Move elements out of sublists into new list - python

I have a list that holds several sublist, each one of them with a given number of elements inside. I need to move all elements inside all sublists into another list, ie: remove the separation among elements imposed by the sublists.
This is a MWE if what I mean:
a = [[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], [[17, 18, 19, 20], [21, 22, 23, 24]], [[25, 26, 27, 28], [26, 30, 31, 32], [33, 34, 35, 36]]]
b = []
for elem in a:
for item in elem:
b.append(item)
which results in:
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24], [25, 26, 27, 28], [26, 30, 31, 32], [33, 34, 35, 36]]
I'm sure there's a more elegant and simpler way to do this in python.

Use itertools.chain.from_iterable:
>>> from itertools import chain
>>> list(chain.from_iterable(a))
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24], [25, 26, 27, 28], [26, 30, 31, 32], [33, 34, 35, 36]]
Timing comparison:

Try this:
[item for sublist in a for item in sublist]

Related

Numpy. How to split 2D array to multiple arrays by grid?

I have a numpy 2D-array:
c = np.arange(36).reshape(6, 6)
[[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]]
I want to split it to multiple 2D-arrays by grid 3x3. (It's like a split big image to 9 small images by grid 3x3):
[[ 0, 1,| 2, 3,| 4, 5],
[ 6, 7,| 8, 9,| 10, 11],
---------+--------+---------
[12, 13,| 14, 15,| 16, 17],
[18, 19,| 20, 21,| 22, 23],
---------+--------+---------
[24, 25,| 26, 27,| 28, 29],
[30, 31,| 32, 33,| 34, 35]]
At final i need array with 9 2D-arrays. Like this:
[[[0, 1], [6, 7]],
[[2, 3], [8, 9]],
[[4, 5], [10, 11]],
[[12, 13], [18, 19]],
[[14, 15], [20, 21]],
[[16, 17], [22, 23]],
[[24, 25], [30, 31]],
[[26, 27], [32, 33]],
[[28, 29], [34, 35]]]
It's just a sample what i need. I want to know how to make small 2D arrays from big 2D array by grid (N,M)
You can use something like:
from numpy.lib.stride_tricks import sliding_window_view
out = np.vstack(sliding_window_view(c, (2, 2))[::2, ::2])
Output:
>>> out.tolist()
[[[0, 1], [6, 7]],
[[2, 3], [8, 9]],
[[4, 5], [10, 11]],
[[12, 13], [18, 19]],
[[14, 15], [20, 21]],
[[16, 17], [22, 23]],
[[24, 25], [30, 31]],
[[26, 27], [32, 33]],
[[28, 29], [34, 35]]]

How to find all occurrences of a non - contiguous substring in Python?

Premise:
I am currently working on the following problem:
http://rosalind.info/problems/sseq/
I must find the index combinations of all occurrences of a substring in a string, where the substring is not necessarily contiguous.
My testing parameters:
Main_String = ACGGTTAACGTGACGGTTAAGSSGSSTSSTSSASSA
Substring = GGTTAA
Non-contiguous means that an occurrence of the Substring in the Main_String may look like this:
GGSTTSAASSS where the substring is GGTTAA and the MAIN_STRING - GGSTTSAASSS.
The substring, although cut by random characters (S in our case) is still to be found in the main string. As such, a possible answer would be (format:Letter((index + 1) in Main_String)) G(1)G(2)T(4)T(5)A(7)A(8) = 1, 2, 4, 5, 7, 8. That is easy enough to get for the first match. I need to get all possible variations though, so if we use my testing parameters from above, correct answers would be:
3, 4, 5, 6, 7, 8 and 3, 12, 17, 18, 19, 20 and 3, 15, 17, 18, 19, 20 and so on up to 21, 24, 27, 30, 33, 36.
Question:
I need an algorithm that can provide me with all possible variations of a non-contiguous substring in a given string.
Issue:
This is the code I have so far, which works to an extent, but does not return all possible variations, only some of them.
dna = ''
counter = -1
dna_subseq = ''
dna_subseq_indexes = []
with open('Rosalind_dna.txt', 'r') as file:
data = file.read().split('\n')
for line in data:
if line == '':
continue
if 'Rosalind' in line and counter < 1:
counter += 1
continue
elif 'Rosalind' not in line and counter < 1:
dna += line
elif 'Rosalind' not in line and counter >= 1:
dna_subseq += line
result = 0
dna_subseq_minus_start = dna_subseq[1:]
def find_next(start_parameter, base):
result_func = dna.find(base, start_parameter)
if result_func + 1 in dna_subseq_indexes_subcombo:
if result_func + 1 == 0:
return
find_next(start_parameter + 1, base)
else:
dna_subseq_indexes_subcombo.append(result_func + 1)
return
for index, value in enumerate(dna):
global_start = index
result = 0
while result != -1:
dna_subseq_indexes_subcombo = []
if value == dna_subseq[0]:
dna_subseq_indexes_subcombo.append(index + 1)
Flag = True
for base in dna_subseq_minus_start:
if Flag:
start = global_start
Flag = False
result = dna.find(base, start)
if result + 1 in dna_subseq_indexes_subcombo:
find_next(start + 1, base)
else:
dna_subseq_indexes_subcombo.append(result + 1)
start += 1
dna_subseq_indexes.append(dna_subseq_indexes_subcombo)
global_start += 1
else:
break
final_result = []
for x in dna_subseq_indexes:
test = x.copy()
test.sort()
if test == x:
final_result.append(x)
else:
continue
print(final_result)
I'm not sure your algorithm could find all solutions even if it would be fixed. I tried this logic instead :
Find the initial sequence closest to the left of dna and search all declinations going from right to left recursively. This way the solutions are automatically sorted.
dna = 'ACGGTTAACGTGACGGTTAAGSSGSSTSSTSSASSA'
dna_len = len(dna)
dna_subseq = 'GGTTAA'
subseq_len = len(dna_subseq)
count = 0
print_mode = True # Prints the solutions, set to False to collect them instead
# Finds a single solution starting from the previous one or from a null solution
def find_one_solution(prev_solution, subseq_start, dna_start):
global dna, dna_subseq, subseq_len, count, mode
searched = dna_subseq[subseq_start]
coll = prev_solution[:subseq_start]
subseq_idx = subseq_start
for i in range(dna_start, len(dna), 1):
letter = dna[i]
if letter == searched:
coll.append(i)
subseq_idx += 1
if (subseq_idx == subseq_len): break
else: searched = dna_subseq[subseq_idx]
if len(coll) < subseq_len: return None
count += 1
if (print_mode): print(coll)
return coll
# Recursive function
def find_all_solutions(solutions, solution, subseq_start, limit):
global dna, dna_subseq, subseq_len, print_mode
for start in range(subseq_len-1, limit-1, -1):
# last element
if start == subseq_len-1:
while True:
temp = find_one_solution(solution, start, solution[-1]+1)
if temp == None: break
else: solution = temp
if (not print_mode): solutions.append(solution)
# other elements
else:
# finds the next solution
temp = find_one_solution(solution, start, solution[start]+1)
if temp == None:
continue
else:
solution = temp
if (not print_mode): solutions.append(solution)
# and restarts from end with subseq_start as the left limit
find_all_solutions(solutions, solution, subseq_len-1, start)
def main():
all_solutions = []
# Finds the initial solution
initial_solution = [0] * subseq_len
initial_solution = find_one_solution(initial_solution, 0, initial_solution[0])
if initial_solution == None:
print("No solution found")
else:
if (not print_mode): all_solutions.append(initial_solution)
# Finds all other solutions
find_all_solutions(all_solutions, initial_solution, subseq_len-1, 0)
if (not print_mode): print(all_solutions)
print("Total count:", count)
if __name__=="__main__":
main()
#289 solutions found : [[2, 3, 4, 5, 6, 7], [2, 3, 4, 5, 6, 12], [2, 3, 4, 5, 6, 18], [2, 3, 4, 5, 6, 19], [2, 3, 4, 5, 6, 32], [2, 3, 4, 5, 6, 35], [2, 3, 4, 5, 7, 12], [2, 3, 4, 5, 7, 18], [2, 3, 4, 5, 7, 19], [2, 3, 4, 5, 7, 32], [2, 3, 4, 5, 7, 35], [2, 3, 4, 5, 12, 18], [2, 3, 4, 5, 12, 19], [2, 3, 4, 5, 12, 32], [2, 3, 4, 5, 12, 35], [2, 3, 4, 5, 18, 19], [2, 3, 4, 5, 18, 32], [2, 3, 4, 5, 18, 35], [2, 3, 4, 5, 19, 32], [2, 3, 4, 5, 19, 35], [2, 3, 4, 5, 32, 35], [2, 3, 4, 10, 12, 18], [2, 3, 4, 10, 12, 19], [2, 3, 4, 10, 12, 32], [2, 3, 4, 10, 12, 35], [2, 3, 4, 10, 18, 19], [2, 3, 4, 10, 18, 32], [2, 3, 4, 10, 18, 35], [2, 3, 4, 10, 19, 32], [2, 3, 4, 10, 19, 35], [2, 3, 4, 10, 32, 35], [2, 3, 4, 16, 18, 19], [2, 3, 4, 16, 18, 32], [2, 3, 4, 16, 18, 35], [2, 3, 4, 16, 19, 32], [2, 3, 4, 16, 19, 35], [2, 3, 4, 16, 32, 35], [2, 3, 4, 17, 18, 19], [2, 3, 4, 17, 18, 32], [2, 3, 4, 17, 18, 35], [2, 3, 4, 17, 19, 32], [2, 3, 4, 17, 19, 35], [2, 3, 4, 17, 32, 35], [2, 3, 4, 26, 32, 35], [2, 3, 4, 29, 32, 35], [2, 3, 5, 10, 12, 18], [2, 3, 5, 10, 12, 19], [2, 3, 5, 10, 12, 32], [2, 3, 5, 10, 12, 35], [2, 3, 5, 10, 18, 19], [2, 3, 5, 10, 18, 32], [2, 3, 5, 10, 18, 35], [2, 3, 5, 10, 19, 32], [2, 3, 5, 10, 19, 35], [2, 3, 5, 10, 32, 35], [2, 3, 5, 16, 18, 19], [2, 3, 5, 16, 18, 32], [2, 3, 5, 16, 18, 35], [2, 3, 5, 16, 19, 32], [2, 3, 5, 16, 19, 35], [2, 3, 5, 16, 32, 35], [2, 3, 5, 17, 18, 19], [2, 3, 5, 17, 18, 32], [2, 3, 5, 17, 18, 35], [2, 3, 5, 17, 19, 32], [2, 3, 5, 17, 19, 35], [2, 3, 5, 17, 32, 35], [2, 3, 5, 26, 32, 35], [2, 3, 5, 29, 32, 35], [2, 3, 10, 16, 18, 19], [2, 3, 10, 16, 18, 32], [2, 3, 10, 16, 18, 35], [2, 3, 10, 16, 19, 32], [2, 3, 10, 16, 19, 35], [2, 3, 10, 16, 32, 35], [2, 3, 10, 17, 18, 19], [2, 3, 10, 17, 18, 32], [2, 3, 10, 17, 18, 35], [2, 3, 10, 17, 19, 32], [2, 3, 10, 17, 19, 35], [2, 3, 10, 17, 32, 35], [2, 3, 10, 26, 32, 35], [2, 3, 10, 29, 32, 35], [2, 3, 16, 17, 18, 19], [2, 3, 16, 17, 18, 32], [2, 3, 16, 17, 18, 35], [2, 3, 16, 17, 19, 32], [2, 3, 16, 17, 19, 35], [2, 3, 16, 17, 32, 35], [2, 3, 16, 26, 32, 35], [2, 3, 16, 29, 32, 35], [2, 3, 17, 26, 32, 35], [2, 3, 17, 29, 32, 35], [2, 3, 26, 29, 32, 35], [2, 9, 10, 16, 18, 19], [2, 9, 10, 16, 18, 32], [2, 9, 10, 16, 18, 35], [2, 9, 10, 16, 19, 32], [2, 9, 10, 16, 19, 35], [2, 9, 10, 16, 32, 35], [2, 9, 10, 17, 18, 19], [2, 9, 10, 17, 18, 32], [2, 9, 10, 17, 18, 35], [2, 9, 10, 17, 19, 32], [2, 9, 10, 17, 19, 35], [2, 9, 10, 17, 32, 35], [2, 9, 10, 26, 32, 35], [2, 9, 10, 29, 32, 35], [2, 9, 16, 17, 18, 19], [2, 9, 16, 17, 18, 32], [2, 9, 16, 17, 18, 35], [2, 9, 16, 17, 19, 32], [2, 9, 16, 17, 19, 35], [2, 9, 16, 17, 32, 35], [2, 9, 16, 26, 32, 35], [2, 9, 16, 29, 32, 35], [2, 9, 17, 26, 32, 35], [2, 9, 17, 29, 32, 35], [2, 9, 26, 29, 32, 35], [2, 11, 16, 17, 18, 19], [2, 11, 16, 17, 18, 32], [2, 11, 16, 17, 18, 35], [2, 11, 16, 17, 19, 32], [2, 11, 16, 17, 19, 35], [2, 11, 16, 17, 32, 35], [2, 11, 16, 26, 32, 35], [2, 11, 16, 29, 32, 35], [2, 11, 17, 26, 32, 35], [2, 11, 17, 29, 32, 35], [2, 11, 26, 29, 32, 35], [2, 14, 16, 17, 18, 19], [2, 14, 16, 17, 18, 32], [2, 14, 16, 17, 18, 35], [2, 14, 16, 17, 19, 32], [2, 14, 16, 17, 19, 35], [2, 14, 16, 17, 32, 35], [2, 14, 16, 26, 32, 35], [2, 14, 16, 29, 32, 35], [2, 14, 17, 26, 32, 35], [2, 14, 17, 29, 32, 35], [2, 14, 26, 29, 32, 35], [2, 15, 16, 17, 18, 19], [2, 15, 16, 17, 18, 32], [2, 15, 16, 17, 18, 35], [2, 15, 16, 17, 19, 32], [2, 15, 16, 17, 19, 35], [2, 15, 16, 17, 32, 35], [2, 15, 16, 26, 32, 35], [2, 15, 16, 29, 32, 35], [2, 15, 17, 26, 32, 35], [2, 15, 17, 29, 32, 35], [2, 15, 26, 29, 32, 35], [2, 20, 26, 29, 32, 35], [2, 23, 26, 29, 32, 35], [3, 9, 10, 16, 18, 19], [3, 9, 10, 16, 18, 32], [3, 9, 10, 16, 18, 35], [3, 9, 10, 16, 19, 32], [3, 9, 10, 16, 19, 35], [3, 9, 10, 16, 32, 35], [3, 9, 10, 17, 18, 19], [3, 9, 10, 17, 18, 32], [3, 9, 10, 17, 18, 35], [3, 9, 10, 17, 19, 32], [3, 9, 10, 17, 19, 35], [3, 9, 10, 17, 32, 35], [3, 9, 10, 26, 32, 35], [3, 9, 10, 29, 32, 35], [3, 9, 16, 17, 18, 19], [3, 9, 16, 17, 18, 32], [3, 9, 16, 17, 18, 35], [3, 9, 16, 17, 19, 32], [3, 9, 16, 17, 19, 35], [3, 9, 16, 17, 32, 35], [3, 9, 16, 26, 32, 35], [3, 9, 16, 29, 32, 35], [3, 9, 17, 26, 32, 35], [3, 9, 17, 29, 32, 35], [3, 9, 26, 29, 32, 35], [3, 11, 16, 17, 18, 19], [3, 11, 16, 17, 18, 32], [3, 11, 16, 17, 18, 35], [3, 11, 16, 17, 19, 32], [3, 11, 16, 17, 19, 35], [3, 11, 16, 17, 32, 35], [3, 11, 16, 26, 32, 35], [3, 11, 16, 29, 32, 35], [3, 11, 17, 26, 32, 35], [3, 11, 17, 29, 32, 35], [3, 11, 26, 29, 32, 35], [3, 14, 16, 17, 18, 19], [3, 14, 16, 17, 18, 32], [3, 14, 16, 17, 18, 35], [3, 14, 16, 17, 19, 32], [3, 14, 16, 17, 19, 35], [3, 14, 16, 17, 32, 35], [3, 14, 16, 26, 32, 35], [3, 14, 16, 29, 32, 35], [3, 14, 17, 26, 32, 35], [3, 14, 17, 29, 32, 35], [3, 14, 26, 29, 32, 35], [3, 15, 16, 17, 18, 19], [3, 15, 16, 17, 18, 32], [3, 15, 16, 17, 18, 35], [3, 15, 16, 17, 19, 32], [3, 15, 16, 17, 19, 35], [3, 15, 16, 17, 32, 35], [3, 15, 16, 26, 32, 35], [3, 15, 16, 29, 32, 35], [3, 15, 17, 26, 32, 35], [3, 15, 17, 29, 32, 35], [3, 15, 26, 29, 32, 35], [3, 20, 26, 29, 32, 35], [3, 23, 26, 29, 32, 35], [9, 11, 16, 17, 18, 19], [9, 11, 16, 17, 18, 32], [9, 11, 16, 17, 18, 35], [9, 11, 16, 17, 19, 32], [9, 11, 16, 17, 19, 35], [9, 11, 16, 17, 32, 35], [9, 11, 16, 26, 32, 35], [9, 11, 16, 29, 32, 35], [9, 11, 17, 26, 32, 35], [9, 11, 17, 29, 32, 35], [9, 11, 26, 29, 32, 35], [9, 14, 16, 17, 18, 19], [9, 14, 16, 17, 18, 32], [9, 14, 16, 17, 18, 35], [9, 14, 16, 17, 19, 32], [9, 14, 16, 17, 19, 35], [9, 14, 16, 17, 32, 35], [9, 14, 16, 26, 32, 35], [9, 14, 16, 29, 32, 35], [9, 14, 17, 26, 32, 35], [9, 14, 17, 29, 32, 35], [9, 14, 26, 29, 32, 35], [9, 15, 16, 17, 18, 19], [9, 15, 16, 17, 18, 32], [9, 15, 16, 17, 18, 35], [9, 15, 16, 17, 19, 32], [9, 15, 16, 17, 19, 35], [9, 15, 16, 17, 32, 35], [9, 15, 16, 26, 32, 35], [9, 15, 16, 29, 32, 35], [9, 15, 17, 26, 32, 35], [9, 15, 17, 29, 32, 35], [9, 15, 26, 29, 32, 35], [9, 20, 26, 29, 32, 35], [9, 23, 26, 29, 32, 35], [11, 14, 16, 17, 18, 19], [11, 14, 16, 17, 18, 32], [11, 14, 16, 17, 18, 35], [11, 14, 16, 17, 19, 32], [11, 14, 16, 17, 19, 35], [11, 14, 16, 17, 32, 35], [11, 14, 16, 26, 32, 35], [11, 14, 16, 29, 32, 35], [11, 14, 17, 26, 32, 35], [11, 14, 17, 29, 32, 35], [11, 14, 26, 29, 32, 35], [11, 15, 16, 17, 18, 19], [11, 15, 16, 17, 18, 32], [11, 15, 16, 17, 18, 35], [11, 15, 16, 17, 19, 32], [11, 15, 16, 17, 19, 35], [11, 15, 16, 17, 32, 35], [11, 15, 16, 26, 32, 35], [11, 15, 16, 29, 32, 35], [11, 15, 17, 26, 32, 35], [11, 15, 17, 29, 32, 35], [11, 15, 26, 29, 32, 35], [11, 20, 26, 29, 32, 35], [11, 23, 26, 29, 32, 35], [14, 15, 16, 17, 18, 19], [14, 15, 16, 17, 18, 32], [14, 15, 16, 17, 18, 35], [14, 15, 16, 17, 19, 32], [14, 15, 16, 17, 19, 35], [14, 15, 16, 17, 32, 35], [14, 15, 16, 26, 32, 35], [14, 15, 16, 29, 32, 35], [14, 15, 17, 26, 32, 35], [14, 15, 17, 29, 32, 35], [14, 15, 26, 29, 32, 35], [14, 20, 26, 29, 32, 35], [14, 23, 26, 29, 32, 35], [15, 20, 26, 29, 32, 35], [15, 23, 26, 29, 32, 35], [20, 23, 26, 29, 32, 35]]
To test the validity of the algorithm, I used a simpler sequence from which all the solutions are easy to find manually :
dna = 'AAAAAAAA'
dna_subseq = 'AAAA'
Note that I worked with zero based indices because it's simpler, but you could easily add 1 to all results if you need it.

Sum array elements vertically with iteration

Hi I have an array that I want to sum the elements vertically. Just wonder are there any functions can do this easily ?
a = [[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]]
I want to print the answers of 1+6+11+16+21 , 2+7+12+17, 3+8+13, 4+9, 5
As you can see, in each iteration, there is one element less.
This is one approach using zip and a simple iteration.
Ex:
a = [[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]]
print([sum(v[:-i]) if i else sum(v) for i, v in enumerate(zip(*a))])
Output:
[55, 38, 24, 13, 5]
Converting to a numpy array, and then using the following list comprehension
a = np.array(a)
[a[:5-i,i].sum() for i in range(5)]
yields the following:
[55, 38, 24, 13, 5]

Python list comprehension for three-dimensional array

I have a three dimensional array in this format:
x = [
[[1,2,3,4,5],[6,7,8,9,10]],
[[11,12,13,14,15],[16,17,18,19,20]],
[[21,22,23,24,25],[26,27,28,29,30]],
[[21,22,23,24,25]]
]
I'd like to split it into two, three dimensional arrays in this format:
y = [
[[1,2,3],[6,7,8]],
[[11,12,13],[16,17,18]],
[[21,22,23],[26,27,28]],
[[21,22,23]]
]
z = [
[[4,5],[9,10]],
[[14,15],[19,20]],
[[24,25],[29,30]],
[[24,25]]
]
I came up with this list comprehension for creating y:
[j[:3] for i in x for j in i]
Which returns this:
[[1, 2, 3], [6, 7, 8], [11, 12, 13], [16, 17, 18], [21, 22, 23], [26, 27, 28], [31, 32, 33]]
But as you'll see, it doesn't maintain the same multi-dimensional shape. Does anyone have any ideas?
You need to iterate one level deeper:
x = [[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]], [[21, 22, 23, 24, 25], [26, 27, 28, 29, 30]], [[21, 22, 23, 24, 25]]]
y = [[i[:3] for i in b] for b in x]
z = [[i[-2:] for i in b] for b in x]
Output:
[[[1, 2, 3], [6, 7, 8]], [[11, 12, 13], [16, 17, 18]], [[21, 22, 23], [26, 27, 28]], [[21, 22, 23]]]
[[[4, 5], [9, 10]], [[14, 15], [19, 20]], [[24, 25], [29, 30]], [[24, 25]]]
Move your inner most loop into a nested comprehension so that the inner lists are preserved:
y = [[j[:3] for j in i] for i in x]

Slicing multiple rows by single index

I have the following slicing problem in numpy.
a = np.arange(36).reshape(-1,4)
a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31],
[32, 33, 34, 35]])
In my problem always three rows represent one sample, in my case coordinates.
I want to access this matrix in a way that if I use a[0:2] to get the following:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]
These are the first two coordinate samples.
I have to extract a large amount of these coordinate sets from an array.
Thanks
Based on How do you split a list into evenly sized chunks?, I found the following solution, which gives me the desired result.
def chunks(l, n, indices):
return np.vstack([l[idx*n:idx*n+n] for idx in indices])
chunks(a,3,[0,2])
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[24, 25, 26, 27],
[28, 29, 30, 31],
[32, 33, 34, 35]])
Probably this solution could be improved and somebody won't need the stacking.
If three rows are a sample, you can reshape your array to reflect that, use fancy indexing to retrieve your samples, then undo the shape change:
>>> a = a.reshape(-1, 3, 4)
>>> a[[0, 2]].reshape(-1, 4)
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[24, 25, 26, 27],
[28, 29, 30, 31],
[32, 33, 34, 35]])

Categories

Resources