I have iterated over a database and created a dictionary. The key is records in field 1 and the values are the averages of in each column for their corresponding record in field 1. The questions I have is what is the best way to output my dictionary to a table?
myDict = {}
def Calculate(key, fields, dt):
results = {}
for rec in arcpy.da.SearchCursor(table, "*"):
header[names] = row[1]
if results.has_key(key):
result = results[key]
i = 0
while i < len(fields):
result[i] += rec[fields[i]]
i += 1
result[len(fields)] += 1
else:
temp = []
i = 0
while i < len(fields):
temp.append(rec[fields[i]])
i += 1
temp.append (1)
results[rec[key]] = temp
endResults = {}
for k in results:
j = 0
tempEndResults = []
while j < len(results[k]) - 1:
tempEndResults.append(results[k][j] / results[k][len(results[k])-1])
j += 1
endResults[k] = tempEndResults
i += 1
return endResults
Calculate(1, [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], myDict)
The questions I have is what is the best way
to output my dictionary to a table?
To create a CSV, you can use a nested loop to print the inner values in tabular form:
for k, seq in myDict.items():
for elem in seq:
print '%s,%s' % (k, elem)
This should give you a nice looking CSV table.
Related
https://cs50.harvard.edu/x/2020/psets/6/dna/#:~:text=python%20dna.py%20databases/large.csv%20sequences/5.txt
I'm trying to solve this problem from CS50 but it just works for the small database, when I try it for the large one the program overcounts.
import csv
if len(argv) != 3:
print("DIGITA DIREITO, IMBECIL")
exit()
with open(argv[1], "r") as source:
reader = list(csv.reader(source))
reader[0].remove("name")
i = reader[0]
with open(argv[2], "r") as sequence:
seq = sequence.read()
values = []
for j in range(len(i)):
value = 0
counter = 0
pos = 0
prevpos = 0
while pos < len(seq):
pos = seq.find(i[j], pos)
if pos == -1:
counter = 0
break
elif (pos != 1):
counter += 1
prevpos = pos
pos += len(i[j])
if value < counter:
value = counter
values.append(value)
for row in range(len(reader)):
print(reader[row])
print(values)
values = list(map(str, values))
search = list(reader)
search.pop(0)
for result in search:
if result[1:] == values:
print(f"{result[0]}")
break
elif result == search[-1]:
print("No match")
I think you are just counting the STRs repetitions in the sequence, not the maximum consecutive STR repetitions. This is what the problem asks
i am coding python in PyCharm and it is giving me this warning:
type 'list' doesn't have expected attribute 'tolist'
however I have declared my variable list, and here is my code:
...
my_list = []
big_list = []
i= 0
count = 0
while i < len(data):
if data[i][3] < 0:
i += 1
continue
my_list.append([data[i][0], data[i][1], data[i][2], data[i][3]])
if i == len(df) - 1:
count += 1
self.myfancyfunction(my_list, count)
big_list.append(my_list)
elif i < len(data) - 1 and data[i][3] != data[i + 1][3]:
count += 1
self.myfancyfunction(my_list, count)
big_list.append(my_list)
my_list = []
cluster += 1
i += 1
in the two instances of self.myfancyfunction(my_list, count), the my_list variable is underlined and shows the above error.
Could you please help to fix this?
update
here is my fancy function:
def myfancyfunction(self, array_ls, count):
dict1 = {}
dict2 = {}
array_ls = np.asarray(array_ls)
array_ls = array_ls[:, 2].astype(int)
self.info_ids.append(array_ls.tolist())
sys.stdout.flush()
with open('myfile.txt', "r") as myfile:
for line in myfile:
if int(line.split()[0]) in array_ls:
for element in line.split()[1:]:
key = element.split(":")[0]
value = float(element.split(":")[1])
if key in self.reference:
if not str(key) in dict1:
dict1[str(key)] = 1
dict2[str(key)] = value
else:
dict1[str(key)] += 1
dict2[str(key)] += value
self.info_freq.append(dict1)
self.info_vals.append(dict2)
I am inside a class and have a couple of functions.
def get_data_list(file_object,column_number):
contents = []
for string in file_object:
contents.append(tuple(string.split(',')))
list = []
for i in range(len(contents) - 1):
list.append((contents[i + 1][0], float(contents[i + 1][column_number])))
list.sort()
return list
def average_data(list_of_tuples):
dict = {'01':'January','02':'Februday','03':'March','04':'April','05':'May','06':'June','07':'July','08':'August','09':'September','10':'October','11':'November','12':'December'}
current_month = 0
total = 0
count = 1
average_data = []
for k in list_of_tuples:
for data in k:
data = str(data)
month = data[4:6]
if month == current_month:
total += k[1]
if count != 1:
count += 1
else:
current_month = month
average = float(total/count)
average_data.append((float(average),dict[data[4:6]]+data[0:4]))
total = 0
average_data = sorted(average_data)
return average_data
These are my code but when I try to run it returns an error:
KeyError:'28'or some other keyError with numbers
But I thought I already set all the numbers in dict...
And also, the data[4:6] comes from the date number, such as 20160407, 20141105.
I am grabbing a lot of data from and SQL query that takes a long time to run. Since the SQL query takes so long to run, I am grabbing the data from the database in its most granular form. I then cycle through this data once and aggregate it in the forms that are useful to me.
My problem is that I am repeating myself over and over again. However, I am not sure of the best way to refactor this control flow. Thanks in advance!
def processClickOutData(cls, raw_data):
singles = {}
total={}
absolute_total = 0
channels = {}
singles_true = {}
total_true={}
channels_true = {}
absolute_total_true = 0
list_channels = set([])
list_tids = set([])
total_position = {}
total_position_true = {}
tid_position = {}
channel_position = {}
channel_position_true = {}
tid_position_true = {}
for row in raw_data:
gap=row[0]
count=row[1]
tid=row[2]
prefered=row[3]
channel=row[4]
position=row[5]
list_channels.add(channel)
list_tids.add(tid)
absolute_total += int(count)
if total.has_key(gap):
total[gap] += count
else:
total[gap] = count
if singles.has_key(gap) and singles[gap].has_key(tid):
singles[gap][tid] += count
elif singles.has_key(gap):
singles[gap][tid] = count
else:
singles[gap] = {}
singles[gap][tid] = count
if channels.has_key(gap) and channels[gap].has_key(channel):
channels[gap][channel] += count
elif channels.has_key(gap):
channels[gap][channel] = count
else:
channels[gap] = {}
channels[gap][channel] = count
if total_position.has_key(position):
total_position[position] += count
else:
total_position[position] = count
if tid_position.has_key(position) and tid_position[position].has_key(tid):
tid_position[position][tid] += count
elif tid_position.has_key(position):
tid_position[position][tid] = count
else:
tid_position[position] = {}
tid_position[position][tid] = count
if channel_position.has_key(position) and channel_position[position].has_key(channel):
channel_position[position][channel] += count
elif channel_position.has_key(position):
channel_position[position][channel] = count
else:
channel_position[position] = {}
channel_position[position][channel] = count
if prefered == 0:
absolute_total_true += count
if total_true.has_key(gap):
total_true[gap] += count
else:
total_true[gap] = count
if singles_true.has_key(gap) and singles_true[gap].has_key(tid):
singles_true[gap][tid] += count
elif singles_true.has_key(gap):
singles_true[gap][tid] = count
else:
singles_true[gap] = {}
singles_true[gap][tid] = count
if channels_true.has_key(gap) and channels_true[gap].has_key(channel):
channels_true[gap][channel] += count
elif channels_true.has_key(gap):
channels_true[gap][channel] = count
else:
channels_true[gap] = {}
channels_true[gap][channel] = count
if total_position_true.has_key(position):
total_position_true[position] += count
else:
total_position_true[position] = count
if tid_position_true.has_key(position) and tid_position_true[position].has_key(tid):
tid_position_true[position][tid] += count
elif tid_position_true.has_key(position):
tid_position_true[position][tid] = count
else:
tid_position_true[position] = {}
tid_position_true[position][tid] = count
if channel_position_true.has_key(position) and channel_position_true[position].has_key(channel):
channel_position_true[position][channel] += count
elif channel_position_true.has_key(position):
channel_position_true[position][channel] = count
else:
channel_position_true[position] = {}
channel_position_true[position][channel] = count
final_values = {"singles" : singles, "singles_true" : singles_true, "total" : total, "total_true": total_true, "absolute_total": absolute_total, "absolute_total_true": absolute_total_true, "channel_totals" : channels, "list_channels" : list_channels, "list_tids" : list_tids, "channel_totals_true" : channels_true,
"total_position" : total_position, "total_position_true" : total_position_true, "tid_position" : tid_position, "channel_position" : channel_position, "tid_position_true" : tid_position_true, "channel_position_true" : channel_position_true }
return final_values
The entire structure you're using to store the data is probably wrong, but since I don't know how you're using it, I can't help you with that.
You can get rid of all of those has_key() calls by using collections.defaultdict. Note thedict.has_key(key) is deprecated anyway, you should just use key in thedict instead.
Look at how I change the for loop too -- you can assign to names right in the for statement, no need to do it separately.
from collections import defaultdict
def processClickOutData(cls, raw_data):
absolute_total = 0
absolute_total_true = 0
list_channels = set()
list_tids = set()
total = defaultdict(int)
total_true = defaultdict(int)
total_position = defaultdict(int)
total_position_true = defaultdict(int)
def defaultdict_int():
return defaultdict(int)
singles = defaultdict(defaultdict_int)
singles_true = defaultdict(defaultdict_int)
channels = defaultdict(defaultdict_int)
channels_true = defaultdict(defaultdict_int)
tid_position = defaultdict(defaultdict_int)
tid_position_true = defaultdict(defaultdict_int)
channel_position = defaultdict(defaultdict_int)
channel_position_true = defaultdict(defaultdict_int)
for gap, count, prefered, channel, position in raw_data:
list_channels.add(channel)
list_tids.add(tid)
absolute_total += count
total[gap] += count
singles[gap][tid] += count
channels[gap][channel] += count
total_position[position] += count
tid_position[position][tid] += count
channel_position[position][channel] += count
if prefered == 0:
absolute_total_true += count
total_true[gap] += count
singles_true[gap][tid] += count
channels_true[gap][channel] += count
total_position_true[position] += count
tid_position_true[position][tid] += count
channel_position_true[position][channel] += count
final_values = {"singles" : singles, "singles_true" : singles_true, "total" : total, "total_true": total_true, "absolute_total": absolute_total, "absolute_total_true": absolute_total_true, "channel_totals" : channels, "list_channels" : list_channels, "list_tids" : list_tids, "channel_totals_true" : channels_true,
"total_position" : total_position, "total_position_true" : total_position_true, "tid_position" : tid_position, "channel_position" : channel_position, "tid_position_true" : tid_position_true, "channel_position_true" : channel_position_true }
return final_values
What this does is automatically fill in the correct default values if the keys don't exist. You've got two kinds here. Where you're adding ints, you want to start with 0 if it doesn't exist -- that's what int returns, hence defaultdict(int). Where you're adding a dictionary that adds ints, you need to use a function that returns a defaultdict(int) which is what defaultdict_int does.
Edit: Suggested alternate dictionary structure:
position = defaultdict(lambda: defaultdict(defaultdict_int))
gap = defaultdict(lambda: defaultdict(defaultdict_int))
absolute_total = 0
for gap, count, prefered, channel, position in raw_data:
absolute_total += count
posd = position[position]
posd.setdefault('total', 0)
posd['total'] += count
posd['tid'][tid] += count
posd['channel'][channel] += count
gapd = gap[gap]
gapd.setdefault('total', 0)
gapd['total'] += count
gapd['tid'][tid] += count
gapd['channel'][channel] += count
Do the same with the _true versions as well, and you've gone from 12 dicts to 4.
I've been playing around with the Boyer-Moore sting search algorithm and starting with a base code set from Shriphani Palakodety I created 2 additional versions (v2 and v3) - each making some modifications such as removing len() function from the loop and than refactoring the while/if conditions. From v1 to v2 I see about a 10%-15% improvement and from v1 to v3 a 25%-30% improvement (significant).
My question is: does anyone have any additional mods that would improve performance even more (if you can submit as a v4) - keeping the base 'algorithm' true to Boyer-Moore.
#!/usr/bin/env python
import time
bcs = {} #the table
def goodSuffixShift(key):
for i in range(len(key)-1, -1, -1):
if key[i] not in bcs.keys():
bcs[key[i]] = len(key)-i-1
#---------------------- v1 ----------------------
def searchv1(text, key):
"""base from Shriphani Palakodety fixed for single char"""
i = len(key)-1
index = len(key) -1
j = i
while True:
if i < 0:
return j + 1
elif j > len(text):
return "not found"
elif text[j] != key[i] and text[j] not in bcs.keys():
j += len(key)
i = index
elif text[j] != key[i] and text[j] in bcs.keys():
j += bcs[text[j]]
i = index
else:
j -= 1
i -= 1
#---------------------- v2 ----------------------
def searchv2(text, key):
"""removed string len functions from loop"""
len_text = len(text)
len_key = len(key)
i = len_key-1
index = len_key -1
j = i
while True:
if i < 0:
return j + 1
elif j > len_text:
return "not found"
elif text[j] != key[i] and text[j] not in bcs.keys():
j += len_key
i = index
elif text[j] != key[i] and text[j] in bcs.keys():
j += bcs[text[j]]
i = index
else:
j -= 1
i -= 1
#---------------------- v3 ----------------------
def searchv3(text, key):
"""from v2 plus modified 3rd if condition
breaking down the comparison for efficiency,
modified the while loop to include the first
if condition (opposite of it)
"""
len_text = len(text)
len_key = len(key)
i = len_key-1
index = len_key -1
j = i
while i >= 0 and j <= len_text:
if text[j] != key[i]:
if text[j] not in bcs.keys():
j += len_key
i = index
else:
j += bcs[text[j]]
i = index
else:
j -= 1
i -= 1
if j > len_text:
return "not found"
else:
return j + 1
key_list = ["POWER", "HOUSE", "COMP", "SCIENCE", "SHRIPHANI", "BRUAH", "A", "H"]
text = "SHRIPHANI IS A COMPUTER SCIENCE POWERHOUSE"
t1 = time.clock()
for key in key_list:
goodSuffixShift(key)
#print searchv1(text, key)
searchv1(text, key)
bcs = {}
t2 = time.clock()
print('v1 took %0.5f ms' % ((t2-t1)*1000.0))
t1 = time.clock()
for key in key_list:
goodSuffixShift(key)
#print searchv2(text, key)
searchv2(text, key)
bcs = {}
t2 = time.clock()
print('v2 took %0.5f ms' % ((t2-t1)*1000.0))
t1 = time.clock()
for key in key_list:
goodSuffixShift(key)
#print searchv3(text, key)
searchv3(text, key)
bcs = {}
t2 = time.clock()
print('v3 took %0.5f ms' % ((t2-t1)*1000.0))
Using "in bcs.keys()" is creating a list and then doing an O(N) search of the list -- just use "in bcs".
Do the goodSuffixShift(key) thing inside the search function. Two benefits: the caller has only one API to use, and you avoid having bcs as a global (horrid ** 2).
Your indentation is incorrect in several places.
Update
This is not the Boyer-Moore algorithm (which uses TWO lookup tables). It looks more like the Boyer-Moore-Horspool algorithm, which uses only the first BM table.
A probable speedup: add the line 'bcsget = bcs.get' after setting up the bcs dict. Then replace:
if text[j] != key[i]:
if text[j] not in bcs.keys():
j += len_key
i = index
else:
j += bcs[text[j]]
i = index
with:
if text[j] != key[i]:
j += bcsget(text[j], len_key)
i = index
Update 2 -- back to basics, like getting the code correct before you optimise
Version 1 has some bugs which you have carried forward into versions 2 and 3. Some suggestions:
Change the not-found response from "not found" to -1. This makes it compatible with text.find(key), which you can use to check your results.
Get some more text values e.g. "R" * 20, "X" * 20, and "XXXSCIENCEYYY" for use with your existing key values.
Lash up a test harness, something like this:
func_list = [searchv1, searchv2, searchv3]
def test():
for text in text_list:
print '==== text is', repr(text)
for func in func_list:
for key in key_list:
try:
result = func(text, key)
except Exception, e:
print "EXCEPTION: %r expected:%d func:%s key:%r" % (e, expected, func.__name__, key)
continue
expected = text.find(key)
if result != expected:
print "ERROR actual:%d expected:%d func:%s key:%r" % (result, expected, func.__name__, key)
Run that, fix the errors in v1, carry those fixes forward, run the tests again until they're all OK. Then you can tidy up your timing harness along the same lines, and see what the performance is. Then you can report back here, and I'll give you my idea of what a searchv4 function should look like ;-)