Got this question from 'how to think like a computer scientist' course:
Interpret the data file labdata.txt such that each line contains a an x,y coordinate pair. Write a function called plotRegression that reads the data from this file and uses a turtle to plot those points and a best fit line according to the following formulas:
y=y¯+m(x−x¯)
m=∑xiyi−nx¯y¯∑x2i−nx¯2
http://interactivepython.org/runestone/static/thinkcspy/Files/Exercises.html?lastPosition=1308
my code doesnt seem to be working and i cant figure out why. it looks like python is interpreting the data as str as opposed to float.
def plotregression(t):
labfile = open('labdata.txt','r')
sumx = 0
sumy = 0
count = 0
sumprod = 0
sumsqrx =0
sumsqrnx = 0
for i in labfile:
points = i.split()
print (points)
t.up()
t.setpos(points[0],points[1])
t.stamp()
sumx = sumx + int(points[0])
sumy = sumy + int(points[1])
prod = points[0]*int(points[1])
sumprod = sumprod + prod
count += 1
sqrx = int(points[0])**2
sumsqrx = sumsqrx + sqrx
sqrnx = int(points[0])**(-2)
sumsqrnx = sumsqrnx + sqrnx
avgx = sumx/count
avgy = sumy/count
m = (sumprod - count(avgx*avgy))/sumsqrx- (count(avgx**2))
print(m)
for bestline in labfile:
line = bestline.split()
y= avgy + m(int(line[0])-avgx)
t.down()
t.setpos(0,0)
t.setpos(line[0],y)
plotregression(kj)
Appreciate your help.
Thnx
I actually worked out the problem myself and it finally seems to be doing what i'm telling it to. But i would love to know if i can cut out any unnecessary lines of code. I'm thinking its a bit too long and i'm missing out something which would make this more simpler to do.
import turtle
wn= turtle.Screen()
kj = turtle.Turtle()
kj.shape('circle')
kj.turtlesize(0.2)
kj.color('blue')
kj.speed(1)
def plotregression(t):
sumx = 0
sumy = 0
count = 0
sumprod = 0
sumsqrx =0
labfile = open('labdata.txt','r')
for i in labfile:
points = i.split()
print (points)
t.up()
t.setpos(int(points[0]),int(points[1]))
t.stamp()
sumx = sumx + int(points[0])
sumy = sumy + int(points[1])
prod = int(points[0])*int(points[1])
sumprod = sumprod + prod
count += 1
sqrx = int(points[0])**2
sumsqrx = sumsqrx + sqrx
avgx = sumx/count
avgy = sumy/count
m = (sumprod - count*(avgx*avgy))/(sumsqrx- (count*(avgx**2)))
print('M is: ',m )
labfile.close()
labfile = open('labdata.txt','r')
besttfit = open('bestfit.txt','w')
for bestline in labfile:
line = bestline.split()
y = avgy + m*(int(line[0])-avgx)
print('y is:' ,y)
besttfit.write((line[0])+'\t'+str(y)+'\n')
labfile.close()
besttfit.close()
bestfitline = open('bestfit.txt','r')
for regline in bestfitline:
reg = regline.split()
t.goto(float(reg[0]),float(reg[1]))
t.down()
t.write('Best fit line')
bestfitline.close()
wn.setworldcoordinates(-10,-10,120,120)
figure = plotregression(kj)
wn.exitonclick()
please let me know if i can cut down anywhere
I was solving the same problem form the interactive python. Here is how I did it.
import turtle
def plotRegression(data):
win = turtle.Screen()
win.bgcolor('pink')
t = turtle.Turtle()
t.shape('circle')
t.turtlesize(0.2)
x_list, y_list = [i[0] for i in plot_data], [i[1] for i in plot_data]
x_list, y_list = [float(i) for i in x_list], [float(i) for i in y_list]
x_sum, y_sum = sum(x_list), sum(y_list)
x_bar, y_bar = x_sum / len(x_list), y_sum / len(y_list)
x_list_square = [i ** 2 for i in x_list]
x_list_square_sum = sum(x_list_square)
xy_list = [x_list[i] * y_list[i] for i in range(len(x_list))]
xy_list_sum = sum(xy_list)
m = (xy_list_sum - len(x_list) * x_bar * y_bar) / (x_list_square_sum - len(x_list) * x_bar ** 2)
# best y
y_best = [ (y_bar + m * (x_list[i] - x_bar)) for i in range( len(x_list) ) ]
# plot points
max_x = max(x_list)
max_y = max(y_list)
win.setworldcoordinates(0, 0, max_x, max_y)
for i in range(len(x_list)):
t.penup()
t.setposition(x_list[i], y_list[i])
t.stamp()
#plot best y
t.penup()
t.setposition(0,0)
t.color('blue')
for i in range(len(x_list)):
t.setposition(x_list[i],y_best[i])
t.pendown()
win.exitonclick()
with open('files/labdata.txt', 'r') as f:
plot_data = [aline.split() for aline in f]
plotRegression(plot_data)
I am about 5 years too late but here is my two cents.
The problem might be in the line:
t.setpos(points[0],points[1])
This is telling the turtle to go to the string value of the points[0] and points[1].
For example, if points[0] stores the value of "50" and points[1] holds the value "60" then "50" + "60" would be return the string "5060"
This line might have problems as well:
prod = points[0]*int(points[1])
This is adding the string value in points[0] to the integer value in points[1]
In this case, using the previous values points[0] would be "50" and int(points[1]) would be 60. That is 60 and not "60". So you cant add the string "50" with the integer 60.
Here is how I worked out the problem:
import turtle
import math
import statistics as stats
def get_line(means, slope, xlist):
"""Return a list of best y values."""
line = [(means[1] + slope * (xlist[x] + means[0]))
for x in range(len(xlist))]
return line
def get_mtop(xlist, ylist, n, means):
"""Return top half of m expression."""
xbyy_list = [xlist[x] * ylist[x] for x in range(len(xlist))]
xbyy_sum = sum(xbyy_list)
nby_means = n * (means[0] * means[1])
top = xbyy_sum - nby_means
return top
def get_mbot(xlist, n, means):
"""Return bottom half of m expression."""
sqr_comprehension = [x**2 for x in xlist]
sqr_sum = sum(sqr_comprehension)
nbymean_sqr = n * means[0]**2
bot = sqr_sum - nbymean_sqr
return bot
def get_mean(xlist, ylist):
"""Return a tuple that contains the means of xlist and ylist
in form of (xmean,ymean)."""
xmean = stats.mean(xlist)
ymean = stats.mean(ylist)
return xmean, ymean
def plotRegression(input_file, input_turtle):
"""Draw the plot regression.""""
infile = open(input_file, 'r')
input_turtle.shape("circle")
input_turtle.penup()
# Get a list of xcoor and a list of ycoor
xcoor = []
ycoor = []
for line in infile:
coor = line.split()
xcoor.append(int(coor[0]))
ycoor.append(int(coor[1]))
# Plot and count the points
num_points = 0
for count in range(len(xcoor)):
input_turtle.goto(xcoor[count], ycoor[count])
input_turtle.stamp()
num_points += 1
# Get the mean values of the xcoor and ycoor lists
means_tup = get_mean(xcoor, ycoor)
print(means_tup)
# Get the value for M
mtop = get_mtop(xcoor, ycoor, num_points, means_tup)
mbot = get_mbot(xcoor, num_points, means_tup)
m = mtop / mbot
print(m)
# Draw the line
yline = get_line(means_tup, m, xcoor)
input_turtle.color("green")
input_turtle.goto(xcoor[0], yline[0])
input_turtle.pendown()
for x in range(len(xcoor)):
print(xcoor[x], yline[x])
input_turtle.goto(xcoor[x], yline[x])
input_turtle.hideturtle()
def main():
"""Create the canvas and the turtle. Call the function(s)"""
# Set up the screen
sc = turtle.Screen()
sc.setworldcoordinates(0, 0, 100, 100)
sc.bgcolor("black")
# Create the turtle
Donatello = turtle.Turtle()
Donatello.color("purple")
# Run plot Regression
labdata = """C:\\Users\\user\\pathtofile\\labdata.txt"""
plotRegression(labdata, Donatello)
sc.exitonclick()
if __name__ == "__main__":
main()
I don't know if this is the correct slope but it seems to be in the right direction. Hopefully this helps some one who has the same problem.
I have a need for a Python module/package that provides a mesh on which I can do computational science? I am not doing graphics, so I don't think the blender package is what I want.
Does anyone know of a good package?
The most useful packages out there are perhaps
mshr,
pygalmesh,
dmsh,
pygmsh, and
MeshPy,
meshzoo.
In addition, there is optimesh for improving the quality of any mesh.
(Disclaimer: I'm the author of pygmsh, pygalmesh, dmsh, meshzoo, and optimesh.)
If you're trying to solve FE or CFD style equations on a mesh you can use MeshPy in 2 and 3 dimensions. Meshpy is a nice wrapper around the existing tools tetgen and triangle.
If you're looking for more typical graphics style meshes, there was an interesting talk at PyCon 2011 "Algorithmic Generation of OpenGL Geometry", which described a pragmatic approach to procedural mesh generation. The code from the presentation is available online
If you're interested in reconstruction of surfaces from data, you can't go past the Standford 3D Scanning Repository, home of the Stanford Bunny
Edit:
A dependancy free alternative may be to use something like gmsh, which is platform independent, and uses similar tools to meshpy in its back-end.
I recommend using NumPy (especially if you've used MATLAB before). Many computational scientists / mechanical engineers working in python might agree, but I'm biased as it found it's way into much of the last year of my research. It's part of SciPy: http://numpy.scipy.org/
I was fond of numpy.linspace(a,b,N) which makes an N length vector of equally spaced values from a to b. You can use numpy.ndarray to make a N x M matrix, or if you want 2D arrays use numpy.meshgrid.
Here is code adapted from Kardontchik's port,
import numpy as np
from numpy import pi as pi
from scipy.spatial import Delaunay
import matplotlib.pylab as plt
from scipy.optimize import fmin
import matplotlib.pylab as plt
def ktrimesh(p,bars,pflag=0):
# create the (x,y) data for the plot
xx1 = p[bars[:,0],0]; yy1 = p[bars[:,0],1]
xx2 = p[bars[:,1],0]; yy2 = p[bars[:,1],1]
xmin = np.min(p[:,0])
xmax = np.max(p[:,0])
ymin = np.min(p[:,1])
ymax = np.max(p[:,1])
xmin = xmin - 0.05*(xmax - xmin)
xmax = xmax + 0.05*(xmax - xmin)
ymin = ymin - 0.05*(ymax - ymin)
ymax = ymax + 0.05*(ymax - ymin)
plt.figure()
for i in range(len(xx1)):
xp = np.array([xx1[i],xx2[i]])
yp = np.array([yy1[i],yy2[i]])
plt.plot(xmin,ymin,'.',xmax,ymax,'.',markersize=0.1)
plt.plot(xp,yp,'k')
plt.axis('equal')
if pflag == 0:
stitle = 'Triangular Mesh'
if pflag == 1:
stitle = 'Visual Boundary Integrity Check'
#plt.title('Triangular Mesh')
plt.title(stitle)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
return 1
def ccw_tri(p,t):
"""
orients all the triangles counterclockwise
"""
# vector A from vertex 0 to vertex 1
# vector B from vertex 0 to vertex 2
A01x = p[t[:,1],0] - p[t[:,0],0]
A01y = p[t[:,1],1] - p[t[:,0],1]
B02x = p[t[:,2],0] - p[t[:,0],0]
B02y = p[t[:,2],1] - p[t[:,0],1]
# if vertex 2 lies to the left of vector A the component z of
# their vectorial product A^B is positive
Cz = A01x*B02y - A01y*B02x
a = t[np.where(Cz<0)]
b = t[np.where(Cz>=0)]
a[:,[1,2]] = a[:,[2,1]]
t = np.concatenate((a, b))
return t
def triqual_flag(p,t):
# a(1,0), b(2,0), c(2,1)
a = np.sqrt((p[t[:,1],0] - p[t[:,0],0])**2 + (p[t[:,1],1] - p[t[:,0],1])**2)
b = np.sqrt((p[t[:,2],0] - p[t[:,0],0])**2 + (p[t[:,2],1] - p[t[:,0],1])**2)
c = np.sqrt((p[t[:,2],0] - p[t[:,1],0])**2 + (p[t[:,2],1] - p[t[:,1],1])**2)
A = 0.25*np.sqrt((a+b+c)*(b+c-a)*(a+c-b)*(a+b-c))
R = 0.25*(a*b*c)/A
r = 0.5*np.sqrt( (a+b-c)*(b+c-a)*(a+c-b)/(a+b+c) )
q = 2.0*(r/R)
min_edge = np.minimum(np.minimum(a,b),c)
min_angle_deg = (180.0/np.pi)*np.arcsin(0.5*min_edge/R)
min_q = np.min(q)
min_ang = np.min(min_angle_deg)
return min_q, min_ang
def triqual(p,t,fh,qlim=0.2):
# a(1,0), b(2,0), c(2,1)
a = np.sqrt((p[t[:,1],0] - p[t[:,0],0])**2 + (p[t[:,1],1] - p[t[:,0],1])**2)
b = np.sqrt((p[t[:,2],0] - p[t[:,0],0])**2 + (p[t[:,2],1] - p[t[:,0],1])**2)
c = np.sqrt((p[t[:,2],0] - p[t[:,1],0])**2 + (p[t[:,2],1] - p[t[:,1],1])**2)
A = 0.25*np.sqrt((a+b+c)*(b+c-a)*(a+c-b)*(a+b-c))
R = 0.25*(a*b*c)/A
r = 0.5*np.sqrt( (a+b-c)*(b+c-a)*(a+c-b)/(a+b+c) )
q = 2.0*(r/R)
pmid = (p[t[:,0]] + p[t[:,1]] + p[t[:,2]])/3.0
hmid = fh(pmid)
Ah = A/hmid
Anorm = Ah/np.mean(Ah)
min_edge = np.minimum(np.minimum(a,b),c)
min_angle_deg = (180.0/np.pi)*np.arcsin(0.5*min_edge/R)
plt.figure()
plt.subplot(3,1,1)
plt.hist(q)
plt.title('Histogram;Triangle Statistics:q-factor,Minimum Angle and Area')
plt.subplot(3,1,2)
plt.hist(min_angle_deg)
plt.ylabel('Number of Triangles')
plt.subplot(3,1,3)
plt.hist(Anorm)
plt.xlabel('Note: for equilateral triangles q = 1 and angle = 60 deg')
plt.show()
indq = np.where(q < qlim) # indq is a tuple: len(indq) = 1
if list(indq[0]) != []:
print ('List of triangles with q < %5.3f and the (x,y) location of their nodes' % qlim)
print ('')
print ('q t[i] t[nodes] [x,y][0] [x,y][1] [x,y][2]')
for i in indq[0]:
print ('%.2f %4d [%4d,%4d,%4d] [%+.2f,%+.2f] [%+.2f,%+.2f] [%+.2f,%+.2f]' % \
(q[i],i,t[i,0],t[i,1],t[i,2],p[t[i,0],0],p[t[i,0],1],p[t[i,1],0],p[t[i,1],1],p[t[i,2],0],p[t[i,2],1]))
print ('')
# end of detailed data on worst offenders
return q,min_angle_deg,Anorm
class Circle:
def __init__(self,xc,yc,r):
self.xc, self.yc, self.r = xc, yc, r
def __call__(self,p):
xc, yc, r = self.xc, self.yc, self.r
d = np.sqrt((p[:,0] - xc)**2 + (p[:,1] - yc)**2) - r
return d
class Rectangle:
def __init__(self,x1,x2,y1,y2):
self.x1, self.x2, self.y1, self.y2 = x1,x2,y1,y2
def __call__(self,p):
x1,x2,y1,y2 = self.x1, self.x2, self.y1, self.y2
d1 = p[:,1] - y1 # if p inside d1 > 0
d2 = y2 - p[:,1] # if p inside d2 > 0
d3 = p[:,0] - x1 # if p inside d3 > 0
d4 = x2 - p[:,0] # if p inside d4 > 0
d = -np.minimum(np.minimum(np.minimum(d1,d2),d3),d4)
return d
class Polygon:
def __init__(self,verts):
self.verts = verts
def __call__(self,p):
verts = self.verts
# close the polygon
cverts = np.zeros((len(verts)+1,2))
cverts[0:-1] = verts
cverts[-1] = verts[0]
# initialize
inside = np.zeros(len(p))
dist = np.zeros(len(p))
Cz = np.zeros(len(verts)) # z-components of the vectorial products
dist_to_edge = np.zeros(len(verts))
in_ref = np.ones(len(verts))
# if np.sign(Cz) == in_ref then point is inside
for j in range(len(p)):
Cz = (cverts[1:,0] - cverts[0:-1,0])*(p[j,1] - cverts[0:-1,1]) - \
(cverts[1:,1] - cverts[0:-1,1])*(p[j,0] - cverts[0:-1,0])
dist_to_edge = Cz/np.sqrt( \
(cverts[1:,0] - cverts[0:-1,0])**2 + \
(cverts[1:,1] - cverts[0:-1,1])**2)
inside[j] = int(np.array_equal(np.sign(Cz),in_ref))
dist[j] = (1 - 2*inside[j])*np.min(np.abs(dist_to_edge))
return dist
class Union:
def __init__(self,fd1,fd2):
self.fd1, self.fd2 = fd1, fd2
def __call__(self,p):
fd1,fd2 = self.fd1, self.fd2
d = np.minimum(fd1(p),fd2(p))
return d
class Diff:
def __init__(self,fd1,fd2):
self.fd1, self.fd2 = fd1, fd2
def __call__(self,p):
fd1,fd2 = self.fd1, self.fd2
d = np.maximum(fd1(p),-fd2(p))
return d
class Intersect:
def __init__(self,fd1,fd2):
self.fd1, self.fd2 = fd1, fd2
def __call__(self,p):
fd1,fd2 = self.fd1, self.fd2
d = np.maximum(fd1(p),fd2(p))
return d
class Protate:
def __init__(self,phi):
self.phi = phi
def __call__(self,p):
phi = self.phi
c = np.cos(phi)
s = np.sin(phi)
temp = np.copy(p[:,0])
rp = np.copy(p)
rp[:,0] = c*p[:,0] - s*p[:,1]
rp[:,1] = s*temp + c*p[:,1]
return rp
class Pshift:
def __init__(self,x0,y0):
self.x0, self.y0 = x0,y0
def __call__(self,p):
x0, y0 = self.x0, self.y0
p[:,0] = p[:,0] + x0
p[:,1] = p[:,1] + y0
return p
def Ellipse_dist_to_minimize(t,p,xc,yc,a,b):
x = xc + a*np.cos(t) # coord x of the point on the ellipse
y = yc + b*np.sin(t) # coord y of the point on the ellipse
dist = (p[0] - x)**2 + (p[1] - y)**2
return dist
class Ellipse:
def __init__(self,xc,yc,a,b):
self.xc, self.yc, self.a, self.b = xc, yc, a, b
self.t, self.verts = self.pick_points_on_shape()
def pick_points_on_shape(self):
xc, yc, a, b = self.xc, self.yc, self.a, self.b
c = np.array([xc,yc])
t = np.linspace(0,(7.0/4.0)*pi,8)
verts = np.zeros((8,2))
verts[:,0] = c[0] + a*np.cos(t)
verts[:,1] = c[1] + b*np.sin(t)
return t, verts
def inside_ellipse(self,p):
xc, yc, a, b = self.xc, self.yc, self.a, self.b
c = np.array([xc,yc])
r, phase = self.rect_to_polar(p-c)
r_ellipse = self.rellipse(phase)
in_ref = np.ones(len(p))
inside = 0.5 + 0.5*np.sign(r_ellipse-r)
return inside
def rect_to_polar(self,p):
r = np.sqrt(p[:,0]**2 + p[:,1]**2)
phase = np.arctan2(p[:,1],p[:,0])
# note: np.arctan2(y,x) order; phase in +/- pi (+/- 180deg)
return r, phase
def rellipse(self,phi):
a, b = self.a, self.b
r = a*b/np.sqrt((b*np.cos(phi))**2 + (a*np.sin(phi))**2)
return r
def find_closest_vertex(self,point):
t, verts = self.t, self.verts
dist = np.zeros(len(t))
for i in range(len(t)):
dist[i] = (point[0] - verts[i,0])**2 + (point[1] - verts[i,1])**2
ind = np.argmin(dist)
t0 = t[ind]
return t0
def __call__(self,p):
xc, yc, a, b = self.xc, self.yc, self.a, self.b
t, verts = self.t, self.verts
dist = np.zeros(len(p))
inside = self.inside_ellipse(p)
for j in range(len(p)):
t0 = self.find_closest_vertex(p[j]) # initial guess to minimizer
opt = fmin(Ellipse_dist_to_minimize,t0, \
args=(p[j],xc,yc,a,b),full_output=1,disp=0)
# add full_output=1 so we can retrieve the min dist(squared)
# (2nd argument of opt array, 1st argument is the optimum t)
min_dist = np.sqrt(opt[1])
dist[j] = min_dist*(1 - 2*inside[j])
return dist
def distmesh(fd,fh,h0,xmin,ymin,xmax,ymax,pfix,ttol=0.1,dptol=0.001,Iflag=1,qmin=1.0):
geps = 0.001*h0; deltat = 0.2; Fscale = 1.2
deps = h0 * np.sqrt(np.spacing(1))
random_seed = 17
h0x = h0; h0y = h0*np.sqrt(3)/2 # to obtain equilateral triangles
Nx = int(np.floor((xmax - xmin)/h0x))
Ny = int(np.floor((ymax - ymin)/h0y))
x = np.linspace(xmin,xmax,Nx)
y = np.linspace(ymin,ymax,Ny)
# create the grid in the (x,y) plane
xx,yy = np.meshgrid(x,y)
xx[1::2] = xx[1::2] + h0x/2.0 # shifts even rows by h0x/2
p = np.zeros((np.size(xx),2))
p[:,0] = np.reshape(xx,np.size(xx))
p[:,1] = np.reshape(yy,np.size(yy))
p = np.delete(p,np.where(fd(p) > geps),axis=0)
np.random.seed(random_seed)
r0 = 1.0/fh(p)**2
p = np.concatenate((pfix,p[np.random.rand(len(p))<r0/max(r0),:]))
pold = np.inf
Num_of_Delaunay_triangulations = 0
Num_of_Node_movements = 0 # dp = F*dt
while (1):
Num_of_Node_movements += 1
if Iflag == 1 or Iflag == 3: # Newton flag
print ('Num_of_Node_movements = %3d' % (Num_of_Node_movements))
if np.max(np.sqrt(np.sum((p - pold)**2,axis = 1))) > ttol:
Num_of_Delaunay_triangulations += 1
if Iflag == 1 or Iflag == 3: # Delaunay flag
print ('Num_of_Delaunay_triangulations = %3d' % \
(Num_of_Delaunay_triangulations))
pold = p
tri = Delaunay(p) # instantiate a class
t = tri.vertices
pmid = (p[t[:,0]] + p[t[:,1]] + p[t[:,2]])/3.0
t = t[np.where(fd(pmid) < -geps)]
bars = np.concatenate((t[:,[0,1]],t[:,[0,2]], t[:,[1,2]]))
bars = np.unique(np.sort(bars),axis=0)
if Iflag == 4:
min_q, min_angle_deg = triqual_flag(p,t)
print ('Del iter: %3d, min q = %5.2f, min angle = %3.0f deg' \
% (Num_of_Delaunay_triangulations, min_q, min_angle_deg))
if min_q > qmin:
break
if Iflag == 2 or Iflag == 3:
ktrimesh(p,bars)
# move mesh points based on bar lengths L and forces F
barvec = p[bars[:,0],:] - p[bars[:,1],:]
L = np.sqrt(np.sum(barvec**2,axis=1))
hbars = 0.5*(fh(p[bars[:,0],:]) + fh(p[bars[:,1],:]))
L0 = hbars*Fscale*np.sqrt(np.sum(L**2)/np.sum(hbars**2))
F = np.maximum(L0-L,0)
Fvec = np.column_stack((F,F))*(barvec/np.column_stack((L,L)))
Ftot = np.zeros((len(p),2))
n = len(bars)
for j in range(n):
Ftot[bars[j,0],:] += Fvec[j,:] # the : for the (x,y) components
Ftot[bars[j,1],:] -= Fvec[j,:]
# force = 0 at fixed points, so they do not move:
Ftot[0: len(pfix),:] = 0
# update the node positions
p = p + deltat*Ftot
# bring outside points back to the boundary
d = fd(p); ix = d > 0 # find points outside (d > 0)
dpx = np.column_stack((p[ix,0] + deps,p[ix,1]))
dgradx = (fd(dpx) - d[ix])/deps
dpy = np.column_stack((p[ix,0], p[ix,1] + deps))
dgrady = (fd(dpy) - d[ix])/deps
p[ix,:] = p[ix,:] - np.column_stack((dgradx*d[ix], dgrady*d[ix]))
# termination criterium: all interior nodes move less than dptol:
if max(np.sqrt(np.sum(deltat*Ftot[d<-geps,:]**2,axis=1))/h0) < dptol:
break
final_tri = Delaunay(p) # another instantiation of the class
t = final_tri.vertices
pmid = (p[t[:,0]] + p[t[:,1]] + p[t[:,2]])/3.0
# keep the triangles whose geometrical center is inside the shape
t = t[np.where(fd(pmid) < -geps)]
bars = np.concatenate((t[:,[0,1]],t[:,[0,2]], t[:,[1,2]]))
# delete repeated bars
#bars = unique_rows(np.sort(bars))
bars = np.unique(np.sort(bars),axis=0)
# orient all the triangles counterclockwise (ccw)
t = ccw_tri(p,t)
# graphical output of the current mesh
ktrimesh(p,bars)
triqual(p,t,fh)
return p,t,bars
def boundary_bars(t):
# create the bars (edges) of every triangle
bars = np.concatenate((t[:,[0,1]],t[:,[0,2]], t[:,[1,2]]))
# sort all the bars
data = np.sort(bars)
# find the bars that are not repeated
Delaunay_bars = dict()
for row in data:
row = tuple(row)
if row in Delaunay_bars:
Delaunay_bars[row] += 1
else:
Delaunay_bars[row] = 1
# return the keys of Delaunay_bars whose value is 1 (non-repeated bars)
bbars = []
for key in Delaunay_bars:
if Delaunay_bars[key] == 1:
bbars.append(key)
bbars = np.asarray(bbars)
return bbars
def plot_shapes(xc,yc,r):
# circle for plotting
t_cir = np.linspace(0,2*pi)
x_cir = xc + r*np.cos(t_cir)
y_cir = yc + r*np.sin(t_cir)
plt.figure()
plt.plot(x_cir,y_cir)
plt.grid()
plt.title('Shapes')
plt.xlabel('x')
plt.ylabel('y')
plt.axis('equal')
#plt.show()
return
plt.close('all')
xc = 0; yc = 0; r = 1.0
x1,y1 = -1.0,-2.0
x2,y2 = 2.0,3.0
plot_shapes(xc,yc,r)
xmin = -1.5; ymin = -1.5
xmax = 1.5; ymax = 1.5
h0 = 0.4
pfix = np.zeros((0,2)) # null 2D array, no fixed points provided
fd = Circle(xc,yc,r)
fh = lambda p: np.ones(len(p))
p,t,bars = distmesh(fd,fh,h0,xmin,ymin,xmax,ymax,pfix,Iflag=4)