edge')
for i in xrange(len(data)):
yield padded[i:i + 2*window + 1]
pool = multiprocessing.Pool()
results = pool.imap(np.mean, windows(data, window))
for i, result in enumerate(results):
output[i] = result
pool.close()
foo = np.random.rand(20000000).cumsum()
output = np.zeros_like(foo)
parallel_rolling_mean(foo, 10, output)
print output
Hopefully that example helps clarify things a bit.
chunksize and performance
One quick note on performance: If we scale this up, it will get very slow very quickly. If you look at a system monitor (e.g. top/htop), you may notice that your cores are sitting idle most of the time.
By default, the master process pickles each input for each process and passes it in immediately and then waits until they're finished to pickle the next input. In many cases, this means that the master process works, then sits idle while the worker processes are busy, then the worker processes sit idle while the master process is pickling the next input.
The key is to increase the chunksize parameter. This will cause pool.imap to "pre-pickle" the specified number of inputs for each process. Basically, the master thread can stay busy pickling inputs and the worker processes can stay busy processing. The downside is that you're using more memory. If each input uses up a large amount of RAM, this can be a bad idea. If it doesn't, though, this can dramatically speed things up.
As a quick example:
import numpy as np
import multiprocessing
def parallel_rolling_mean(data, window, output):
def windows(data, window):
padded = np.pad(data, window, mode='edge')
for i in xrange(len(data)):
yield padded[i:i + 2*window + 1]
pool = multiprocessing.Pool()
results = pool.imap(np.mean, windows(data, window), chunksize=1000)
for i, result in enumerate(results):
output[i] = result
pool.close()
foo = np.random.rand(2000000).cumsum()
output = np.zeros_like(foo)
parallel_rolling_mean(foo, 10, output)
print output
With chunksize=1000, it takes 21 seconds to process a 2-million element array:
python ~/parallel_rolling_mean.py 83.53s user 1.12s system 401% cpu 21.087 total
But with chunksize=1 (the default) it takes about eight times as long (2 minutes, 41 seconds).
python ~/parallel_rolling_mean.py 358.26s user 53.40s system 246% cpu 2:47.09 total
In fact, with the default chunksize, it's actually far worse than a single-process implementation of the same thing, which takes only 45 seconds:
python ~/sequential_rolling_mean.py 45.11s user 0.06s system 99% cpu 45.187 total