I want to remove digits from a float to have a fixed number of digits after the dot, like:
1.923328437452 → 1.923
I need to output as a string to another function, not print.
Also I want to ignore the lost digits, not round them.
round(1.923328437452, 3)
See Python's documentation on the standard types. You'll need to scroll down a bit to get to the round function. Essentially the second number says how many decimal places to round it to.
First, the function, for those who just want some copy-and-paste code:
def truncate(f, n):
'''Truncates/pads a float f to n decimal places without rounding'''
s = '{}'.format(f)
if 'e' in s or 'E' in s:
return '{0:.{1}f}'.format(f, n)
i, p, d = s.partition('.')
return '.'.join([i, (d+'0'*n)[:n]])
This is valid in Python 2.7 and 3.1+. For older versions, it's not possible to get the same "intelligent rounding" effect (at least, not without a lot of complicated code), but rounding to 12 decimal places before truncation will work much of the time:
def truncate(f, n):
'''Truncates/pads a float f to n decimal places without rounding'''
s = '%.12f' % f
i, p, d = s.partition('.')
return '.'.join([i, (d+'0'*n)[:n]])
Explanation
The core of the underlying method is to convert the value to a string at full precision and then just chop off everything beyond the desired number of characters. The latter step is easy; it can be done either with string manipulation
i, p, d = s.partition('.')
'.'.join([i, (d+'0'*n)[:n]])
or the decimal module
str(Decimal(s).quantize(Decimal((0, (1,), -n)), rounding=ROUND_DOWN))
The first step, converting to a string, is quite difficult because there are some pairs of floating point literals (i.e. what you write in the source code) which both produce the same binary representation and yet should be truncated differently. For example, consider 0.3 and 0.29999999999999998. If you write 0.3 in a Python program, the compiler encodes it using the IEEE floating-point format into the sequence of bits (assuming a 64-bit float)
0011111111010011001100110011001100110011001100110011001100110011
This is the closest value to 0.3 that can accurately be represented as an IEEE float. But if you write 0.29999999999999998 in a Python program, the compiler translates it into exactly the same value. In one case, you meant it to be truncated (to one digit) as 0.3, whereas in the other case you meant it to be truncated as 0.2, but Python can only give one answer. This is a fundamental limitation of Python, or indeed any programming language without lazy evaluation. The truncation function only has access to the binary value stored in the computer's memory, not the string you actually typed into the source code.1
If you decode the sequence of bits back into a decimal number, again using the IEEE 64-bit floating-point format, you get
0.2999999999999999888977697537484345957637...
so a naive implementation would come up with 0.2 even though that's probably not what you want. For more on floating-point representation error, see the Python tutorial.
It's very rare to be working with a floating-point value that is so close to a round number and yet is intentionally not equal to that round number. So when truncating, it probably makes sense to choose the "nicest" decimal representation out of all that could correspond to the value in memory. Python 2.7 and up (but not 3.0) includes a sophisticated algorithm to do just that, which we can access through the default string formatting operation.
'{}'.format(f)
The only caveat is that this acts like a g format specification, in the sense that it uses exponential notation (1.23e+4) if the number is large or small enough. So the method has to catch this case and handle it differently. There are a few cases where using an f format specification instead causes a problem, such as trying to truncate 3e-10 to 28 digits of precision (it produces 0.0000000002999999999999999980), and I'm not yet sure how best to handle those.
If you actually are working with floats that are very close to round numbers but intentionally not equal to them (like 0.29999999999999998 or 99.959999999999994), this will produce some false positives, i.e. it'll round numbers that you didn't want rounded. In that case the solution is to specify a fixed precision.
'{0:.{1}f}'.format(f, sys.float_info.dig + n + 2)
The number of digits of precision to use here doesn't really matter, it only needs to be large enough to ensure that any rounding performed in the string conversion doesn't "bump up" the value to its nice decimal representation. I think sys.float_info.dig + n + 2 may be enough in all cases, but if not that 2 might have to be increased, and it doesn't hurt to do so.
In earlier versions of Python (up to 2.6, or 3.0), the floating point number formatting was a lot more crude, and would regularly produce things like
>>> 1.1
1.1000000000000001
If this is your situation, if you do want to use "nice" decimal representations for truncation, all you can do (as far as I know) is pick some number of digits, less than the full precision representable by a float, and round the number to that many digits before truncating it. A typical choice is 12,
'%.12f' % f
but you can adjust this to suit the numbers you're using.
1Well... I lied. Technically, you can instruct Python to re-parse its own source code and extract the part corresponding to the first argument you pass to the truncation function. If that argument is a floating-point literal, you can just cut it off a certain number of places after the decimal point and return that. However this strategy doesn't work if the argument is a variable, which makes it fairly useless. The following is presented for entertainment value only:
def trunc_introspect(f, n):
'''Truncates/pads the float f to n decimal places by looking at the caller's source code'''
current_frame = None
caller_frame = None
s = inspect.stack()
try:
current_frame = s[0]
caller_frame = s[1]
gen = tokenize.tokenize(io.BytesIO(caller_frame[4][caller_frame[5]].encode('utf-8')).readline)
for token_type, token_string, _, _, _ in gen:
if token_type == tokenize.NAME and token_string == current_frame[3]:
next(gen) # left parenthesis
token_type, token_string, _, _, _ = next(gen) # float literal
if token_type == tokenize.NUMBER:
try:
cut_point = token_string.index('.') + n + 1
except ValueError: # no decimal in string
return token_string + '.' + '0' * n
else:
if len(token_string) < cut_point:
token_string += '0' * (cut_point - len(token_string))
return token_string[:cut_point]
else:
raise ValueError('Unable to find floating-point literal (this probably means you called {} with a variable)'.format(current_frame[3]))
break
finally:
del s, current_frame, caller_frame
Generalizing this to handle the case where you pass in a variable seems like a lost cause, since you'd have to trace backwards through the program's execution until you find the floating-point literal which gave the variable its value. If there even is one. Most variables will be initialized from user input or mathematical expressions, in which case the binary representation is all there is.
The result of round is a float, so watch out (example is from Python 2.6):
>>> round(1.923328437452, 3)
1.923
>>> round(1.23456, 3)
1.2350000000000001
You will be better off when using a formatted string:
>>> "%.3f" % 1.923328437452
'1.923'
>>> "%.3f" % 1.23456
'1.235'
n = 1.923328437452
str(n)[:4]
At my Python 2.7 prompt:
>>> int(1.923328437452 * 1000)/1000.0
1.923
The truely pythonic way of doing it is
from decimal import *
with localcontext() as ctx:
ctx.rounding = ROUND_DOWN
print Decimal('1.923328437452').quantize(Decimal('0.001'))
or shorter:
from decimal import Decimal as D, ROUND_DOWN
D('1.923328437452').quantize(D('0.001'), rounding=ROUND_DOWN)
Update
Usually the problem is not in truncating floats itself, but in the improper usage of float numbers before rounding.
For example: int(0.7*3*100)/100 == 2.09.
If you are forced to use floats (say, you're accelerating your code with numba), it's better to use cents as "internal representation" of prices: (70*3 == 210) and multiply/divide the inputs/outputs.
Simple python script -
n = 1.923328437452
n = float(int(n * 1000))
n /=1000
def trunc(num, digits):
sp = str(num).split('.')
return '.'.join([sp[0], sp[1][:digits]])
This should work. It should give you the truncation you are looking for.
So many of the answers given for this question are just completely wrong. They either round up floats (rather than truncate) or do not work for all cases.
This is the top Google result when I search for 'Python truncate float', a concept which is really straightforward, and which deserves better answers. I agree with Hatchkins that using the decimal module is the pythonic way of doing this, so I give here a function which I think answers the question correctly, and which works as expected for all cases.
As a side-note, fractional values, in general, cannot be represented exactly by binary floating point variables (see here for a discussion of this), which is why my function returns a string.
from decimal import Decimal, localcontext, ROUND_DOWN
def truncate(number, places):
if not isinstance(places, int):
raise ValueError("Decimal places must be an integer.")
if places < 1:
raise ValueError("Decimal places must be at least 1.")
# If you want to truncate to 0 decimal places, just do int(number).
with localcontext() as context:
context.rounding = ROUND_DOWN
exponent = Decimal(str(10 ** - places))
return Decimal(str(number)).quantize(exponent).to_eng_string()
>>> from math import floor
>>> floor((1.23658945) * 10**4) / 10**4
1.2365
# divide and multiply by 10**number of desired digits
If you fancy some mathemagic, this works for +ve numbers:
>>> v = 1.923328437452
>>> v - v % 1e-3
1.923
I did something like this:
from math import trunc
def truncate(number, decimals=0):
if decimals < 0:
raise ValueError('truncate received an invalid value of decimals ({})'.format(decimals))
elif decimals == 0:
return trunc(number)
else:
factor = float(10**decimals)
return trunc(number*factor)/factor
You can do:
def truncate(f, n):
return math.floor(f * 10 ** n) / 10 ** n
testing:
>>> f=1.923328437452
>>> [truncate(f, n) for n in range(5)]
[1.0, 1.9, 1.92, 1.923, 1.9233]
Just wanted to mention that the old "make round() with floor()" trick of
round(f) = floor(f+0.5)
can be turned around to make floor() from round()
floor(f) = round(f-0.5)
Although both these rules break around negative numbers, so using it is less than ideal:
def trunc(f, n):
if f > 0:
return "%.*f" % (n, (f - 0.5*10**-n))
elif f == 0:
return "%.*f" % (n, f)
elif f < 0:
return "%.*f" % (n, (f + 0.5*10**-n))
def precision(value, precision):
"""
param: value: takes a float
param: precision: int, number of decimal places
returns a float
"""
x = 10.0**precision
num = int(value * x)/ x
return num
precision(1.923328437452, 3)
1.923
Short and easy variant
def truncate_float(value, digits_after_point=2):
pow_10 = 10 ** digits_after_point
return (float(int(value * pow_10))) / pow_10
>>> truncate_float(1.14333, 2)
>>> 1.14
>>> truncate_float(1.14777, 2)
>>> 1.14
>>> truncate_float(1.14777, 4)
>>> 1.1477
When using a pandas df this worked for me
import math
def truncate(number, digits) -> float:
stepper = 10.0 ** digits
return math.trunc(stepper * number) / stepper
df['trunc'] = df['float_val'].apply(lambda x: truncate(x,1))
df['trunc']=df['trunc'].map('{:.1f}'.format)
int(16.5);
this will give an integer value of 16, i.e. trunc, won't be able to specify decimals, but guess you can do that by
import math;
def trunc(invalue, digits):
return int(invalue*math.pow(10,digits))/math.pow(10,digits);
Here is an easy way:
def truncate(num, res=3):
return (floor(num*pow(10, res)+0.5))/pow(10, res)
for num = 1.923328437452, this outputs 1.923
def trunc(f,n):
return ('%.16f' % f)[:(n-16)]
A general and simple function to use:
def truncate_float(number, length):
"""Truncate float numbers, up to the number specified
in length that must be an integer"""
number = number * pow(10, length)
number = int(number)
number = float(number)
number /= pow(10, length)
return number
There is an easy workaround in python 3. Where to cut I defined with an help variable decPlace to make it easy to adapt.
f = 1.12345
decPlace= 4
f_cut = int(f * 10**decPlace) /10**decPlace
Output:
f = 1.1234
Hope it helps.
Most answers are way too complicated in my opinion, how about this?
digits = 2 # Specify how many digits you want
fnum = '122.485221'
truncated_float = float(fnum[:fnum.find('.') + digits + 1])
>>> 122.48
Simply scanning for the index of '.' and truncate as desired (no rounding).
Convert string to float as final step.
Or in your case if you get a float as input and want a string as output:
fnum = str(122.485221) # convert float to string first
truncated_float = fnum[:fnum.find('.') + digits + 1] # string output
I think a better version would be just to find the index of decimal point . and then to take the string slice accordingly:
def truncate(number, n_digits:int=1)->float:
'''
:param number: real number ℝ
:param n_digits: Maximum number of digits after the decimal point after truncation
:return: truncated floating point number with at least one digit after decimal point
'''
decimalIndex = str(number).find('.')
if decimalIndex == -1:
return float(number)
else:
return float(str(number)[:decimalIndex+n_digits+1])
int(1.923328437452 * 1000) / 1000
>>> 1.923
int(1.9239 * 1000) / 1000
>>> 1.923
By multiplying the number by 1000 (10 ^ 3 for 3 digits) we shift the decimal point 3 places to the right and get 1923.3284374520001. When we convert that to an int the fractional part 3284374520001 will be discarded. Then we undo the shifting of the decimal point again by dividing by 1000 which returns 1.923.
use numpy.round
import numpy as np
precision = 3
floats = [1.123123123, 2.321321321321]
new_float = np.round(floats, precision)
Something simple enough to fit in a list-comprehension, with no libraries or other external dependencies. For Python >=3.6, it's very simple to write with f-strings.
The idea is to let the string-conversion do the rounding to one more place than you need and then chop off the last digit.
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nout+1}f}'[:-1] for x in [2/3, 4/5, 8/9, 9/8, 5/4, 3/2]]
['0.666', '0.800', '0.888', '1.125', '1.250', '1.500']
Of course, there is rounding happening here (namely for the fourth digit), but rounding at some point is unvoidable. In case the transition between truncation and rounding is relevant, here's a slightly better example:
>>> nacc = 6 # desired accuracy (maximum 15!)
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nacc}f}'[:-(nacc-nout)] for x in [2.9999, 2.99999, 2.999999, 2.9999999]]
>>> ['2.999', '2.999', '2.999', '3.000']
Bonus: removing zeros on the right
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nout+1}f}'[:-1].rstrip('0') for x in [2/3, 4/5, 8/9, 9/8, 5/4, 3/2]]
['0.666', '0.8', '0.888', '1.125', '1.25', '1.5']
The core idea given here seems to me to be the best approach for this problem.
Unfortunately, it has received less votes while the later answer that has more votes is not complete (as observed in the comments). Hopefully, the implementation below provides a short and complete solution for truncation.
def trunc(num, digits):
l = str(float(num)).split('.')
digits = min(len(l[1]), digits)
return l[0] + '.' + l[1][:digits]
which should take care of all corner cases found here and here.
Am also a python newbie and after making use of some bits and pieces here, I offer my two cents
print str(int(time.time()))+str(datetime.now().microsecond)[:3]
str(int(time.time())) will take the time epoch as int and convert it to string and join with...
str(datetime.now().microsecond)[:3] which returns the microseconds only, convert to string and truncate to first 3 chars
# value value to be truncated
# n number of values after decimal
value = 0.999782
n = 3
float(int(value*1en))*1e-n
while b:
n.append(int(b%10))
b=b/10
return n
Here the while statement is not stopping even when b=0, what is the problem with this?
Let's simplify your while loop and remove the unnecessary parts:
while b:
b = b/10
print(b)
What this does is, it takes a given b, divides it by 10, and assigns this as b. Now the "divide by 10" part is tricky.
If you are using Python 2, it works as an integer division:
19/10 = 1
Let's divide this one more time:
1/10 = 0
But in Python 3, this is an actual, proper division:
19/10 = 1.9
Let's divide this one also one more time:
1.9/10 = 0.19
So in Python 2, your loop will keep rounding the division down, and you will reach 0 eventually. But in Python 3, you will keep dividing your float properly, and will never reach 0. This will mean that your while will never terminate.
Solution: If you want to end up at 0 eventually through integer division so that your loop ends at some point, you can use a//b in Python 3 to get the same behavior of a/b in Python 2.
The most efficient way to compute the reminder and the integer quotient is divmod.
while b:
b, m = divmod(b, 10)
n.append(m)
This loop stops for non-negative b.
I think you want to do integer division, if that is the case your code should have // instead of /
while b:
n.append(int(b%10))
b=b//10
return n
As neither valid answer is accepted, I'll offer the alternative solution, which is to change the stopping condition of the while loop. This lets you keep your floating point division should you need it for some case not in the original question. You can also do the integer division with the shorthand b //= 10.
while int(b): # Or more explicitly: while bool(int(b)):
n.append(int(b%10))
b /= 10
return n
This question already has answers here:
Why does integer division yield a float instead of another integer?
(4 answers)
Closed 5 months ago.
I am a complete python beginner and I am trying to solve this problem :
A number is called triangular if it is the sum of the first n positive
integers for some n For example, 10 is triangular because 10 = 1+2+3+4
and 21 is triangular because 21 = 1+2+3+4+5+6. Write a Python program
to find the smallest 6-digit triangular number. Enter it as your
answer below.
I have written this program:
n = 0
trinum = 0
while len(str(trinum)) < 6:
trinum = n*(n+1)/2
n += 1
print(trinum)
And it only works in the python I have installed on my computer if I say while len(str(trinum)) < 8: but it is supposed to be while len(str(trinum)) < 6:. So I went to http://www.skulpt.org/ and ran my code there and it gave me the right answer with while len(str(trinum)) < 6: like it's supposed to. But it doesn't work with 6 with the python i have installed on my computer. Does anyone have any idea what's going on?
Short Answer
In Python 3, division is always floating point division. So on the first pass you get something like str(trinum) == '0.5'. Which isn't what you want.
You're looking for integer division. The operator for that is //.
Long Answer
The division operator changed in Python 2.x to 3.x. Previously, the type of the result was dependent on the arguments. So 1/2 does integer division, but 1./2 does floating point division.
To clean this up, a new operator was introduced: //. This operator will always do integer division.
So in Python 3.x, this expression (4 * 5)/2 is equal to 10.0. Note that this number is less than 100, but it has 4 characters in it.
If instead, we did (4*5)//2, we would get the integer 10 back. Which would allow your condition to hold true.
In Python 2, the / operator performs integer division when possible: "x divided by y is a remainder b," throwing away the "b" (use the % operator to find "b"). In Python 3, the / operator always performs float division: "x divided by y is a.fgh." Get integer division in Python 3 with the // operator.
You have two problems here, that combine to give you the wrong answer.
The first problem is that you're using /, which means integer division in Python 2 (and the almost-Python language that Skulpt implements), but float division in Python 3. So, when you run it on your local machine with Python 3, you're going to get floating point numbers.
The second problem is that you're not checking for "under 6 digits" you're checking for "under 6 characters long". For positive integers, those are the same thing, but for floats, say, 1035.5 is only 4 digits, but it's 6 characters. So you exit early.
If you solve either problem, it will work, at least most of the time. But you really should solve both.
So:
n = 0
trinum = 0
while trinum < 10**6: # note comparing numbers, not string length
trinum = n*(n+1)//2 # note // instead of /
n += 1
print(trinum)
The first problem is fixed by using //, which always means integer division, instead of /, which means different things in different Python versions.
The second problem is fixed by comparing the number as a number to 10**6 (that is, 10 to the 6th power, which means 1 with 6 zeros, or 1000000) instead of comparing its length as a string to 6.
Taking Malik Brahimi's answer further:
from itertools import *
print(next(dropwhile(lambda n: n <= 99999, accumulate(count(1))))
count(1) is all the numbers from 1 to infinity.
accumulate(count(1)) is all the running totals of those numbers.
dropwhile(…) is skipping the initial running totals until we reach 100000, then all the rest of them.
next(…) is the next one after the ones we skipped.
Of course you could argue that a 1-liner that takes 4 lines to describe to a novice isn't as good as a 4-liner that doesn't need any explanation. :)
(Also, the dropwhile is a bit ugly. Most uses of it in Python are. In a language like Haskell, where you can write that predicate with operator sectioning instead of a lambda, like (<= 99999), it's a different story.)
The division method in Py2.x and 3.x is different - so that is probably why you had issues.
Just another suggestion - which doesn't deal with divisions and lengths - so less buggy in general. Plus addition is addition anywhere.
trinum = 0
idx =0
while trinum < 99999: #largest 5 digit number
idx += 1
trinum += idx
print trinum
import itertools # to get the count function
n, c = 0, itertools.count(1) # start at zero
while n <= 99999:
n = n + next(c)
How to shorten the float result I got? I only need 2 digits after the dot. Sorry I really don't know how to explain this better in English...
Thanks
From The Floating-Point Guide's Python cheat sheet:
"%.2f" % 1.2399 # returns "1.24"
"%.3f" % 1.2399 # returns "1.240"
"%.2f" % 1.2 # returns "1.20"
Using round() is the wrong thing to do, because floats are binary fractions which cannot represent decimal digits accurately.
If you need to do calculations with decimal digits, use the Decimal type in the decimal module.
If you want a number, use the round() function:
>>> round(12.3456, 2)
12.35
(but +1 for Michael's answer re. the Decimal type.)
If you want a string:
>>> print "%.2f" % 12.34567
12.35
One way:
>>> number = 1
>>> '{:.2f}'.format(number) #1.00
>>> '{:.3f}'.format(number) #1.000
second way:
>>> '%.2f' % number #1.00
>>> '%.3f' % number #1.000
see "format python"
From :
Python Docs
round(x[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so. for example, round(0.5) is 1.0 and round(-0.5) is -1.0).
Note The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be represented exactly as a float. See Floating Point Arithmetic: Issues and Limitations for more information.
Looks like round (293.466....[, 2]) would do it,
I hope this will help.
def do(*args):
formattedList = [float("{:.2f}".format(num)) for num in args]
_result =(sum(formattedList))
result = round(_result,2)
return result
print(do(23.2332,45.24567,67,54.27))
Result:
189.75
x = round(293.4662543, 2)
>>> print "%.2f" % 293.44612345
293.45
If you need numbers like 2.3k or 12M, this function does the job:
def get_shortened_integer(number_to_shorten):
""" Takes integer and returns a formatted string """
trailing_zeros = floor(log10(abs(number_to_shorten)))
if trailing_zeros < 3:
# Ignore everything below 1000
return trailing_zeros
elif 3 <= trailing_zeros <= 5:
# Truncate thousands, e.g. 1.3k
return str(round(number_to_shorten/(10**3), 1)) + 'k'
elif 6 <= trailing_zeros <= 8:
# Truncate millions like 3.2M
return str(round(number_to_shorten/(10**6), 1)) + 'M'
else:
raise ValueError('Values larger or equal to a billion not supported')
Results:
>>> get_shortened_integer(2300)
2.3k # <-- str
>>> get_shortened_integer(1300000)
1.3M # <-- str
For any N, let f(N) be the last five
digits before the trailing zeroes in
N!. For example,
9! = 362880 so f(9)=36288
10! = 3628800 so f(10)=36288
20! = 2432902008176640000 so f(20)=17664
Find f(1,000,000,000,000)
I've successfully tackled this question for the given examples, my function can correctly find f(9), f(10), etc. However it struggles with larger numbers, especially the number the problem asks for - f(10^12).
My current optimizations are as follows: I remove trailing zeros from the multiplier and the sum, and shorten the sum to 5 digits after each multiplication. The code in python is as follows:
def SFTR (n):
sum, a = 1, 2
while a < n+1:
mul = int(re.sub("0+$","",str(a)))
sum *= mul
sum = int(re.sub("0+$","",str(sum))[-5:])
a += 1
return sum
Can anyone tell me why this function is scaling so largely, and why its taking so long. Also, if anyone could hint me in the correct direction to optimize my algorithm. (a name of the general topic will suffice) Thank you.
Update:
I have made some changes for optimization and it is significantly faster, but it is still not fast enough for f(10^12). Can anyone tell me whats making my code slow or how to make it faster?
def SFTR (n):
sum, a = 1, 2
while a < n+1:
mul = a
while(mul % 10 == 0): mul = mul/10
mul = mul % 100000
sum *= mul
while(sum % 10 == 0): sum = sum/10
sum = sum % 100000
a += 1
return sum
mul can get very big. Is that necessary? If I asked you to compute the last 5 non-zero digits of 1278348572934847283948561278387487189900038 * 38758
by hand, exactly how many digits of the first number do you actually need to know?
Building strings frequently is expensive. I'd rather use the modulo operator when truncating to the last five digits.
python -m timeit 'x = str(111111111111111111111111111111111)[-5:]'
1000000 loops, best of 3: 1.09 usec per loop
python -m timeit 'x = 111111111111111111111111111111111 % 100000'
1000000 loops, best of 3: 0.277 usec per loop
The same applies to stripping the trailing zeros. There should be a more efficient way to do this, and you probably don't have to do it in every single step.
I didn't check your algorithm for correctness, though, it's just a hint for optimization.
In fact, you might even note that there are only a restricted set of possible trailing non-zero digits. If I recall correctly, there are only a few thousand possible trailing non-zero digit combinations, when you look only at the last 5 digits. For example, is it possible for the final non-zero digit ever to be odd? (Ignore the special cases of 0! and 1! here.)