import tarfile
from cStringIO import StringIO
from io import BytesIO as BIO
unique_keys = ['1:bigstringhere...:5'] * 5000
file_out = BytesIO()
tar = tarfile.open(mode='w:bz2', fileobj=file_out)
for k in unique_keys:
id, mydata, s_index= k.split(':')
inner_fname = '%s_%s.data' % (id, s_index)
info = tarfile.TarInfo(inner_fname)
info.size = len(mydata)
tar.addfile(info, StringIO(mydata))
tar.close()
I would like to do the above loop to add to the tarfile (tar) in parallel for faster execution.
Any ideas?
You cannot write multiple files to the same tarfile, at the same time. If you try to do so, the blocks will get intermingled, and it will be impossible to extract them.
You could do it by starting multiple threads, then each thread can open a tarfile, write to it, and close it.
I believe you can probably join tarfiles end-to-end. Normally, this would involve reading the tarfiles back at at the end, but since this is all in memory (and presumably, the size is small enough to allow that), this won't be so much of an issue.
If you take this approach, you don't want 5000 individual threads - 5000 threads will make the box stop responding (at least for a while), and the compression will be awful. Limit yourself to 1 thread per processor, and divide the work by the threads.
Also, your code, as written, will create a tar with 5000 files, all called 1_5.data, and with the contents "bigstringhere...". I'm assuming this is just an example. If not, create a tarfile with a single file, close it (to flush it), then duplicate the result 5000 times (e.g. if you then want to write it to disk, just write the entire BytesIO 5000 times).
I believe the most expensive part of this is the compression - you could use the external program 'pigz', which does gzip compression in parallel.
Related
For my application, I am attempting to determine whether a data backup system missed any writes. I am doing this by writing an incrementing integer counter to a 1GB virtual disk, and to make sure no writes were missed I can look at the reverted snapshot and see if there were any gaps (i.e. if I see 1, 2, 3, 0, 0, 6, 7 I know that the backup didn't get writes 4 and 5 correctly). This is all on a CentOS 7 VM, with mostly Python 2.7 scripts for writes/reads (speed isn't a huge concern)
A big part of my issues has been caching: since I'm simulating random I/O, writes are often flushed from caches and written to disk out of order. This makes every test appear as a false positive, since it looks like some data is missing at the time of the snapshot. Again, I don't really care about efficiency at all, so I don't mind really slow writes. Reads can use caching, that's not a problem, but also doesn't matter much one way or the other
Here are the things I have done to try to disable caching:
disable the disk write cache with sudo hdparm -W 0 /dev/sdb where /dev/sdb
writing to a raw disk with no filesystem, so no filesystem caching
set the buffering flag on with open in the Python script to 0 (no Python write cache)
Is it basically an impossible task to make sure that my writes get put on the disk in sequential order? All I need is write #(n) to happen before write #(n+1), and #(n+1) before #(n+2), etc.
This is the Python script I'm using to write to disk (SIZE and PRIME change based on the size of the disk an a random seed):
from struct import pack, unpack
import sys
SIZE,PRIME = [x],[x]
# random I/O traversal iterator
def rand_index_generator(a,b):
ctr=0
while True:
yield (ctr%b)
ctr+=a
with open('/dev/sdb', 'rb+', buffering=0) as f:
index_gen = rand_index_generator(PRIME, SIZE)
# random traversal using iterator above, write counter to file
for counter in xrange(1, SIZE-16):
f.seek(index_gen.next()*4)
f.write(pack('>I', counter))
Then to validate I traverse in the same order and watch for gaps of unwritten data. This is after reverting the VM back to the snapshot. I know all the traversal and writing things work since validation will work smoothly with no missed writes before reverting, but I think some "written" data dies in RAM and doesn't make it to disk
Will take any suggestions to guarantee the write order I need for this application
Found out the answer to this question. I misunderstood the effect of writing to a raw disk, it did not eliminate OS caching since I was still calling the OS to write to my raw disk. Oops
To bypass OS caches you should use os.open and pass os.O_DIRECT and os.O_SYNC flags to make sure writes happen in the correct sequence (more info on those flags) and are not stuck in volatile memory. I used mmap and os file descriptors but you could also use the normal filehandles like this
Page size is specific to your operating system. For Linux it is 4096
The top section of the code stayed the same but here is the write loop:
PAGESIZE = 4096
filedesc = os.open('/dev/sdb', os.O_DIRECT|os.O_SYNC|os.O_RDWR)
for counter in xrange(1, SIZE-16):
write_loc = index_gen.next()*4
page_dist = (write_loc%PAGESIZE)
offset = write_loc - page_dist
bytemap = mmap.mmap(filedesc, PAGESIZE, offset=offset)
bytemap[page_dist:(page_dist+4)] = pack('>I', counter)
bytemap.flush()
bytemap.close()
I have a lot of pickle files. Currently I read them in a loop but it takes a lot of time. I would like to speed it up but don't have any idea how to do that.
Multiprocessing wouldn't work because in order to transfer data from a child subprocess to the main process data need to be serialized (pickled) and deserialized.
Using threading wouldn't help either because of GIL.
I think that the solution would be some library written in C that takes a list of files to read and then runs multiple threads (without GIL). Is there something like this around?
UPDATE
Answering your questions:
Files are partial products of data processing for the purpose of ML
There are pandas.Series objects but the dtype is not known upfront
I want to have many files because we want to pick any subset easily
I want to have many smaller files instead of one big file because deserialization of one big file takes more memory (at some point in time we have serialized string and deserialized objects)
The size of the files can vary a lot
I use python 3.7 so I believe it's cPickle in fact
Using pickle is very flexible because I don't have to worry about underlying types - I can save anything
I agree with what has been noted in the comments, namely that due to the constraint of python itself (chiefly, the GIL lock, as you noted) and there may simply be no faster loading the information beyond what you are doing now. Or, if there is a way, it may be both highly technical and, in the end, only gives you a modest increase in speed.
That said, depending on the datatypes you have, it may be faster to use quickle or pyrobuf.
I think that the solution would be some library written in C that
takes a list of files to read and then runs multiple threads (without
GIL). Is there something like this around?
In short: no. pickle is apparently good enough for enough people that there are no major alternate implementations fully compatible with the pickle protocol. As of sometime in python 3, cPickle was merged with pickle, and neither release the GIL anyway which is why threading won't help you (search for Py_BEGIN_ALLOW_THREADS in _pickle.c and you will find nothing).
If your data can be re-structured into a simpler data format like csv, or a binary format like numpy's npy, there will be less cpu overhead when reading your data. Pickle is built for flexibility first rather than speed or compactness first. One possible exception to the rule of more complex less speed is the HDF5 format using h5py, which can be fairly complex, and I have used to max out the bandwidth of a sata ssd.
Finally you mention you have many many pickle files, and that itself is probably causing no small amount of overhead. Each time you open a new file, there's some overhead involved from the operating system. Conveniently you can combine pickle files by simply appending them together. Then you can call Unpickler.load() until you reach the end of the file. Here's a quick example of combining two pickle files together using shutil
import pickle, shutil, os
#some dummy data
d1 = {'a': 1, 'b': 2, 1: 'a', 2: 'b'}
d2 = {'c': 3, 'd': 4, 3: 'c', 4: 'd'}
#create two pickles
with open('test1.pickle', 'wb') as f:
pickle.Pickler(f).dump(d1)
with open('test2.pickle', 'wb') as f:
pickle.Pickler(f).dump(d2)
#combine list of pickle files
with open('test3.pickle', 'wb') as dst:
for pickle_file in ['test1.pickle', 'test2.pickle']:
with open(pickle_file, 'rb') as src:
shutil.copyfileobj(src, dst)
#unpack the data
with open('test3.pickle', 'rb') as f:
p = pickle.Unpickler(f)
while True:
try:
print(p.load())
except EOFError:
break
#cleanup
os.remove('test1.pickle')
os.remove('test2.pickle')
os.remove('test3.pickle')
I think you should try and use mmap(memory mapped files) that is similar to open() but way faster.
Note: If your each file is big in size then use mmap otherwise If the files are small in size use regular methods.
I have written a sample that you can try.
import mmap
from time import perf_counter as pf
def load_files(filelist):
start = pf() # for rough time calculations
for filename in filelist:
with open(filename, mode="r", encoding="utf8") as file_obj:
with mmap.mmap(file_obj.fileno(), length=0, access=mmap.ACCESS_READ) as mmap_file_obj:
data = pickle.load(mmap_file_obj)
print(data)
print(f'Operation took {pf()-start} sec(s)')
Here mmap.ACCESS_READ is the mode to open the file in binary. The file_obj returned by open is just used to get the file descriptor which is used to open the stream to the file via mmap as a memory mapped file.
As you can see below in the documentation of python open returns the file descriptor or fd for short. So we don't have to do anything with the file_obj operation wise. We just need its fileno() method to get its file descriptor. Also we are not closing the file_obj before the mmap_file_obj. Please take a proper look. We are closing the the mmap block first.
As you said in your comment.
open (file, flags[, mode])
Open the file file and set various flags according to flags and possibly its mode according to mode.
The default mode is 0777 (octal), and the current umask value is first masked out.
Return the file descriptor for the newly opened file.
Give it a try and see how much impact does it do on your operation
You can read more about mmap here. And about file descriptor here
You can try multiprocessing:
import os,pickle
pickle_list=os.listdir("pickles")
output_dict=dict.fromkeys(pickle_list, '')
def pickle_process_func(picklename):
with open("pickles/"+picklename, 'rb') as file:
dapickle=pickle.load(file)
#if you need previus files output wait for it
while(!output_dict[pickle_list[pickle_list.index(picklename)-1]]):
continue
#thandosomesh
print("loaded")
output_dict[picklename]=custom_func_i_dunno(dapickle)
from multiprocessing import Pool
with Pool(processes=10) as pool:
pool.map(pickle_process_func, pickle_list)
Consider using HDF5 via h5py instead of pickle. The performance is generally much better than pickle with numerical data in Pandas and numpy data structures and it supports most common data types and compression.
I'm new to python as well as MPI.
I have a huge data file, 10Gb, and I want to load it into, i.e., a list or whatever more efficient, please suggest.
Here is the way I load the file content into a list
def load(source, size):
data = [[] for _ in range(size)]
ln = 0
with open(source, 'r') as input:
for line in input:
ln += 1
data[ln%size].sanitize(line)
return data
Note:
source: is file name
size: is the number of concurrent process, I divide data into [size] of sublist.
for parallel computing using MPI in python.
Please advise how to load data more efficient and faster. I'm searching for days but I couldn't get any results matches my purpose and if there exists, please comment with a link here.
Regards
If I have understood the question, your bottleneck is not Python data structures. It is the I/O speed that limits the efficiency of your program.
If the file is written in continues blocks in the H.D.D then I don't know a way to read it faster than reading the file starting form the first bytes to the end.
But if the file is fragmented, create multiple threads each reading a part of the file. The must slow down the process of reading but modern HDDs implement a technique named NCQ (Native Command Queueing). It works by giving high priority to the read operation on sectors with addresses near the current position of the HDD head. Hence improving the overall speed of read operation using multiple threads.
To mention an efficient data structure in Python for your program, you need to mention what operations will you perform to the data? (delete, add, insert, search, append and so on) and how often?
By the way, if you use commodity hardware, 10GBs of RAM is expensive. Try reducing the need for this amount of RAM by loading the necessary data for computation then replacing the results with new data for the next operation. You can overlap the computation with the I/O operations to improve performance.
(original) Solution using pickling
The strategy for your task can go this way:
split the large file to smaller ones, make sure they are divided on line boundaries
have Python code, which can convert smaller files into resulting list of records and save them as
pickled file
run the python code for all the smaller files in parallel (using Python or other means)
run integrating code, taking pickled files one by one, loading the list from it and appending it
to final result.
To gain anything, you have to be careful as overhead can overcome all possible gains from parallel
runs:
as Python uses Global Interpreter Lock (GIL), do not use threads for parallel processing, use
processes. As processes cannot simply pass data around, you have to pickle them and let the other
(final integrating) part to read the result from it.
try to minimize number of loops. For this reason it is better to:
do not split the large file to too many smaller parts. To use power of your cores, best fit
the number of parts to number of cores (or possibly twice as much, but getting higher will
spend too much time on swithing between processes).
pickling allows saving particular items, but better create list of items (records) and pickle
the list as one item. Pickling one list of 1000 items will be faster than 1000 times pickling
small items one by one.
some tasks (spliting the file, calling the conversion task in parallel) can be often done faster
by existing tools in the system. If you have this option, use that.
In my small test, I have created a file with 100 thousands lines with content "98-BBBBBBBBBBBBBB",
"99-BBBBBBBBBBB" etc. and tested converting it to list of numbers [...., 98, 99, ...].
For spliting I used Linux command split, asking to create 4 parts preserving line borders:
$ split -n l/4 long.txt
This created smaller files xaa, xab, xac, xad.
To convert each smaller file I used following script, converting the content into file with
extension .pickle and containing pickled list.
# chunk2pickle.py
import pickle
import sys
def process_line(line):
return int(line.split("-", 1)[0])
def main(fname, pick_fname):
with open(pick_fname, "wb") as fo:
with open(fname) as f:
pickle.dump([process_line(line) for line in f], fo)
if __name__ == "__main__":
fname = sys.argv[1]
pick_fname = fname + ".pickled"
main(fname, pick_fname)
To convert one chunk of lines into pickled list of records:
$ python chunk2pickle xaa
and it creates the file xaa.pickled.
But as we need to do this in parallel, I used parallel tool (which has to be installed into
system):
$ parallel -j 4 python chunk2pickle.py {} ::: xaa xab xac xad
and I found new files with extension .pickled on the disk.
-j 4 asks to run 4 processes in parallel, adjust it to your system or leave it out and it will
default to number of cores you have.
parallel can also get list of parameters (input file names in our case) by other means like ls
command:
$ ls x?? |parallel -j 4 python chunk2pickle.py {}
To integrate the results, use script integrate.py:
# integrate.py
import pickle
def main(file_names):
res = []
for fname in file_names:
with open(fname, "rb") as f:
res.extend(pickle.load(f))
return res
if __name__ == "__main__":
file_names = ["xaa.pickled", "xab.pickled", "xac.pickled", "xad.pickled"]
# here you have the list of records you asked for
records = main(file_names)
print records
In my answer I have used couple of external tools (split and parallel). You may do similar task
with Python too. My answer is focusing only on providing you an option to keep Python code for
converting lines to required data structures. Complete pure Python answer is not covered here (it
would get much longer and probably slower.
Solution using process Pool (no explicit pickling needed)
Following solution uses multiprocessing from Python. In this case there is no need to pickle results
explicitly (I am not sure, if it is done by the library automatically, or it is not necessary and
data are passed using other means).
# direct_integrate.py
from multiprocessing import Pool
def process_line(line):
return int(line.split("-", 1)[0])
def process_chunkfile(fname):
with open(fname) as f:
return [process_line(line) for line in f]
def main(file_names, cores=4):
p = Pool(cores)
return p.map(process_chunkfile, file_names)
if __name__ == "__main__":
file_names = ["xaa", "xab", "xac", "xad"]
# here you have the list of records you asked for
# warning: records are in groups.
record_groups = main(file_names)
for rec_group in record_groups:
print(rec_group)
This updated solution still assumes, the large file is available in form of four smaller files.
I have a written a small program that reads values from two pieces of equipment every minuet and then saves it to a .csv file. I wanted the file to be updated and saved after every collection of every point so that if pc crashes, or other problem occurs no data loss occurs. To do that I open the file (ab mode), use write row and the close the file in a loop. The time between collections is about 1 minuet. This works quiet well, but the problem is after 5-6 hours of data collection, it stops saving to .csv file, and does not bring up any errors, the code continues to run with graph being update like nothing happened, but opening the .csv file reveals that data is lost. I would like to know if there is something wrong with the code I am using. I should also not I am running a subprocess from this that does live plotting, but I do not think it would cause an issue... I added those code lines as well.
##Initial file declaration and header
with open(filename,'wb') as wdata:
savefile=csv.writer(wdata,dialect='excel')
savefile.writerow(['System time','Time from Start(s)','Weight(g)','uS/cm','uS','Measured degC','%/C','Ideal degC','/cm'])
##Open Plotting Subprocess
draw=subprocess.Popen('TriPlot.py',shell=True,stdin=subprocess.PIPE,stdout=subprocess.PIPE)
##data collection loop
while True:
Collect Data x and y
Waits for data about 60 seconds, no sleep or pause commoand used, pyserial inteface is used.
## Send Data to subprocess
draw.stdin.write('%d\n' % tnow)
draw.stdin.write('%d\n' % s_w)
draw.stdin.write('%d\n' % tnow)
draw.stdin.write('%d\n' % float(s_c[5]))
##Saving data Section
wdata=open(filename,'ab')
savefile=csv.writer(wdata,dialect='excel')
savefile.writerow([tcurrent,tnow,s_w,s_c[5],s_c[7],s_c[9],s_c[11],s_c[13],s_c[15]])
wdata.close()
P.S This code uses the following packages for code not shown. pyserial, csv, os, subprocess,Tkinter, string, numpy, time and wx.
If draw.stdin.write() blocks it probably means that you are not consuming draw.stdout in a timely manner. The docs warn about the dead-lock due to the full OS pipe buffer.
If you don't need the output you could set stdout=devnull where devnull = open(os.devnull, 'wb') otherwise there are several approaches to read the output without blocking your code: threads, select, tempfile.TemoraryFile.
I am trying to create a dask.dataframe from a bunch of large CSV files (currently 12 files, 8-10 million lines and 50 columns each). A few of them might fit together into my system memory but all of them at once definitely will not, hence the use of dask instead of regular pandas.
Since reading each csv file involves some extra work (adding columns with data from the file path), I tried creating the dask.dataframe from a list of delayed objects, similar to this example.
This is my code:
import dask.dataframe as dd
from dask.delayed import delayed
import os
import pandas as pd
def read_file_to_dataframe(file_path):
df = pd.read_csv(file_path)
df['some_extra_column'] = 'some_extra_value'
return df
if __name__ == '__main__':
path = '/path/to/my/files'
delayed_collection = list()
for rootdir, subdirs, files in os.walk(path):
for filename in files:
if filename.endswith('.csv'):
file_path = os.path.join(rootdir, filename)
delayed_reader = delayed(read_file_to_dataframe)(file_path)
delayed_collection.append(delayed_reader)
df = dd.from_delayed(delayed_collection)
print(df.compute())
When starting this script (Python 3.4, dask 0.12.0), it runs for a couple of minutes while my system memory constantly fills up. When it is fully used, everything starts lagging and it runs for some more minutes, then it crashes with killed or MemoryError.
I thought the whole point of dask.dataframe was to be able to operate on larger-than-memory dataframes that span over multiple files on disk, so what am I doing wrong here?
edit: Reading the files instead with df = dd.read_csv(path + '/*.csv') seems to work fine as far as I can see. However, this does not allow me to alter each single dataframe with additional data from the file path.
edit #2:
Following MRocklin's answer, I tried to read my data with dask's read_bytes() method as well as using the single-threaded scheduler as well as doing both in combination.
Still, even when reading chunks of 100MB in single-threaded mode on a laptop with 8GB of memory, my process gets killed sooner or later. Running the code stated below on a bunch of small files (around 1MB each) of similar shape works fine though.
Any ideas what I am doing wrong here?
import dask
from dask.bytes import read_bytes
import dask.dataframe as dd
from dask.delayed import delayed
from io import BytesIO
import pandas as pd
def create_df_from_bytesio(bytesio):
df = pd.read_csv(bytesio)
return df
def create_bytesio_from_bytes(block):
bytesio = BytesIO(block)
return bytesio
path = '/path/to/my/files/*.csv'
sample, blocks = read_bytes(path, delimiter=b'\n', blocksize=1024*1024*100)
delayed_collection = list()
for datafile in blocks:
for block in datafile:
bytesio = delayed(create_bytesio_from_bytes)(block)
df = delayed(create_df_from_bytesio)(bytesio)
delayed_collection.append(df)
dask_df = dd.from_delayed(delayed_collection)
print(dask_df.compute(get=dask.async.get_sync))
If each of your files is large then a few concurrent calls to read_file_to_dataframe might be flooding memory before Dask ever gets a chance to be clever.
Dask tries to operate in low memory by running functions in an order such that it can delete intermediate results quickly. However if the results of just a few functions can fill up memory then Dask may never have a chance to delete things. For example if each of your functions produced a 2GB dataframe and if you had eight threads running at once, then your functions might produce 16GB of data before Dask's scheduling policies can kick in.
Some options
Use dask.bytes.read_bytes
The reason why read_csv works is that it chunks up large CSV files into many ~100MB blocks of bytes (see the blocksize= keyword argument). You could do this too, although it's tricky because you need to always break on an endline.
The dask.bytes.read_bytes function can help you here. It can convert a single path into a list of delayed objects, each corresponding to a byte range of that file that starts and stops cleanly on a delimiter. You would then put these bytes into an io.BytesIO (standard library) and call pandas.read_csv on that. Beware that you'll also have to handle headers and such. The docstring to that function is extensive and should provide more help.
Use a single thread
In the example above everything would be fine if we didn't have the 8x multiplier from parallelism. I suspect that if you only ran a single function at once that things would probably pipeline without ever reaching your memory limit. You can set dask to use only a single thread with the following line
dask.set_options(get=dask.async.get_sync)
Note: For Dask versions >= 0.15, you need to use dask.local.get_sync instead.
Make sure that results fit in memory (response to edit 2)
If you make a dask.dataframe and then compute it immediately
ddf = dd.read_csv(...)
df = ddf.compute()
You're loading in all of the data into a Pandas dataframe, which will eventually blow up memory. Instead it's better to operate on the Dask dataframe and only compute on small results.
# result = df.compute() # large result fills memory
result = df.groupby(...).column.mean().compute() # small result
Convert to a different format
CSV is a pervasive and pragmatic format, but also has some flaws. You might consider a data format like HDF5 or Parquet.