I generate some time-series out of a theoretical power spectral density.
Basically, my function in time-space is given by X(t) = SUM_n sqrt(a_n) + cos(w_n t + phi_n), where a_n is the value of the PSD at a given w_n and phi is some random phase. To get a realistic timeseries, i have to sum up 2^25 modes, and my t of course is sized 2^25 as well.
If i do that with python, this will take some weeks...
Is there any way to speed this up? Like some vector calculation?
t_full = np.linspace(0,1e-2,2**12, endpoint = False)
signal = np.zeros_like(t_full)
for i in range(w.shape[0]):
signal += dataCOS[i] * np.cos(2*np.pi* t_full * w[i] + random.uniform(0,2*np.pi))
where dataCOS is sqrt a_n, w = w and random.uniform represents the random phase shift phi
You can use the outer functions to calculate the angles and then sum along one axis to obtain your signal in a vectorized way:
import numpy as np
t_full = np.linspace(0, 1e-2, 2**12, endpoint=False)
thetas = np.multiply.outer((2*np.pi*t_full), w)
thetas += 2*pi*np.random.random(thetas.shape)
signal = np.cos(thetas)
signal *= dataCOS
signal = signal.sum(-1)
This is faster because when you use a Python for loop the interpreter will loop at a slower speed compared to a C loop. In this case, using numpy outer operations allow you to compute the multiplications and sums at the C loop speed.
Related
I need to program the Discrete Fourier Transform using python. (I cannot use the numpy function for fft).
You can find the numpy fft function in my code, but it is just for verification.
Not sure why, but it seems that my code is getting in a infinite loop (I have to Keyboard Interrupt).
Any ideas?
import matplotlib.pyplot as plt
import numpy as np
import cmath
Fs = 40000; # sampling
Ts = 1.0/Fs; # sampling period
t = np.arange(0,1,Ts) # time vector
f = 100; # frequencia do sinal
x1_n = np.sin(2*np.pi*f*t + 0)
f = 1000;
x2_n = np.sin(2*np.pi*f*t + 180)
x_n = x1_n + x2_n
n = len(x_n) # signal length
k = np.arange(n) #vetor em k
T = n/Fs
frq = k/T # both sides of the frequency vetor
frq = frq[range(int(n/2))] # one side of the frequency vector
X = np.fft.fft(x_n)/n # fft using numpy and normalization
print("A")
print(X) # printing the results for numpy fft
m = len(x_n)
output = []
for k in range(m): # For each output element
s = complex(0)
for t in range(m): # For each input element
angle = 2j * cmath.pi * t * k / m
s += x_n[t] * cmath.exp(-angle)
output.append(s)
print("B") #printing the results for the fft implementation using for loops
print(output)
It's not an infinite loop, but since m = 40000, your inner loop is going to run 1.6 billion times. That's going to take a LOT of time, which is why FFTs are not implemented in Python. On my machine, it does about 5 outer loops per second, so it's going to take 3 hours to run.
You've written a perfectly good implementation of a Fourier transform. You have not written a fast Fourier Transform, which specifically involves a series of techniques to bring the runtime town from O(n^2) to (n log n).
This is what made the FFT so revolutionary when it was discovered. Hard problems that could only be used using a Fourier Transform suddenly became a lot faster.
Currently I want to generate some samples to get expectation & variance of it.
Given the probability density function: f(x) = {2x, 0 <= x <= 1; 0 otherwise}
I already found that E(X) = 2/3, Var(X) = 1/18, my detail solution is from here https://math.stackexchange.com/questions/4430163/simulating-expectation-of-continuous-random-variable
But here is what I have when simulating using python:
import numpy as np
N = 100_000
X = np.random.uniform(size=N, low=0, high=1)
Y = [2*x for x in X]
np.mean(Y) # 1.00221 <- not equal to 2/3
np.var(Y) # 0.3323 <- not equal to 1/18
What am I doing wrong here? Thank you in advanced.
You are generating the mean and variance of Y = 2X, when you want the mean and variance of the X's themselves. You know the density, but the CDF is more useful for random variate generation than the PDF. For your problem, the density is:
so the CDF is:
Given that the CDF is an easily invertible function for the range [0,1], you can use inverse transform sampling to generate X values by setting F(X) = U, where U is a Uniform(0,1) random variable, and inverting the relationship to solve for X. For your problem, this yields X = U1/2.
In other words, you can generate X values with
import numpy as np
N = 100_000
X = np.sqrt(np.random.uniform(size = N))
and then do anything you want with the data, such as calculate mean and variance, plot histograms, use in simulation models, or whatever.
A histogram will confirm that the generated data have the desired density:
import matplotlib.pyplot as plt
plt.hist(X, bins = 100, density = True)
plt.show()
produces
The mean and variance estimates can then be calculated directly from the data:
print(np.mean(X), np.var(X)) # => 0.6661509538922444 0.05556962913014367
But wait! There’s more...
Margin of error
Simulation generates random data, so estimates of mean and variance will be variable across repeated runs. Statisticians use confidence intervals to quantify the magnitude of the uncertainty in statistical estimates. When the sample size is sufficiently large to invoke the central limit theorem, an interval estimate of the mean is calculated as (x-bar ± half-width), where x-bar is the estimate of the mean. For a so-called 95% confidence interval, the half-width is 1.96 * s / sqrt(n) where:
s is the estimated standard deviation;
n is the number of samples used in the estimates of mean and standard deviation; and
1.96 is a scaling constant derived from the normal distribution and the desired level of confidence.
The half-width is a quantitative measure of the margin of error, a.k.a. precision, of the estimate. Note that as n gets larger, the estimate has a smaller margin of error and becomes more precise, but there are diminishing returns to increasing the sample size due to the square root. Increasing the precision by a factor of 2 would require 4 times the sample size if independent sampling is used.
In Python:
var = np.var(X)
print(np.mean(X), var, 1.96 * np.sqrt(var / N))
produces results such as
0.6666763186360812 0.05511848269208021 0.0014551397290634852
where the third column is the confidence interval half-width.
Improving precision
Inverse transform sampling can yield greater precision for a given sample size if we use a clever trick based on fundamental properties of expectation and variance. In intro prob/stats courses you probably were told that Var(X + Y) = Var(X) + Var(Y). The true relationship is actually Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y), where Cov(X,Y) is the covariance between X and Y. If they are independent, the covariance is 0 and the general relationship becomes the one we learn/teach in intro courses, but if they are not independent the more general equation must be used. Variance is always a positive quantity, but covariance can be either positive or negative. Consequently, it’s easy to see that if X and Y have negative covariance the variance of their sum will be less than when they are independent. Negative covariance means that when X is above its mean Y tends to be below its mean, and vice-versa.
So how does that help? It helps because we can use the inverse transform, along with a technique known as antithetic variates, to create pairs of random variables which are identically distributed but have negative covariance. If U is a random variable with a Uniform(0,1) distribution, U’ = 1 - U also has a Uniform(0,1) distribution. (In fact, flipping any symmetric distribution will produce the same distribution.) As a result, X = F-1(U) and X’ = F-1(U’) are identically distributed since they’re defined by the same CDF, but will have negative covariance because they fall on opposite sides of their shared median and thus strongly tend to fall on opposite sides of their mean. If we average each pair to get A = (F-1(ui) + F-1(1-ui)) / 2) the expected value E[A] = E[(X + X’)/2] = 2E[X]/2 = E[X] while the variance Var(A) = [(Var(X) + Var(X’) + 2Cov(X,X’)]/4 = 2[Var(X) + Cov(X,X’)]/4 = [Var(X) + Cov(X,X’)]/2. In other words, we get a random variable A whose average is an unbiased estimate of the mean of X but which has less variance.
To fairly compare antithetic results head-to-head with independent sampling, we take the original sample size and allocate it with half the data being generated by the inverse transform of the U’s, and the other half generated by antithetic pairing using 1-U’s. We then average the paired values and generate statistics as before. In Python:
U = np.random.uniform(size = N // 2)
antithetic_avg = (np.sqrt(U) + np.sqrt(1.0 - U)) / 2
anti_var = np.var(antithetic_avg)
print(np.mean(antithetic_avg), anti_var, 1.96*np.sqrt(anti_var / (N / 2)))
which produces results such as
0.6667222935263972 0.0018911848781598295 0.0003811869837216061
Note that the half-width produced with independent sampling is nearly 4 times as large as the half-width produced using antithetic variates. To put it another way, we would need more than an order of magnitude more data for independent sampling to achieve the same precision.
To approximate the integral of some function of x, say, g(x), over S = [0, 1], using Monte Carlo simulation, you
generate N random numbers in [0, 1] (i.e. draw from the uniform distribution U[0, 1])
calculate the arithmetic mean of g(x_i) over i = 1 to i = N where x_i is the ith random number: i.e. (1 / N) times the sum from i = 1 to i = N of g(x_i).
The result of step 2 is the approximation of the integral.
The expected value of continuous random variable X with pdf f(x) and set of possible values S is the integral of x * f(x) over S. The variance of X is the expected value of X-squared minus the square of the expected value of X.
Expected value: to approximate the integral of x * f(x) over S = [0, 1] (i.e. the expected value of X), set g(x) = x * f(x) and apply the method outlined above.
Variance: to approximate the integral of (x * x) * f(x) over S = [0, 1] (i.e. the expected value of X-squared), set g(x) = (x * x) * f(x) and apply the method outlined above. Subtract the result of this by the square of the estimate of the expected value of X to obtain an estimate of the variance of X.
Adapting your method:
import numpy as np
N = 100_000
X = np.random.uniform(size = N, low = 0, high = 1)
Y = [x * (2 * x) for x in X]
E = [(x * x) * (2 * x) for x in X]
# mean
print((a := np.mean(Y)))
# variance
print(np.mean(E) - a * a)
Output
0.6662016482614397
0.05554821798023696
Instead of making Y and E lists, a much better approach is
Y = X * (2 * X)
E = (X * X) * (2 * X)
Y, E in this case are numpy arrays. This approach is much more efficient. Try making N = 100_000_000 and compare the execution times of both methods. The second should be much faster.
I want to implement ifft2 using DFT matrix. The following code works for fft2.
import numpy as np
def DFT_matrix(N):
i, j = np.meshgrid(np.arange(N), np.arange(N))
omega = np.exp( - 2 * np.pi * 1j / N )
W = np.power( omega, i * j ) # Normalization by sqrt(N) Not included
return W
sizeM=40
sizeN=20
np.random.seed(0)
rA=np.random.rand(sizeM,sizeN)
rAfft=np.fft.fft2(rA)
dftMtxM=DFT_matrix(sizeM)
dftMtxN=DFT_matrix(sizeN)
# Matrix multiply the 3 matrices together
mA = dftMtxM # rA # dftMtxN
print(np.allclose(np.abs(mA), np.abs(rAfft)))
print(np.allclose(np.angle(mA), np.angle(rAfft)))
To get to ifft2 I assumd I need to change only the dft matrix to it's transpose, so expected the following to work, but I got false for the last two print any suggesetion please?
import numpy as np
def DFT_matrix(N):
i, j = np.meshgrid(np.arange(N), np.arange(N))
omega = np.exp( - 2 * np.pi * 1j / N )
W = np.power( omega, i * j ) # Normalization by sqrt(N) Not included
return W
sizeM=40
sizeN=20
np.random.seed(0)
rA=np.random.rand(sizeM,sizeN)
rAfft=np.fft.ifft2(rA)
dftMtxM=np.conj(DFT_matrix(sizeM))
dftMtxN=np.conj(DFT_matrix(sizeN))
# Matrix multiply the 3 matrices together
mA = dftMtxM # rA # dftMtxN
print(np.allclose(np.abs(mA), np.abs(rAfft)))
print(np.allclose(np.angle(mA), np.angle(rAfft)))
I am going to be building on some things from my answer to your previous question. Please note that I will try to distinguish between the terms Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT). Remember that DFT is the transform while FFT is only an efficient algorithm for performing it. People, including myself, however very commonly refer to the DFT as FFT since it is practically the only algorithm used for computing the DFT
The problem here is again the normalization of the data. It's interesting that this is such a fundamental and confusing part of any DFT operations yet I couldn't find a good explanation on the internet. I will try to provide a summary at the end about DFT normalization however I think the best way to understand this is by working through some examples yourself.
Why the comparisons fail?
It's important to note, that even though both of the allclose tests seemingly fail, they are actually not a very good method of comparing two complex number arrays.
Difference between two angles
In particular, the problem is when it comes to comparing angles. If you just take the difference of two close angles that are on the border between -pi and pi, you can get a value that is around 2*pi. The allclose just takes differences between values and checks that they are bellow some threshold. Thus in our cases, it can report a false negative.
A better way to compare angles is something along the lines of this function:
def angle_difference(a, b):
diff = a - b
diff[diff < -np.pi] += 2*np.pi
diff[diff > np.pi] -= 2*np.pi
return diff
You can then take the maximum absolute value and check that it's bellow some threshold:
np.max(np.abs(angle_difference(np.angle(mA), np.angle(rAfft)))) < threshold
In the case of your example, the maximum difference was 3.072209153742733e-12.
So the angles are actually correct!
Magnitude scaling
We can get an idea of the issue is when we look at the magnitude ratio between the matrix iDFT and the library iFFT.
print(np.abs(mA)/np.abs(rAfft))
We find that all the values in mA are 800, which means that our absolute values are 800 times larger than those computed by the library. Suspiciously, 800 = 40 * 20, the dimensions of our data! I think you can see where I am going with this.
Confusing DFT normalization
We spot some indications why this is the case when we have a look at the FFT formulas as taken from the Numpy FFT documentation:
You will notice that while the forward transform doesn't normalize by anything. The reverse transform divides the output by 1/N. These are the 1D FFTs but the exact same thing applies in the 2D case, the inverse transform multiplies everything by 1/(N*M)
So in our example, if we update this line, we will get the magnitudes to agree:
mA = dftMtxM # rA/(sizeM * sizeN) # dftMtxN
A side note on comparing the outputs, an alternative way to compare complex numbers is to compare the real and imaginary components:
print(np.allclose(mA.real, rAfft.real))
print(np.allclose(mA.imag, rAfft.imag))
And we find that now indeed both methods agree.
Why all this normalization mess and which should I use?
The fundamental property of the DFT transform must satisfy is that iDFT(DFT(x)) = x. When you work through the math, you find that the product of the two coefficients before the sum has to be 1/N.
There is also something called the Parseval's theorem. In simple terms, it states that the energy in the signals is just the sum of square absolutes in both the time domain and frequency domain. For the FFT this boils down to this relationship:
Here is the function for computing the energy of a signal:
def energy(x):
return np.sum(np.abs(x)**2)
You are basically faced with a choice about the 1/N factor:
You can put the 1/N before the DFT sum. This makes senses as then the k=0 DC component will be equal to the average of the time domain values. However you will have to multiply the energy in frequency domain by N in order to match it with time domain frequency.
N = len(x)
X = np.fft.fft(x)/N # Compute the FFT scaled by `1/N`
# Energy related by `N`
np.allclose(energy(x), energy(X) * N) == True
# Perform some processing...
Y = X * H
y = np.fft.ifft(Y*N) # Compute the iFFT, remember to cancel out the built in `1/N` of ifft
You put the 1/N before the iDFT. This is, slightly counterintuitively, what most implementations, including Numpy do. I could not find a definitive consensus on the reasoning behind this, but I think it has something to do with the implementation efficiency. (If anyone has a better explanation for this, please leave it in the comments) As shown in the equations earlier, the energy in the frequency domain has to be divided by N to match the time domain energy.
N = len(x)
X = np.fft.fft(x) # Compute the FFT without scaling
# Energy, related by 1/N
np.allclose(energy(x), energy(X) / N) == True
# Perform some processing...
Y = X * H
y = np.fft.ifft(Y) # Compute the iFFT with the build in `1/N`
You can split the 1/N by placing 1/sqrt(N) before each of the transforms making them perfectly symmetric. In Numpy, you can provide the parameter norm="ortho" to the fft functions which will make them use the 1/sqrt(N) normalization instead: np.fft.fft(x, norm="ortho") The nice property here is that the energy now matches in both domains.
X = np.fft.fft(x, norm='orth') # Compute the FFT scaled by `1/sqrt(N)`
# Perform some processing...
# Energy are equal:
np.allclose(energy(x), energy(X)) == True
Y = X * H
y = np.fft.ifft(Y, norm='orth') # Compute the iFFT, with scaling by `1/sqrt(N)`
In the end it boils down to what you need. Most of the time the absolute magnitude of your DFT is actually not that important. You are mostly interested in the ratio of various components or you want to perform some operation in the frequency domain but then transform back to the time domain or you are interested in the phase (angles). In all of these case, the normalization does not really play an important role, as long as you stay consistent.
I am struggling with the correct normalization of the power spectral density (and its inverse).
I am given a real problem, let's say the readings of an accelerometer in the form of the power spectral density (psd) in units of Amplitude^2/Hz. I would like to translate this back into a randomized time series. However, first I want to understand the "forward" direction, time series to PSD.
According to [1], the PSD of a time series x(t) can be calculated by:
PSD(w) = 1/T * abs(F(w))^2 = df * abs(F(w))^2
in which T is the sampling time of x(t) and F(w) is the Fourier transform of x(t) and df=1/T is the frequency resolution in the Fourier space. However, the results I am getting are not equal to what I am getting using the scipy Welch method, see code below.
This first block of code is taken from the scipy.welch documentary:
from scipy import signal
import matplotlib.pyplot as plt
fs = 10e3
N = 1e5
amp = 2*np.sqrt(2)
freq = 1234.0
noise_power = 0.001 * fs / 2
time = np.arange(N) / fs
x = amp*np.sin(2*np.pi*freq*time)
x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
f, Pxx_den = signal.welch(x, fs, nperseg=1024)
plt.semilogy(f, Pxx_den)
plt.ylim(\[0.5e-3, 1\])
plt.xlabel('frequency \[Hz\]')
plt.ylabel('PSD \[V**2/Hz\]')
plt.show()
First thing I noticed is that the plotted psd changes with the variable fs which seems strange to me. (Maybe I need to adjust the nperseg argument then accordingly? Why is nperseg not set to fs automatically then?)
My code would be the following: (Note that I defined my own fft_full function which already takes care of the correct fourier transform normalization, which I verified by checking Parsevals theorem).
import scipy.fftpack as fftpack
def fft_full(xt,yt):
dt = xt[1] - xt[0]
x_fft=fftpack.fftfreq(xt.size,dt)
y_fft=fftpack.fft(yt)*dt
return (x_fft,y_fft)
xf,yf=fft_full(time,x)
df=xf[1] - xf[0]
psd=np.abs(yf)**2 *df
plt.figure()
plt.semilogy(xf, psd)
#plt.ylim([0.5e-3, 1])
plt.xlim(0,)
plt.xlabel('frequency [Hz]')
plt.ylabel('PSD [V**2/Hz]')
plt.show()
Unfortunately, I am not yet allowed to post images but the two plots do not look the same!
I would greatly appreciate if someone could explain to me where I went wrong and settle this once and for all :)
[1]: Eq. 2.82. Random Vibrations in Spacecraft Structures Design
Theory and Applications, Authors: Wijker, J. Jaap, 2009
The scipy library uses the Welch's method to estimate a PSD. This method is more complex than just taking the squared modulus of the discrete Fourier transform. In short terms, it proceeds as follows:
Let x be the input discrete signal that contains N samples.
Split x into M overlapping segments, such that each segment sm contains nperseg samples and that each two consecutive segments overlap in noverlap samples, so that nperseg = K * (nperseg - noverlap), where K is an integer (usually K = 2). Note also that:
N = nperseg + (M - 1) * (nperseg - noverlap) = (M + K - 1) * nperseg / K
From each segment sm, subtract its mean (this removes the DC component):
tm = sm - sum(sm) / nperseg
Multiply the elements of the obtained zero-mean segments tm by the elements of a suitable (nonsymmetric) window function, h (such as the Hann window):
um = tm * h
Calculate the Fast Fourier Transform of all vectors um. Before performing these transformations, we usually first append so many zeros to each vector um that its new dimension becomes a power of 2 (the nfft argument of the function welch is used for this purpose). Let us suppose that len(um) = 2p. In most cases, our input vectors are real-valued, so it is best to apply FFT for real data. Its results are then complex-valued vectors vm = rfft(um), such that len(vm) = 2p - 1 + 1.
Calculate the squared modulus of all transformed vectors:
am = abs(vm) ** 2,
or more efficiently:
am = vm.real ** 2 + vm.imag ** 2
Normalize the vectors am as follows:
bm = am / sum(h * h)
bm[1:-1] *= 2 (this takes into account the negative frequencies),
where h is a real vector of the dimension nperseg that contains the window coefficients. In case of the Hann window, we can prove that
sum(h * h) = 3 / 8 * len(h) = 3 / 8 * nperseg
Estimate the PSD as the mean of all vectors bm:
psd = sum(bm) / M
The result is a vector of the dimension len(psd) = 2p - 1 + 1. If we wish that the sum of all psd coefficients matches the mean squared amplitude of the windowed input data (rather than the sum of squared amplitudes), then the vector psd must also be divided by nperseg. However, the scipy routine omits this step. In any case, we usually present psd on the decibel scale, so that the final result is:
psd_dB = 10 * log10(psd).
For a more detailed description, please read the original Welch's paper. See also Wikipedia's page and chapter 13.4 of Numerical Recipes in C
I want to add 2D Gaussian noise to each (x,y) point of a list that I have.
That is why I want to create a noise vector with a random uniform direction over [0, 2pi) and a Gaussian-distributed magnitude with N(0, \sigma^2).
How can I generate a vector in Python only specifying the direction and its magnitude?
Well, this is not hard to do
n = 100
sigma = 1.0
phi = 2.0 * np.pi * np.random.random(n)
r = np.random.normal(loc=0.0, scale=sigma, size=n)
x = r*np.cos(phi)
y = r*np.sin(phi)
You can generate two vectors, one for the magnitude and another for the phase. Then you use both to get what you want.
import numpy as np
import math
sigma_squred = 0.01 # Change to whatever value you want
num_elements = 10 # Size of the vector you want
magnitude = math.sqrt(sigma_squred) * np.random.randn(num_elements)
phase = 2 * np.pi * np.random.random_sample(num_elements)
# This will give you a vector with a Gaussian magnitude and a random phase between 0 and 2PI
noise = magnitude * np.exp(1j*phase)
I find it easier to work with a single vector of complex numbers, but since you have individual x and y values, you can get a noise_x and a noise_y vector with
noise_x = noise.real
noise_y = noise.imag
Note: I'm assuming you can use the numpy library, which make things much easier. If that is not the case you will need a loop to generate each element. To generate a single sample for magnitude you can use random.gauss(0, sigma), while 2*math.pi*random.random() can be used to generate a sample for the phase. Then you do the same as before to get a complex number from where you can get the real and the imaginary parts.