Flask and scaling and concurrency - python

In the documentation I see the following:
There is only one limiting factor regarding scaling in Flask which are
the context local proxies. They depend on context which in Flask is
defined as being either a thread, process or greenlet. If your server
uses some kind of concurrency that is not based on threads or
greenlets, Flask will no longer be able to support these global
proxies. However the majority of servers are using either threads,
greenlets or separate processes to achieve concurrency which are all
methods well supported by the underlying Werkzeug library.
My question: What other concurrent mechanisms are there other than these 3 methods?

One pretty interesting concurrency mechanism is the asynchronous model. You have a single process with a single thread running the whole show, with all the I/O or otherwise lengthy tasks being asynchronous and callback based. This method scales really well for I/O bound services, servers in this category easily handle the C10K problem.
See Tornado or node.js for examples.

Related

Concurrency: multiprocessing, threading, greenthreads and asyncio

I'm currently working on Python project that receives a lot os AWS SQS messages (more than 1 million each day), process these messages, and send then to another SQS queue with additional data. Everything works fine, but now we need to speed up this process a lot!
From what we have seen, or biggest bottleneck is in regards to HTTP requests to send and receive messages from AWS SQS api. So basically, our code is mostly I/O bound due to these HTTP requests.
We are trying to escalate this process by one of the following methods:
Using Python's multiprocessing: this seems like a good idea, but our workers run on small machines, usually with a single core. So creating different process may still give some benefit, since the CPU will probably change process as one or another is stuck at an I/O operation. But still, that seems a lot of overhead of process managing and resources for an operations that doesn't need to run in parallel, but concurrently.
Using Python's threading: since GIL locks all threads at a single core, and threads have less overhead than processes, this seems like a good option. As one thread is stuck waiting for an HTTP response, the CPU can take another thread to process, and so on. This would get us to our desired concurrent execution. But my question is how dos Python's threading know that it can switch some thread for another? Does it knows that some thread is currently on an I/O operation and that he can switch her for another one? Will this approach absolutely maximize CPU usage avoiding busy wait? Do I specifically has to give up control of a CPU inside a thread or is this automatically done in Python?
Recently, I also read about a concept called green-threads, using Eventlet on Python. From what I saw, they seem the perfect match for my project. The have little overhead and don't create OS threads like threading. But will we have the same problems as threading referring to CPU control? Does a green-thread needs to warn the CPU that it may take another one? I saw on some examples that Eventlet offers some built-in libraries like Urlopen, but no Requests.
The last option we considered was using Python's AsyncIo and async libraries such as Aiohttp. I have done some basic experimenting with AsyncIo and wasn't very pleased. But I can understand that most of it comes from the fact that Python is not a naturally asynchronous language. From what I saw, it would behave something like Eventlet.
So what do you think would be the best option here? What library would allow me to maximize performance on a single core machine? Avoiding busy waits as much as possible?

Concurrent processing of messages (Python)

I have the following scenario:
There is one thread that manages long-polling HTTP connection (non-stop) from an API. When a new message arrives, it must be processed within the special process() method.
I just want to design it in a way that incoming messages will be processed concurrently, but there is another important point: in the end of each processing an answer should be passed to the outcoming queue, which is organized in a separated thread. From there the answers will be sent via HTTP.
Here is a scheme:
Let's consider that it can be 30-50 messages in a second, and procces method will work from 1 up to 10 seconds.
The question is: what library or framework can I use to implement this architecture?
As far as I have researched, Python Tornado have good benchmarks, but here I do not need a web framework, just a tool that can provide a concurrent running of message processors.
Your message rate is pretty low. So you may freely use "standard" tools like RabbitMQ/Redis, Celery ("Celery Project") and asyncio.
RabbitMQ/Redis with Celery - are great tools to implement queues and manage your tasks and processes.
Asyncio is faster than Tornado but it doesn't matter for your task. What is more important is that asyncio gives you all the benefits of modern async/await coroutine technique.

Flask and/or Tornado - handling time consuming call to external webservice

I've got a flask app that connects with given URL to external services (with different, but usually long response times) and searches for some stuff there. After that there's some CPU heavy operations on the retrieved data. This take some time too.
My problem: response from external may take some time. You can't do much about it, but it becomes a big problem when you have multiple requests at once - flask request to external service blocks the thread and the rest is waiting.
Obvious waste of time and it's killing the app.
I heard about this asynchonous library called Tornado. And there are my questions:
Does that mean it can manage to handle multiple reqests and just trigger callback right after response from external?
Can I achieve that with my current flask app (probably not because of WSGI I guess?) or maybe I need to rewrite the whole app to Tornado?
What about those CPU heavy operations - would that block my thread? It's a good idea to do some load balancing anyway, but I'm curious how Tornado handles that.
Possible traps, gotchas?
The web server built into flask isn't meant to be used in production, for exactly the reasons you're listing - it's single threaded, and easily bogged down if any request blocking for a non-trivial amount of time. The flask documentation lists several options for deploying it in a production environment; mod_wsgi, gunicorn, uSWGI, etc. All of those deployment options provides mechanisms for handling concurrency, either via threads, processes, or non-blocking I/O. Note, though, that if you're doing CPU-bound operations, the only option that will give true concurrency is to use multiple processes.
If you want to use tornado, you'll need to rewrite your application in the tornado style. Because its architecture based on explicit asynchronous I/O, you can't use its asynchronous features if you deploy it as a WSGI application. The "tornado style" basically means using non-blocking APIs for all I/O operations, and using sub-processes for handling any long-running CPU-bound operations. The tornado documentation covers how to make asynchronous I/O calls, but here's a basic example of how it works:
from tornado import gen
#gen.coroutine
def fetch_coroutine(url):
http_client = AsyncHTTPClient()
response = yield http_client.fetch(url)
return response.body
The response = yield http_client.fetch(curl) call is actually asynchronous; it will return control to the tornado event loop when the requests begins, and will resume again once the response is received. This allows multiple asynchronous HTTP requests to run concurrently, all within one thread. Do note though, that anything you do inside of fetch_coroutine that isn't asynchronous I/O will block the event loop, and no other requests can be handled while that code is running.
To deal with long-running CPU-bound operations, you need to send the work to a subprocess to avoid blocking the event loop. For Python, that generally means using either multiprocessing or concurrent.futures. I'd take a look at this question for more information on how best to integrate those libraries with tornado. Do note that you won't want to maintain a process pool larger than the number of CPUs you have on the system, so consider how many concurrent CPU-bound operations you expect to be running at any given time when you're figuring out how to scale this beyond a single machine.
The tornado documentation has a section dedicated to running behind a load balancer, as well. They recommend using NGINX for this purpose.
Tornado seems more fit for this task than Flask. A subclass of Tornado.web.RequestHandler run in an instance of tornado.ioloop should give you non blocking request handling. I expect it would look something like this.
import tornado
import tornado.web
import tornado.ioloop
import json
class handler(tornado.web.RequestHandler):
def post(self):
self.write(json.dumps({'aaa':'bbbbb'}))
if __name__ == '__main__':
app = tornado.web.Application([('/', handler)])
app.listen(80, address='0.0.0.0')
loop = tornado.ioloop.IOLoop.instance()
loop.start()
if you want your post handler to be asynchronous you could decorate it with tornado.gen.coroutine with 'AsyncHTTPClientorgrequests`. This will give you non blocking requests. you could potentially put your calculations in a coroutine as well, though I'm not entirely sure.

How can I offer concurrency with Pika in long-working consumers?

Short version: How can I prevent blocking Pika in a Remote Procedure Call situation?
Long version:
None of the Pika examples demonstrate my use case.
I have a Tornado server which communicates with other processes/machines over AMQP (RabbitMQ, Pika). These other processes are not very well-defined, but they will, for the most part, be returning data (see the RPC example on RabbitMQ's website). Sometimes, a process might need to take an extremely long time to process a large amount of information, but it shouldn't completely block smaller requests from being taken by the process. Or maybe the remote server is blocking because it sent out a web request. Think of it like a web server, but using AMQP instead of HTTP.
Since Pika documentation claims that it's not thread-safe, I cannot pass the connection to multiple threads (or processes, for that matter). What I want to do is start a new process, and add a socket event (for the pipe to that program) to the Pika IOLoop, as I would be able to do with Tornado. The Pika IOLoop is much different from the Tornado IOLoop, and it doesn't seem to support adding multiple handlers; it seems to operate using one "poller" on one socket.
I'd like to avoid requiring the Tornado package for this package, because I would only be using the IOLoop. It's not out of the question, but I want to see what my other options are, or if there is a solution to my problem by somehow connecting multiple Pika IOLoops/Pollers. RabbitMQ's documentation says that workers can often be "scaled up" by adding more. I'd like to avoid creating a connection for every request that comes in (if they're coming in fast).
From what you described, I believe you unfortunately either need a different communication model or need multiple Pika IOLoops/Pollers/Redundant Connections.
It sounds like from documentation and from other sites that RPC in Pika is always a blocking statement and unable to be passed around between threads. See http://www.rabbitmq.com/tutorials/tutorial-six-python.html where the author points out that RPC in Pika is inherently blocking once you actually call the ioloop.
"When in doubt avoid RPC. If you can, you should use an asynchronous pipeline - instead of RPC-like blocking"
If you want to keep sending multiple RPC calls on the same connection before one completes, you'll need a different Asynchronous model. Multiple RPC calls on the same connection before completion isn't the usual implementation of the RPC model, though it's not technically forbidden ( http://pic.dhe.ibm.com/infocenter/aix/v6r1/index.jsp?topic=%2Fcom.ibm.aix.progcomm%2Fdoc%2Fprogcomc%2Frpc_mod.htm ). I don't think Pika operates with this model, though it does have asynchronous support via callbacks (not what you are looking for I think).
If you just want to easily be able to generate new connections on the fly you could use a thread or process wrapper on a connection, where you create and block on the RPC in the other context and push to a common Queue which the main thread can monitor. Tornado might give you this, but I agree that it's a bit of overkill, and making such a connection wrapper shouldn't be all that difficult as I've done something similar for other I/O ops in less than 100 lines of Python (see Queue package for Threaded wrapper version). I think you already saw this possibility though based on your talk of multiple IOLoops.

Using twisted words in a WSGI container

I am running django on twisted in a wsgi container. Obviously I am avoiding all the async stuff with deferreds inside my django code because according to the documentation, twisted async abilities are not allowed inside WSGI apps.
However, I would like to use twisted.words inside my WSGI app to send requests to a jabber server. Does this count as async stuff or can I use it inside my app? What could happen if I sent twisted.words jabber requests to an xmpp server inside a WSGI anyway?
Moreover, I have a more general question. Is there any reason twisted's WSGI container is multithreaded (is it multithreaded?) since it is well known python's GIL only reduces the overall performance of a script with threads.
Thanks for any replies.
To call a function in the main event loop (I/O thread) in Twisted from another thread (non-I/O thread i.e., a WSGI application thread) you could use reactor.callFromThread(). If you'd like to wait for results then use threads.blockingCallFromThread(). Thus you could call functions that use twisted.words See Using Threads in Twisted.
To find out whether a wsgi container is multi-threaded inspect wsgi.multithread it should return true for twisted container.
WSGI containers are multi-threaded to support more than one request at a time (it is not strictly necessary but it makes life easier using existing software). Otherwise (if you don't use other means to solve it) your whole server blocks while your request handler waits for an answer from a database. Some people find it simpler to write request handlers less worrying about blocking other requests if there are not many concurrent requests.
Functions in Python that perform CPU-intensive jobs when performance matters can use libraries that release GIL during calculations or offload them to other processes. Network, disk I/O that are frequent in webapps are usually much slower than CPU.

Categories

Resources