python: changing row index of pandas data frame [duplicate] - python

This question already has answers here:
Redefining the Index in a Pandas DataFrame object
(3 answers)
Closed 4 years ago.
I have a data frame called followers_df as below:
followers_df
0
0 oasikhia
0 LEANEnergyUS
0 _johannesngwako
0 jamesbreenre
0 CaitlinFecteau
0 mantequillaFACE
0 apowersb
0 ecoprinter
0 tsdesigns
0 GreenBizDoc
0 JimHarris
0 Jmarti11Julia
0 JAslat63
0 prAna
0 GrantLundberg
0 Jitasa_Is
0 ChoosePAWind
0 cleanpowerperks
0 WoWEorg
0 Laura_Chuck
I want to change this data frame into something like this:
followers_df
0
0 oasikhia
1 LEANEnergyUS
2 _johannesngwako
3 jamesbreenre
4 CaitlinFecteau
5 mantequillaFACE
6 apowersb
7 ecoprinter
8 tsdesigns
9 GreenBizDoc
10 JimHarris
11 Jmarti11Julia
12 JAslat63
13 prAna
14 GrantLundberg
15 Jitasa_Is
16 ChoosePAWind
17 cleanpowerperks
18 WoWEorg
19 Laura_Chuck
how can I do this? I tried:
index = pandas.Index(range(20))
followers_df = pandas.DataFrame(followers_df, index=index)
but it's giving me the following error:
ValueError: Shape of passed values is (1, 39), indices imply (1, 20)
thanks,

you can do
followers_df.index = range(20)

followers_df.reset_index()
followers_df.reindex(index=range(0,20))

When you are not sure of the number of rows, then you can do it this way:
followers_df.index = range(len(followers_df))

Related

Sample from dataframe with conditions

I have a large dataset and I want to sample from it but with a conditional. What I need is a new dataframe with the almost the same amount (count) of values of a boolean column of `0 and 1'
What I have:
df['target'].value_counts()
0 = 4000
1 = 120000
What I need:
new_df['target'].value_counts()
0 = 4000
1 = 6000
I know I can df.sample but I dont know how to insert the conditional.
Thanks
Since 1.1.0, you can use groupby.sample if you need the same number of rows for each group:
df.groupby('target').sample(4000)
Demo:
df = pd.DataFrame({'x': [0] * 10 + [1] * 25})
df.groupby('x').sample(5)
x
8 0
6 0
7 0
2 0
9 0
18 1
33 1
24 1
32 1
15 1
If you need to sample conditionally based on the group value, you can do:
df.groupby('target', group_keys=False).apply(
lambda g: g.sample(4000 if g.name == 0 else 6000)
)
Demo:
df.groupby('x', group_keys=False).apply(
lambda g: g.sample(4 if g.name == 0 else 6)
)
x
7 0
8 0
2 0
1 0
18 1
12 1
17 1
22 1
30 1
28 1
Assuming the following input and using the values 4/6 instead of 4000/6000:
df = pd.DataFrame({'target': [0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1]})
You could groupby your target and sample to take at most N values per group:
df.groupby('target', group_keys=False).apply(lambda g: g.sample(min(len(g), 6)))
example output:
target
4 0
0 0
8 0
12 0
10 1
14 1
1 1
7 1
11 1
13 1
If you want the same size you can simply use df.groupby('target').sample(n=4)

np where with two conditions and met first

I am trying to create a target variable based on 2 conditions. I have X values that are binary and X2 values that are also binary. My condition is whenver X changes from 1 to zero, we have one in y only if it is followed by a change from 0 to 1 in X2. If that was followed by a change from 0 to 1 in X then we don't do the change in the first place. I attached a picture from excel.
I also did the following to account for the change in X
df['X-prev']=df['X'].shift(1)
df['Change-X;]=np.where(df['X-prev']+df['X']==1,1,0)
# this is the data frame
X=[1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]
X2=[0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,1]
df=pd.DataFrame()
df['X']=X
df['X2']=X2
however, this is not enough as I need to know which change came first after the X change. I attached a picture of the example.
Thanks a lot for all the contributions.
Keep rows that match your transition (X=1, X+1=0) and (X2=1, X2-1=0) then merge all selected rows to a list where a value of 0 means 'start a cycle' and 1 means 'end a cycle'.
But in this list, you can have consecutive start or end so you need to filter again to get only cycles of (0, 1). After that, reindex this new series by your original dataframe index and back fill with 1.
x1 = df['X'].sub(df['X'].shift(-1)).eq(1)
x2 = df['X2'].sub(df['X2'].shift(1)).eq(1)
sr1 = pd.Series(0, df.index[x1])
sr2 = pd.Series(1, df.index[x2])
sr = pd.concat([sr2, sr1]).sort_index()
df['Y'] = sr[sr.lt(sr.shift(-1)) | sr.gt(sr.shift(1))] \
.reindex(df.index).bfill().fillna(0).astype(int)
>>> df
X X2 Y
0 1 0 0 # start here: (X=1, X+1=0) but never ended before another start
1 1 0 0
2 0 0 0
3 0 0 0
4 1 0 0 # start here: (X=1, X+1=0)
5 0 0 1 # <- fill with 1
6 0 0 1 # <- fill with 1
7 0 0 1 # <- fill with 1
8 0 0 1 # <- fill with 1
9 0 1 1 # end here: (X2=1, X2-1=0) so fill back rows with 1
10 0 1 0
11 0 1 0
12 0 1 0
13 0 1 0
14 0 0 0
15 0 0 0
16 0 1 0 # end here: (X2=1, X2-1=0) but never started before
17 0 0 0
18 0 0 0
19 0 0 0
20 1 0 0
21 1 0 0 # start here: (X=1, X+1=0)
22 0 0 1 # <- fill with 1
23 0 0 1 # <- fill with 1
24 0 0 1 # <- fill with 1
25 0 0 1 # <- fill with 1
26 0 0 1 # <- fill with 1
27 0 1 1 # end here: (X2=1, X2-1=0) so fill back rows with 1
28 0 1 0
29 0 1 0

Conditional sum of non zero values

I have a daraframe as below:
Datetime Data Fn
0 18747.385417 11275.0 0
1 18747.388889 8872.0 1
2 18747.392361 7050.0 0
3 18747.395833 8240.0 1
4 18747.399306 5158.0 1
5 18747.402778 3926.0 0
6 18747.406250 4043.0 0
7 18747.409722 2752.0 1
8 18747.420139 3502.0 1
9 18747.423611 4026.0 1
I want to calculate the sum of continious non zero values of Column (Fn)
I want my result dataframe as below:
Datetime Data Fn Sum
0 18747.385417 11275.0 0 0
1 18747.388889 8872.0 1 1
2 18747.392361 7050.0 0 0
3 18747.395833 8240.0 1 1
4 18747.399306 5158.0 1 2 <<<
5 18747.402778 3926.0 0 0
6 18747.406250 4043.0 0 0
7 18747.409722 2752.0 1 1
8 18747.420139 3502.0 1 2
9 18747.423611 4026.0 1 3
You can use groupby() and cumsum():
groups = df.Fn.eq(0).cumsum()
df['Sum'] = df.Fn.ne(0).groupby(groups).cumsum()
Details
First use df.Fn.eq(0).cumsum() to create pseudo-groups of consecutive non-zeros. Each zero will get a new id while consecutive non-zeros will keep the same id:
groups = df.Fn.eq(0).cumsum()
# groups Fn (Fn added just for comparison)
# 0 1 0
# 1 1 1
# 2 2 0
# 3 2 1
# 4 2 1
# 5 3 0
# 6 4 0
# 7 4 1
# 8 4 1
# 9 4 1
Then group df.Fn.ne(0) on these pseudo-groups and cumsum() to generate the within-group sequences:
df['Sum'] = df.Fn.ne(0).groupby(groups).cumsum()
# Datetime Data Fn Sum
# 0 18747.385417 11275.0 0 0
# 1 18747.388889 8872.0 1 1
# 2 18747.392361 7050.0 0 0
# 3 18747.395833 8240.0 1 1
# 4 18747.399306 5158.0 1 2
# 5 18747.402778 3926.0 0 0
# 6 18747.406250 4043.0 0 0
# 7 18747.409722 2752.0 1 1
# 8 18747.420139 3502.0 1 2
# 9 18747.423611 4026.0 1 3
How about using cumsum and reset when value is 0
df['Fn2'] = df['Fn'].replace({0: False, 1: True})
df['Fn2'] = df['Fn2'].cumsum() - df['Fn2'].cumsum().where(df['Fn2'] == False).ffill().astype(int)
df
You can store the fn column in a list and then create a new list and iterate over the stored fn column and check the previous index value if it is greater than zero then add it to current index else do not update it and after this u can make a dataframe for the list and concat column wise to existing dataframe
fn=df[Fn]
sum_list[0]=fn first value
for i in range(1,lenghtofthe column):
if fn[i-1]>0:
sum_list.append(fn[i-1]+fn[i])
else:
sum_list.append(fn[i])
dfsum=pd.Dataframe(sum_list)
df=pd.concat([df,dfsum],axis=1)
Hope this will help you.there may me syntax errors that you can refer google.But the idea is this
try this:
sum_arr = [0]
for val in df['Fn']:
if val > 0:
sum_arr.append(sum_arr[-1] + 1)
else:
sum_arr.append(0)
df['sum'] = sum_arr[1:]
df

Checking for subset in a column?

I'm trying to flag some price data as "stale" if the quoted price of the security hasn't changed over lets say 3 trading days. I'm currently trying it with:
firm["dev"] = np.std(firm["Price"],firm["Price"].shift(1),firm["Price"].shift(2))
firm["flag"] == np.where(firm["dev"] = 0, 1, 0)
But I'm getting nowhere with it. This is what my dataframe would look like.
Index
Price
Flag
1
10
0
2
11
0
3
12
0
4
12
0
5
12
1
6
11
0
7
13
0
Any help is appreciated!
If you are okay with other conditions, you can first check if series.diff equals 0 and take cumsum to check if you have a cumsum of 2 (n-1). Also check if the next row is equal to current, when both these conditions suffice, assign a flag of 1 else 0.
n=3
firm['Flag'] = (firm['Price'].diff().eq(0).cumsum().eq(n-1) &
firm['Price'].eq(firm['Price'].shift())).astype(int)
EDIT, to make it a generalized function with consecutive n, use this:
def fun(df,col,n):
c = df[col].diff().eq(0)
return (c|c.shift(-1)).cumsum().ge(n) & df[col].eq(df[col].shift())
firm['flag_2'] = fun(firm,'Price',2).astype(int)
firm['flag_3'] = fun(firm,'Price',3).astype(int)
print(firm)
Price Flag flag_2 flag_3
Index
1 10 0 0 0
2 11 0 0 0
3 12 0 0 0
4 12 0 1 0
5 12 1 1 1
6 11 0 0 0
7 13 0 0 0

Editing values in DataFrafe column -Python & PANDAS [duplicate]

This question already has answers here:
Conditional Replace Pandas
(7 answers)
Closed 2 years ago.
I want to convert all values < 100 to 0 in column ODOMETER_FW. I have below DF:
When I use pandas:
stupid_values = fuel_GB['ODOMETER_FW'].replace(fuel_GB['ODOMETER_FW']<100,0)
fuel_GB['ODOMETER_FW'] = stupid_values
fuel_GB.head(13)
And the result as you can see, has some error and I really do not know why.
Use lambda function to convert values less than 100 to 0:
df['ODOMETER_FW'] = df['ODOMETER_FW'].apply(lambda x: 0 if x <100 else x)
print(df)
ODOMETER_FW
0 11833
1 0
2 9080
3 8878
4 0
5 14578
6 14351
7 0
8 13456
9 0
10 0
11 0
12 0
Just ask the modification for the relevant lines:
fuel_GB.loc[fuel_GB['ODOMETER_FW'] < 100, 'ODOMETER_FW'] = 0
Use this pandas code:
fuel_GB[fuel_GB['ODOMETER_FW'] < 100] = 0

Categories

Resources