spline interpolation coefficients of a line curve in 3d space - python

I am new to python.
I have a line curve in the 3D space defined by a set of given points.
Can anyone suggest how I can use the interpolate with spline functions of the scipy package to get the spline coefficients of the curve just like the spline.coeff function in MATLAB?
Thank you!
EDIT:
I have used the
tck = interpolate.SmoothBivariateSpline(pts2[:,0], pts2[:,1], pts2[:,2])
test_pts = pts2[:,2]-tck.ev(pts2[:,0], pts2[:,1])
print test_pts
but this is for surfaces apparently and not for line curves pts2 is a Nx3 numpy array containing the coordinates of the points
ok I figured out what I was doing wrong. my input points where too few. now I have another question. The function get_coeffs is supposed to return the spline coefficients at every not. In which order those coefficients are returned? I have an array of 79 tx and 79 ty which represent the knots and I get an array of 1x5625 when I call the function to call the knots

I too am new to python, but my recent searching led me to a very helpful scipy interpolation tutorial. From my reading of this I concur that the BivariateSpline family of classes/functions are intended for interpolating 3D surfaces rather than 3D curves.
For my 3D curve fitting problem (which I believe is very similar to yours, but with the addition of wanting to smooth out noise) I ended up using scipy.interpolate.splprep (not to be confused with scipy.interpolate.splrep). From the tutorial linked above, the spline coefficients your are looking for are returned by splprep.
The normal output is a 3-tuple, (t,c,k) , containing the
knot-points, t , the coefficients c and the order k of the spline.
The docs keep referring to these procedural functions as an "older, non object-oriented wrapping of FITPACK" in contrast to the "newer, object-oriented" UnivariateSpline and BivariateSpline classes. I would have preferred "newer, object-oriented" myself, but as far as I can tell UnivariateSpline only handles the 1-D case whereas splprep handles N-D data directly.
Below is a simple test-case that I used to figure out these functions:
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
from mpl_toolkits.mplot3d import Axes3D
# 3D example
total_rad = 10
z_factor = 3
noise = 0.1
num_true_pts = 200
s_true = np.linspace(0, total_rad, num_true_pts)
x_true = np.cos(s_true)
y_true = np.sin(s_true)
z_true = s_true/z_factor
num_sample_pts = 80
s_sample = np.linspace(0, total_rad, num_sample_pts)
x_sample = np.cos(s_sample) + noise * np.random.randn(num_sample_pts)
y_sample = np.sin(s_sample) + noise * np.random.randn(num_sample_pts)
z_sample = s_sample/z_factor + noise * np.random.randn(num_sample_pts)
tck, u = interpolate.splprep([x_sample,y_sample,z_sample], s=2)
x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck)
u_fine = np.linspace(0,1,num_true_pts)
x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck)
fig2 = plt.figure(2)
ax3d = fig2.add_subplot(111, projection='3d')
ax3d.plot(x_true, y_true, z_true, 'b')
ax3d.plot(x_sample, y_sample, z_sample, 'r*')
ax3d.plot(x_knots, y_knots, z_knots, 'go')
ax3d.plot(x_fine, y_fine, z_fine, 'g')
fig2.show()
plt.show()

Related

Spline in 3 Dimensions for Python

I'm looking for a function which mimics MATLAB's cscvn function in their Curve Fitting Toolbox, suitable for points in 3D space. The closest function I've found has been scipy.interpolate.splprep, which is capable of computing 3 dimensions but loses its accuracy with fewer data points. If smoothness is reduced to a point of fitting the points, the curve has kinks.
I have a discrete dataset made up of physical points (elevation data) that I'm looking to model, so the spline must pass through those points. There is a finite number of points at varying chord lengths from one another.
Here's a sample of the quick test function I've written to test Python splines. Unfortunately, I can't share my MATLAB code, but the cscvn function splines smoothly and passes through all data points.
import scipy as sp
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import splprep, splev, interp2d
x = np.linspace(0, 10, num = 20) #list of known x coordinates
y = 2*x #list of known y coordinates
z = x*x #list of known z coordinates
## Note: You must have more points than degree of the spline. if k = 3, must have 4 points min.
print([x,y,z])
tck, u = splprep([x,y,z], s = 26) # Generate function out of provided points, default k = 3
newPoints = splev(u, tck) # Creating spline points
print(newPoints)
ax = plt.axes(projection = "3d")
ax.plot3D(x, y, z, 'go') # Green is the actual 3D function
ax.plot3D(newPoints[:][0], newPoints[:][1], newPoints[:][2], 'r-') # Red is the spline
plt.show()
Here is an example of many points creating a smooth curve (red), but the line doesn't align with the physical data points (green).
Here is an example of kinks in the spline (red) created by too few data points (green). This is more akin to what my dataset looks like.
Change your U for:
unew = np.arange(0, 1.00, 0.005)

How can I find a well-fitting trendline in Matplotlib for this data?

my problem is allegedly simple - I have scatter data in X and Y, and want to get a nice, well-fitting trendline with a known equation so that I can go on to correspond LDR voltages into power readings. However, I'm having trouble with generating a trendline in Matplotlib or Scipy that fits well, which I believe is because there's a logarithmic relationship.
I'm using Spyder and Matplotlib, and first tried plotting the X (Thorlabs) and Y (LDR) data as a log-log scatter plot. Because the data didn't seem to show a linear relationship after doing this, I then used numpy's Polynomial.fit with degree 5 to 6. This looked good, but then when inverting the axes, so I could get something of the form [LDR] = f[Thorlabs], I noticed the fit was suddenly not very good at all at the extremes of my data.
Using this question using curve_fit seems to be the way to go, but I tried using curve_fit as described here and, after adjusting to increase the max number of curve-fit iterations, stumbled when I got the error message "TypeError: can't multiply sequence by non-int of type 'numpy.float64'", which will likely be because my data contains decimal points. I'm not sure how to account for this.
I have several mini-questions, then -
am I misunderstanding the above examples?
is there a better way I could go about trying to find the ideal trendline for this data? Is it possible that it's some sort of logarithmic relationship on top of a log-log plot?
once I get a trendline, how can I make sure it fits well and can be displayed?
#import libraries
import matplotlib.pyplot as plt
import csv
import numpy as np
from numpy.polynomial import Polynomial
import scipy.optimize as opt
#initialise arrays - I create log arrays too so I can plot directly
deg = 6 #degree of polynomial fitting for Polynomial.fit()
thorlabs = []
logthorlabs = []
ldr = []
logldr = []
#read in LDR/Thorlabs datasets from file
with open('16ldr561nm.txt','r') as csvfile:
plots = csv.reader(csvfile, delimiter='\t')
for row in plots:
thorlabs.append(float(row[0]))
ldr.append(float(row[1]))
logthorlabs.append(np.log(float(row[0])))
logldr.append(np.log(float(row[1])))
#This seems to work just fine, I now have arrays containing data in float
#fit and plot log polynomials
p = Polynomial.fit(logthorlabs, logldr, deg)
plt.plot(*p.linspace()) #plot lines
#plot scatter graphs on log-log axis - either using log arrays or on loglog plot
#plt.loglog()
plt.scatter(logthorlabs, logldr, label='16bit ADC LDR1')
plt.xlabel('log Thorlabs laser power (microW)')
plt.ylabel('log LDR voltage (mV)')
plt.title('LDR voltage against laser power at 561nm')
plt.legend()
plt.show()
#attempt at using curve_fit - when using, comment out the above block
"""
# This is the function we are trying to fit to the data.
def func(x, a, b, c):
return a * np.exp(-b * x) + c
#freaks out here as I get a type error which I am not sure how to account for
# Plot the actual data
plt.plot(thorlabs, ldr, ".", label="Data");
#Adjusted maxfev to 5000. I know you can make "guesses" here but I am not sure how to do so
# The actual curve fitting happens here
optimizedParameters, pcov = opt.curve_fit(func, thorlabs, ldr, maxfev=5000);
# Use the optimized parameters to plot the best fit
plt.plot(thorlabs, func(ldr, *optimizedParameters), label="fit");
# Show the graph
plt.legend();
plt.show();
"""
When using curve_fit, I get a "TypeError: can't multiply sequence by non-int of type 'numpy.float64'".
As I don't have enough reputation to post images, my raw dataset can be found here. (Otherwise I'd include the graphs!)
(Note that I actually have two datasets, but as I only want to know the principle for calculating a trendline for one, I've left out the other dataset above.)
Refactoring your code a bit, most importantly to use native Numpy arrays once things have been parsed out from the file, makes things not crash, but the CurveFit line doesn't look good at all.
The code prints out the parameters fit by curve_fit, which don't look very good either, and a warning too: "Covariance of the parameters could not be estimated". I'm no mathematician/statistician, so I don't know what to do there.
from numpy.polynomial import Polynomial
import csv
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
def read_dataset(filename):
x = []
y = []
with open(filename, "r") as csvfile:
plots = csv.reader(csvfile, delimiter="\t")
for row in plots:
x.append(float(row[0]))
y.append(float(row[1]))
# cast to native numpy arrays
x = np.array(x)
y = np.array(y)
return (x, y)
ldr, thorlabs = read_dataset("16ldr561nm.txt")
plt.scatter(thorlabs, ldr, label="Data")
plt.xlabel("Thorlabs laser power (microW)")
plt.ylabel("LDR voltage (mV)")
plt.title("LDR voltage against laser power at 561nm")
# Generate and plot polynomial
p = Polynomial.fit(thorlabs, ldr, 6)
plt.plot(*p.linspace(), label="Polynomial")
# Generate and plot curvefit
def func(x, a, b, c):
return a * np.exp(-b * x) + c
optimizedParameters, pcov = opt.curve_fit(func, thorlabs, ldr)
print(optimizedParameters, pcov)
plt.plot(thorlabs, func(ldr, *optimizedParameters), label="CurveFit")
# Show everything
plt.legend()
plt.show()
If you really need to log() the data, it's easily done with
x = np.log(x)
y = np.log(y)
which will keep the arrays as NumPy arrays and be plenty faster than doing it "by hand".

scipy interp2d/bisplrep unexpected output when given 1D input

I've been having invalid input errors when working with scipy interp2d function. It turns out the problem comes from the bisplrep function, as showed here:
import numpy as np
from scipy import interpolate
# Case 1
x = np.linspace(0,1)
y = np.zeros_like(x)
z = np.ones_like(x)
tck = interpolate.bisplrep(x,y,z) # or interp2d
Returns: ValueError: Invalid inputs
It turned out the test data I was giving interp2d contained only one distinct value for the 2nd axis, as in the test sample above. The bisplrep function inside interp2d considers it as an invalid output:
This may be considered as an acceptable behaviour: interp2d & bisplrep expect a 2D grid, and I'm only giving them values along one line.
On a side note, I find the error message quite unclear. One could include a test in interp2d to deal with such cases: something along the lines of
if len(np.unique(x))==1 or len(np.unique(y))==1:
ValueError ("Can't build 2D splines if x or y values are all the same")
may be enough to detect this kind of invalid input, and raise a more explicit error message, or even directly call the more appropriate interp1d function (which works perfectly here)
I thought I had correctly understood the problem. However, consider the following code sample:
# Case 2
x = np.linspace(0,1)
y = x
z = np.ones_like(x)
tck = interpolate.bisplrep(x,y,z)
In that case, y being proportional to x, I'm also feeding bisplrep with data along one line. But, surprisingly, bisplrep is able to compute a 2D spline interpolation in that case. I plotted it:
# Plot
def plot_0to1(tck):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
X = np.linspace(0,1,10)
Y = np.linspace(0,1,10)
Z = interpolate.bisplev(X,Y,tck)
X,Y = np.meshgrid(X,Y)
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, Z,rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
plt.show()
plot_0to1(tck)
The result is the following:
where bisplrep seems to fill the gaps with 0's, as better showed when I extend the plot below:
Regarding of whether adding 0 is expected, my real question is: why does bisplrep work in Case 2 but not in Case 1?
Or, in other words: do we want it to return an error when 2D interpolation is fed with input along one direction only (Case 1 & 2 fail), or not? (Case 1 & 2 should return something, even if unpredicted).
I was originally going to show you how much of a difference it makes for 2d interpolation if your input data are oriented along the coordinate axes rather than in some general direction, but it turns out that the result would be even messier than I had anticipated. I tried using a random dataset over an interpolated rectangular mesh, and comparing that to a case where the same x and y coordinates were rotated by 45 degrees for interpolation. The result was abysmal.
I then tried doing a comparison with a smoother dataset: turns out scipy.interpolate.interp2d has quite a few issues. So my bottom line will be "use scipy.interpolate.griddata".
For instructive purposes, here's my (quite messy) code:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.cm as cm
n = 10 # rough number of points
dom = np.linspace(-2,2,n+1) # 1d input grid
x1,y1 = np.meshgrid(dom,dom) # 2d input grid
z = np.random.rand(*x1.shape) # ill-conditioned sample
#z = np.cos(x1)*np.sin(y1) # smooth sample
# first interpolator with interp2d:
fun1 = interp.interp2d(x1,y1,z,kind='linear')
# construct twice finer plotting and interpolating mesh
plotdom = np.linspace(-1,1,2*n+1) # for interpolation and plotting
plotx1,ploty1 = np.meshgrid(plotdom,plotdom)
plotz1 = fun1(plotdom,plotdom) # interpolated points
# construct 45-degree rotated input and interpolating meshes
rotmat = np.array([[1,-1],[1,1]])/np.sqrt(2) # 45-degree rotation
x2,y2 = rotmat.dot(np.vstack([x1.ravel(),y1.ravel()])) # rotate input mesh
plotx2,ploty2 = rotmat.dot(np.vstack([plotx1.ravel(),ploty1.ravel()])) # rotate plotting/interp mesh
# interpolate on rotated mesh with interp2d
# (reverse rotate by using plotx1, ploty1 later!)
fun2 = interp.interp2d(x2,y2,z.ravel(),kind='linear')
# I had to generate the rotated points element-by-element
# since fun2() accepts only rectangular meshes as input
plotz2 = np.array([fun2(xx,yy) for (xx,yy) in zip(plotx2.ravel(),ploty2.ravel())])
# try interpolating with griddata
plotz3 = interp.griddata(np.array([x1.ravel(),y1.ravel()]).T,z.ravel(),np.array([plotx1.ravel(),ploty1.ravel()]).T,method='linear')
plotz4 = interp.griddata(np.array([x2,y2]).T,z.ravel(),np.array([plotx2,ploty2]).T,method='linear')
# function to plot a surface
def myplot(X,Y,Z):
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, Z,rstride=1, cstride=1,
linewidth=0, antialiased=False,cmap=cm.coolwarm)
plt.show()
# plot interp2d versions
myplot(plotx1,ploty1,plotz1) # Cartesian meshes
myplot(plotx1,ploty1,plotz2.reshape(2*n+1,-1)) # rotated meshes
# plot griddata versions
myplot(plotx1,ploty1,plotz3.reshape(2*n+1,-1)) # Cartesian meshes
myplot(plotx1,ploty1,plotz4.reshape(2*n+1,-1)) # rotated meshes
So here's a gallery of the results. Using random input z data, and interp2d, Cartesian (left) vs rotated interpolation (right):
Note the horrible scale on the right side, noting that the input points are between 0 and 1. Even its mother wouldn't recognize the data set. Note that there are runtime warnings during the evaluation of the rotated data set, so we're being warned that it's all crap.
Now let's do the same with griddata:
We should note that these figures are much closer to each other, and they seem to make way more sense than the output of interp2d. For instance, note the overshoot in the scale of the very first figure.
These artifacts always arise between input data points. Since it's still interpolation, the input points have to be reproduced by the interpolating function, but it's pretty weird that a linear interpolating function overshoots between data points. It's clear that griddata doesn't suffer from this issue.
Consider an even more clear case: the other set of z values, which are smooth and deterministic. The surfaces with interp2d:
HELP! Call the interpolation police! Already the Cartesian input case has inexplicable (well, at least by me) spurious features in it, and the rotated input case poses the threat of s͔̖̰͕̞͖͇ͣ́̈̒ͦ̀̀ü͇̹̞̳ͭ̊̓̎̈m̥̠͈̣̆̐ͦ̚m̻͑͒̔̓ͦ̇oͣ̐ͣṉ̟͖͙̆͋i͉̓̓ͭ̒͛n̹̙̥̩̥̯̭ͤͤͤ̄g͈͇̼͖͖̭̙ ̐z̻̉ͬͪ̑ͭͨ͊ä̼̣̬̗̖́̄ͥl̫̣͔͓̟͛͊̏ͨ͗̎g̻͇͈͚̟̻͛ͫ͛̅͋͒o͈͓̱̥̙̫͚̾͂.
So let's do the same with griddata:
The day is saved, thanks to The Powerpuff Girls scipy.interpolate.griddata. Homework: check the same with cubic interpolation.
By the way, a very short answer to your original question is in help(interp.interp2d):
| Notes
| -----
| The minimum number of data points required along the interpolation
| axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for
| quintic interpolation.
For linear interpolation you need at least 4 points along the interpolation axis, i.e. at least 4 unique x and y values have to be present to get a meaningful result. Check these:
nvals = 3 # -> RuntimeWarning
x = np.linspace(0,1,10)
y = np.random.randint(low=0,high=nvals,size=x.shape)
z = x
interp.interp2d(x,y,z)
nvals = 4 # -> no problem here
x = np.linspace(0,1,10)
y = np.random.randint(low=0,high=nvals,size=x.shape)
z = x
interp.interp2d(x,y,z)
And of course this all ties in to you question like this: it makes a huge difference if your geometrically 1d data set is along one of the Cartesian axes, or if it's in a general way such that the coordinate values assume various different values. It's probably meaningless (or at least very ill-defined) to try 2d interpolation from a geometrically 1d data set, but at least the algorithm shouldn't break if your data are along a general direction of the x,y plane.

Higher order local interpolation of implicit curves in Python

Given a set of points describing some trajectory in the 2D plane, I would like to provide a smooth representation of this trajectory with local high order interpolation.
For instance, say we define a circle in 2D with 11 points in the figure below. I would like to add points in between each consecutive pair of points in order or produce a smooth trace. Adding points on every segment is easy enough, but it produces slope discontinuities typical for a "local linear interpolation". Of course it is not an interpolation in the classical sense, because
the function can have multiple y values for a given x
simply adding more points on the trajectory would be fine (no continuous representation is needed).
so I'm not sure what would be the proper vocabulary for this.
The code to produce this figure can be found below. The linear interpolation is performed with the lin_refine_implicit function. I'm looking for a higher order solution to produce a smooth trace and I was wondering if there is a way of achieving it with classical functions in Scipy? I have tried to use various 1D interpolations from scipy.interpolate without much success (again because of multiple y values for a given x).
The end goals is to use this method to provide a smooth GPS trajectory from discrete measurements, so I would think this should have a classical solution somewhere.
import numpy as np
import matplotlib.pyplot as plt
def lin_refine_implicit(x, n):
"""
Given a 2D ndarray (npt, m) of npt coordinates in m dimension, insert 2**(n-1) additional points on each trajectory segment
Returns an (npt*2**(n-1), m) ndarray
"""
if n > 1:
m = 0.5*(x[:-1] + x[1:])
if x.ndim == 2:
msize = (x.shape[0] + m.shape[0], x.shape[1])
else:
raise NotImplementedError
x_new = np.empty(msize, dtype=x.dtype)
x_new[0::2] = x
x_new[1::2] = m
return lin_refine_implicit(x_new, n-1)
elif n == 1:
return x
else:
raise ValueError
n = 11
r = np.arange(0, 2*np.pi, 2*np.pi/n)
x = 0.9*np.cos(r)
y = 0.9*np.sin(r)
xy = np.vstack((x, y)).T
xy_highres_lin = lin_refine_implicit(xy, n=3)
plt.plot(xy[:,0], xy[:,1], 'ob', ms=15.0, label='original data')
plt.plot(xy_highres_lin[:,0], xy_highres_lin[:,1], 'dr', ms=10.0, label='linear local interpolation')
plt.legend(loc='best')
plt.plot(x, y, '--k')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('GPS trajectory')
plt.show()
This is called parametric interpolation.
scipy.interpolate.splprep provides spline approximations for such curves. This assumes you know the order in which the points are on the curve.
If you don't know which point comes after which on the curve, the problem becomes more difficult. I think in this case, the problem is called manifold learning, and some of the algorithms in scikit-learn may be helpful in that.
I would suggest you try to transform your cartesian coordinates into polar coordinates, that should allow you to use the standard scipy.interpolation without issues as you won't have the ambiguity of the x->y mapping anymore.

Python-VTK 3D Spline Regression through STL model of vascular tree

I need to create a spline or polyline representation of a vascular tree model (see below).
The model is in a STL format, thus I have the x-y-z coordinates of all vertices. The lines should run through the center of the vessel mesh thus I thought that the best approach would be a spline regression through the vertex cloud. In addition it would be great if I can have the radius of the vessel at given points, e.g. the coordinates of the polyline.
I looked through this forum and the VTK website (assuming they have a straightforward implementation for this sort of thing) but so far I haven't found something I can use. Does anyone know of a Python module or VTK class (which I would call from Python) that can do this? The python modules I found on this are all for 2D data.
Thanks a lot!
EDIT:
I came across this library called VMTK that deals almost exclusively with vessel segmentation and has functionality for what they call 'centerline calculation'. However, they usually require the vessels to be 'cut' at their ends and 'source points' to be defined. In the case of my model, however, one can see that the end points are 'capped' which makes matters more complicated. If I find a solution I'll post here
I don't know any software or python classes exactly on your problem.
Maybe python interpolate.splev will help you with a single vessel.
You may try the following code as an example:
from scipy import interpolate
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
# 3D example
total_rad = 10
z_factor = 3
noise = 0.1
num_true_pts = 200
s_true = np.linspace(0, total_rad, num_true_pts)
x_true = np.cos(s_true)
y_true = np.sin(s_true)
z_true = s_true/z_factor
num_sample_pts = 100
s_sample = np.linspace(0, total_rad, num_sample_pts)
x_sample = np.cos(s_sample) + noise * np.random.randn(num_sample_pts)
y_sample = np.sin(s_sample) + noise * np.random.randn(num_sample_pts)
z_sample = s_sample/z_factor + noise * np.random.randn(num_sample_pts)
tck, u = interpolate.splprep([x_sample,y_sample,z_sample], s=2)
x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck)
u_fine = np.linspace(0,1,num_true_pts)
x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck)
fig2 = plt.figure(2)
ax3d = fig2.add_subplot(111, projection='3d')
# blue line shows true helix
ax3d.plot(x_true, y_true, z_true, 'b')
# red stars show distorted sample around a blue line
ax3d.plot(x_sample, y_sample, z_sample, 'r*')
# green line and dots show fitted curve
ax3d.plot(x_knots, y_knots, z_knots, 'go')
ax3d.plot(x_fine, y_fine, z_fine, 'g')
plt.show()
This code uses noisy centerline path of a single vessel and fit it with a smooth curve (see the result below):
interolation result
Usually, two user seeds are used to mark centerline ends, in the case of centerline representation as in VMTK.
The other way to get centerlines automatically is to voxelize your stl mesh, costruct a voxel skeleton, and separate skeletal segment to represent each vessel. Then you can interpolate each centerline to get the smooth curves. Unprocessed skeletal segments usualy have zigzags.

Categories

Resources