Integration in numpy array with positive area only - python

I want to be able to compute following integral using numpys trapz function
numpy.trapz([-1, 1]) # returns 0
But I don't want to allow negative areas. Is there an efficient way to do this or do I have to look for the minimum point and transform the array by hand?
Does numpy.trapz(numpy.abs([-1, 1])) make sense?

If you want to discard negative contributions to the integrated area we can simply grab the np.trapz source code and rewrite it:
def abstrapz(y, x=None, dx=1.0):
y = np.asanyarray(y)
if x is None:
d = dx
else:
x = np.asanyarray(x)
d = np.diff(x)
ret = (d * (y[1:] +y[:-1]) / 2.0)
return ret[ret>0].sum() #The important line
A quick test:
np.trapz([-1,0,1])
0.0
abstrapz([-1,0,1])
0.5
If you just want to avoid areas where y is less then zero simply mask 'y' values less then zero to zero:
arr = np.array([-2,-1,0.5,1,2,1,0,5,3,0])
np.trapz(arr)
10.5
arr[arr<0] = 0
np.trapz(arr)
12.5
This isn't the best way to do it, but it is a good approximation. If this is what you mean I can update this.
I had to change your example slightly as trapz([-1,1]) will always return 0 by definition. We do remove some functionality this way, if you need to do this on multidimensional arrays it is easy to add it back in.

Related

python - how to update every element in an array to increase the mean of the data

I have audio data that I normalized between -4 and 4; however, I need the "center" of the wave / data (mean?) to be centered at "1" (please see the attached figure)
How can I manipulate my list of data where the mean is translated / converted to be ~1? While still maintaining a normalization of -4 to 4
Is there an easy way to do this using numpy?
In the future it would be nice if you provided an example to tinker with. The second problem is that you don't tell us what type of function to use or what properties it should preserve. Since there clearly is no linear function that does what you want I am going with a quadratic one. But first here is my "sound" to tinker with
np.random.seed(1)
x = np.linspace(0,0.01,10**4)
y = 0.1*np.sin(50*2*np.pi*x/(0.01))+np.random.random()*np.sin(50*2*np.pi*x/(0.01))*((0.0067<x)&(x<0.007))+((0.0067<x)&(x<0.007))*0.2
y -= y.mean()
plt.plot(x,y)
It is not quite your original one but has the property that after centering it is not between -1 and 1. Since it seems more clean I will center to zero and range -1 and 1 but that should make no real difference. My plan was to pick the unique quadratic function that maps the maximum to 1, the minimum to -1 and pick a good value to send 0 to i.e. one for which the mean is zero.
import sympy
a,b,c = sympy.symbols('a, b, c')
def change_scale(arr, lamb=0):
m = arr.min()
M = arr.max()
eqns = [a*x**2+b*x+c-y for x,y in zip([m,0,M],[-1,lamb,1])]
sols = sympy.solve(eqns,[a,b,c])
d,e,f = map(np.float64, sols.values())
return d*arr**2+e*arr+f
y2 = change_scale(y)
print(y2.mean())
plt.plot(x,y2)
To me this almost looks good. The only problem is that now the mean is -0.015. Well but for that we have that lambda parameter.
A quick check shows that 0.5 would be to big and -0.5 would be to small meaning this is a perfect job for scipy.optimize.bisect.
from scipy.optimize import bisect
lamb = bisect(lambda x: change_scale(y,x).mean(),0.5,-0.5)
gives us the perfect value for lambda. The picture looks like so
Which is exactly what I expected since. The mean was slightly too small so we moved things up a bit. Now the mean is zero, the max is 1 and the min is -1.
As a final sanity check we can plot the function we actually applied to our values:

Unknown error with self-defined function for approximation of an integral

I've defined the following function as a method of approximating an integral using Boole's Rule:
def integrate_boole(f,l,r,N):
h=((r-l)/N)
xN = np.linspace(l,r,N+1)
fN = f(xN)
return ((2*h)/45)*(7*fN[0]+32*(np.sum(fN[1:-2:2]))+12*(np.sum(fN[2:-3:4]))+14*(np.sum(fN[4:-5]))+7*fN[-1])
I used the function to get the value of the integral for sin(x)dx between 0 and pi (where N=8) and assigned it to a variable sine_int.
The answer given was 1.3938101893248442
After doing the original equation (see here) out by hand I realised this answer was quite inaccurate.
The sums of fN are giving incorrect values, but I'm not sure why. For example, np.sum(fN[4:-5]) is going to 0.
Is there a better way of coding the sums involved, or is there an error in my parameters that's causing the calculations to be inaccurate?
Thanks in advance.
EDIT
I should have made it clearer that this is supposed to be a composite version of the rule, i.e. approximating over N points where N is divisible by 4. So the typical 5 points with 4 intervals isn't going to cut it here, unfortunately. I would copy the equation I'm using into here, but I don't have an image of it and LaTex isn't an option. It should/might be clear from the code I have after return.
From a quick inspection looks like the term multiplying f(x_4) should be 32, not 14:
def integrate_boole(f,l,r,N):
h=((r-l)/N)
xN = np.linspace(l,r,N+1)
fN = f(xN)
return ((2*h)/45)*(7*fN[0]+32*(np.sum(fN[1:-2:2]))+
12*(np.sum(fN[2:-3:4]))+32*(np.sum(fN[4:-5]))+7*fN[-1])
First, one of your coefficients was wrong as pointed out by #nixon. Then, I think you do not really understand how the Boole's rule works - It approximates the integral of a function only using 5 points of the function. Hence, the terms like np.sum(fN[1:-2:2]) makes no sense. You only need five points, which you can obtain with xN = np.linspace(l,r,5). Your h is simply the distance between 2 of the contiguos points h = xN[1] - xN[0]. And then, easy peasy:
import numpy as np
def integrate_boole(f,l,r):
xN = np.linspace(l,r,5)
h = xN[1] - xN[0]
fN = f(xN)
return ((2*h)/45)*(7*fN[0]+32*fN[1]+12*fN[2]+32*fN[3]+7*fN[4])
def f(x):
return np.sin(x)
I = integrate_boole(f, 0, np.pi)
print(I) # Outputs 1.99857...
I'm not sure what you're hoping your code does w.r.t. Boole's rule. Why are you summing over samples of the function (i.e. np.sum(fN[2:-3:4]))? I think your N parameter is also not well defined and I'm not sure what it's supposed to represent. Maybe you're using another rule I'm not familiar with: I'll let you decide.
Regardless, here's an implementation of Boole's rule as Wikipedia defines it. Variables map to the Wikipedia version you linked:
def integ_boole(func, left, right):
h = (right - left) / 4
x1 = left
x2 = left + h
x3 = left + 2*h
x4 = left + 3*h
x5 = right # or left + 4h
result = (2*h / 45) * (7*func(x1) + 32*func(x2) + 12*func(x3) + 32*func(x4) + 7*func(x5))
return result
then, to test:
import numpy as np
print(integ_boole(np.sin, 0, np.pi))
outputs 1.9985707318238357, which is extremely close to the correct answer of 2.
HTH.

Differentiable round function in Tensorflow?

So the output of my network is a list of propabilities, which I then round using tf.round() to be either 0 or 1, this is crucial for this project.
I then found out that tf.round isn't differentiable so I'm kinda lost there.. :/
Something along the lines of x - sin(2pi x)/(2pi)?
I'm sure there's a way to squish the slope to be a bit steeper.
You can use the fact that tf.maximum() and tf.minimum() are differentiable, and the inputs are probabilities from 0 to 1
# round numbers less than 0.5 to zero;
# by making them negative and taking the maximum with 0
differentiable_round = tf.maximum(x-0.499,0)
# scale the remaining numbers (0 to 0.5) to greater than 1
# the other half (zeros) is not affected by multiplication
differentiable_round = differentiable_round * 10000
# take the minimum with 1
differentiable_round = tf.minimum(differentiable_round, 1)
Example:
[0.1, 0.5, 0.7]
[-0.0989, 0.001, 0.20099] # x - 0.499
[0, 0.001, 0.20099] # max(x-0.499, 0)
[0, 10, 2009.9] # max(x-0.499, 0) * 10000
[0, 1.0, 1.0] # min(max(x-0.499, 0) * 10000, 1)
This works for me:
x_rounded_NOT_differentiable = tf.round(x)
x_rounded_differentiable = x - tf.stop_gradient(x - x_rounded_NOT_differentiable)
Rounding is a fundamentally nondifferentiable function, so you're out of luck there. The normal procedure for this kind of situation is to find a way to either use the probabilities, say by using them to calculate an expected value, or by taking the maximum probability that is output and choose that one as the network's prediction. If you aren't using the output for calculating your loss function though, you can go ahead and just apply it to the result and it doesn't matter if it's differentiable. Now, if you want an informative loss function for the purpose of training the network, maybe you should consider whether keeping the output in the format of probabilities might actually be to your advantage (it will likely make your training process smoother)- that way you can just convert the probabilities to actual estimates outside of the network, after training.
Building on a previous answer, a way to get an arbitrarily good approximation is to approximate round() using a finite Fourier approximation and use as many terms as you need. Fundamentally, you can think of round(x) as adding a reverse (i. e. descending) sawtooth wave to x. So, using the Fourier expansion of the sawtooth wave we get
With N = 5, we get a pretty nice approximation:
Kind of an old question, but I just solved this problem for TensorFlow 2.0. I am using the following round function on in my audio auto-encoder project. I basically want to create a discrete representation of sound which is compressed in time. I use the round function to clamp the output of the encoder to integer values. It has been working well for me so far.
#tf.custom_gradient
def round_with_gradients(x):
def grad(dy):
return dy
return tf.round(x), grad
In range 0 1, translating and scaling a sigmoid can be a solution:
slope = 1000
center = 0.5
e = tf.exp(slope*(x-center))
round_diff = e/(e+1)
In tensorflow 2.10, there is a function called soft_round which achieves exactly this.
Fortunately, for those who are using lower versions, the source code is really simple, so I just copy-pasted those lines, and it works like a charm:
def soft_round(x, alpha, eps=1e-3):
"""Differentiable approximation to `round`.
Larger alphas correspond to closer approximations of the round function.
If alpha is close to zero, this function reduces to the identity.
This is described in Sec. 4.1. in the paper
> "Universally Quantized Neural Compression"<br />
> Eirikur Agustsson & Lucas Theis<br />
> https://arxiv.org/abs/2006.09952
Args:
x: `tf.Tensor`. Inputs to the rounding function.
alpha: Float or `tf.Tensor`. Controls smoothness of the approximation.
eps: Float. Threshold below which `soft_round` will return identity.
Returns:
`tf.Tensor`
"""
# This guards the gradient of tf.where below against NaNs, while maintaining
# correctness, as for alpha < eps the result is ignored.
alpha_bounded = tf.maximum(alpha, eps)
m = tf.floor(x) + .5
r = x - m
z = tf.tanh(alpha_bounded / 2.) * 2.
y = m + tf.tanh(alpha_bounded * r) / z
# For very low alphas, soft_round behaves like identity
return tf.where(alpha < eps, x, y, name="soft_round")
alpha sets how soft the function is. Greater values leads to better approximations of round function, but then it becomes harder to fit since gradients vanish:
x = tf.convert_to_tensor(np.arange(-2,2,.1).astype(np.float32))
for alpha in [ 3., 7., 15.]:
y = soft_round(x, alpha)
plt.plot(x.numpy(), y.numpy(), label=f'alpha={alpha}')
plt.legend()
plt.title('Soft round function for different alphas')
plt.grid()
In my case, I tried different values for alpha, and 3. looks like a good choice.

Vectorizing an element-wise

Is it possible to vectorize (or otherwise speedup) an element-wise optimization with NumPy (and SciPy)?
In the most abstract sense, I have a function, y, which is parabolically shaped and could be expressed basically as y=x^2+b*x+z, where x is an array of known values, and I want to find a z that makes the minimum value of y exactly zero (said another way, I want to find a value z that makes my parabola only have one zero). For this, I've chosen to implement a simple bisection-like method. The code for this is below:
import numpy as np
def find_single_root():
x = np.arange(-5, 6,0.1) # domain
z = 1 # initial guess
delta = 1 # initial step size
tol = 0.001 # tolerance
while True:
y = x**2-5*x+z
minimum = np.nanmin(y)
# update z
print(delta)
print(z)
if minimum > 0:
if delta > 0:
delta = -1*delta/2
z += delta
else:
if delta < 0:
delta = -1*delta/2
z += delta
# check if step is smaller than tolerance
if np.abs(delta) < tol:
return z
Now lets say x(v,w), and I want to create a 2D array of z values, where each is optimized. What I have right now is below (note, the new function definition and domain are as follows)
def find_single_root(v, w):
x = np.arange(-5*v/w, 6*w,0.1) # domain
... # rest of the function
vs = np.arange(1,5)
ws = np.arange(1,5)
zs = np.zeros((len(vs),len(ws)))
for i, v in enumerate(vs):
for j, w in enumerate(ws):
zs[i][j] = find_single_root(v,w)
Right now I just have these simple nested for loops, but is there a way I can approach this differently or speed it up with NumPy vectorizing?
Vectorization may be applicable when the computations to be performed are precisely known in advance. Like "take two arrays of numbers, and multiply them pairwise".
Vectorization is not applicable when the computations adapt to the given data. Any kind of optimization algorithm is adaptive, because where you look for the minimum depends on what the function returns. If you have a bunch of functions, and need to find the minimum of each, you are going to have to minimize them one at a time, in a loop. If this process is slow, it's because it takes long to minimize a bunch of function, not because there is a for loop in the program.
Concerning your program, I would try using some of SciPy methods for both minimization and root-finding. Have a function min_of_f(z) which finds the minimum for a given value of parameter z, possibly using minimize_scalar. Then feed min_of_f to a root-finding routine. How long these will take can be controlled by their tolerance parameters (xtol and others).
OP edit:
I wanted to give credit for this as a correct answer, but still provide more information.
I ended up using numpy.vectorize to vectorize without restructuring the problem. Although numpy.vectorize is not meant for increasing performance, the performance in my specific use case was a modest factor of two faster. Applying the same approach to the original problem in the question resulted in virtually no speed up with 100x100 vectors so YMMV.
Even though I wasn't able to vectorize this problem from a speed aspect for the reasons given in the above answer, being able to use plain vector syntax instead of nested for loops all over my code was useful.

Equivalent python command for quantile in matlab

I'm trying to replicate some Matlab code in python. I could not find an exact equivalent to the Matlab function quantile. What I found most close is python's mquantiles.
Matlab example:
quantile( [ 8.60789925e-05, 1.98989354e-05 , 1.68308882e-04, 1.69379370e-04], 0.8)
...gives: 0.00016958
Same example in python:
scipy.stats.mstats.mquantiles( [8.60789925e-05, 1.98989354e-05, 1.68308882e-04, 1.69379370e-04], 0.8)
...gives 0.00016912
Does anyone know how to exactly replicate Matlab's quantile function?
The documentation for quantile (under the More About => Algorithms section) gives the exact algorithm used. Here's some python code that does it for a single quantile for a flat array, using bottleneck to do partial sorting:
import numpy as np
import botteleneck as bn
def quantile(a, prob):
"""
Estimates the prob'th quantile of the values in a data array.
Uses the algorithm of matlab's quantile(), namely:
- Remove any nan values
- Take the sorted data as the (.5/n), (1.5/n), ..., (1-.5/n) quantiles.
- Use linear interpolation for values between (.5/n) and (1 - .5/n).
- Use the minimum or maximum for quantiles outside that range.
See also: scipy.stats.mstats.mquantiles
"""
a = np.asanyarray(a)
a = a[np.logical_not(np.isnan(a))].ravel()
n = a.size
if prob >= 1 - .5/n:
return a.max()
elif prob <= .5 / n:
return a.min()
# find the two bounds we're interpreting between:
# that is, find i such that (i+.5) / n <= prob <= (i+1.5)/n
t = n * prob - .5
i = np.floor(t)
# partial sort so that the ith element is at position i, with bigger ones
# to the right and smaller to the left
a = bn.partsort(a, i)
if i == t: # did we luck out and get an integer index?
return a[i]
else:
# we'll linearly interpolate between this and the next index
smaller = a[i]
larger = a[i+1:].min()
if np.isinf(smaller):
return smaller # avoid inf - inf
return smaller + (larger - smaller) * (t - i)
I only did the single-quantile, 1d case because that's all I needed. If you want several quantiles, it's probably worth just doing the full sort; to do it per-axis and knew you didn't have any nans, all you should need to do is add an axis argument to the sort and vectorize the linear interpolation bit. Doing it per-axis with nans would be a little trickier.
This code gives:
>>> quantile([ 8.60789925e-05, 1.98989354e-05 , 1.68308882e-04, 1.69379370e-04], 0.8)
0.00016905822360000001
and the matlab code gave 0.00016905822359999999; the difference is 3e-20. (which is less than machine precision)
Your input vector only has 4 values, which is far too few to get a good approximation of the quantiles of the underlying distribution. The discrepancy is probably the result of Matlab and SciPy using different heuristics to compute quantiles on under sampled distributions.
A bit late, but:
mquantiles is very flexible. You just need to provide alphap and betap parameters.
Here, since MATLAB does a linear interpolation, you need to set the parameters to (0.5,0.5).
In [9]: scipy.stats.mstats.mquantiles( [8.60789925e-05, 1.98989354e-05, 1.68308882e-04, 1.69379370e-04], 0.8, alphap=0.5, betap=0.5)
EDIT: MATLAB says that it does linear interpolation, however it seems that it calculates the quantile through piece-wise linear interpolation, which is equivalent to Type 5 quantile in R, and (0.5, 0.5) in scipy.

Categories

Resources