I need to execute a pool of many parallel database connections and queries. I would like to use a multiprocessing.Pool or concurrent.futures ProcessPoolExecutor. Python 2.7.5
In some cases, query requests take too long or will never finish (hung/zombie process). I would like to kill the specific process from the multiprocessing.Pool or concurrent.futures ProcessPoolExecutor that has timed out.
Here is an example of how to kill/re-spawn the entire process pool, but ideally I would minimize that CPU thrashing since I only want to kill a specific long running process that has not returned data after timeout seconds.
For some reason the code below does not seem to be able to terminate/join the process Pool after all results are returned and completed. It may have to do with killing worker processes when a timeout occurs, however the Pool creates new workers when they are killed and results are as expected.
from multiprocessing import Pool
import time
import numpy as np
from threading import Timer
import thread, time, sys
def f(x):
time.sleep(x)
return x
if __name__ == '__main__':
pool = Pool(processes=4, maxtasksperchild=4)
results = [(x, pool.apply_async(f, (x,))) for x in np.random.randint(10, size=10).tolist()]
while results:
try:
x, result = results.pop(0)
start = time.time()
print result.get(timeout=5), '%d done in %f Seconds!' % (x, time.time()-start)
except Exception as e:
print str(e)
print '%d Timeout Exception! in %f' % (x, time.time()-start)
for p in pool._pool:
if p.exitcode is None:
p.terminate()
pool.terminate()
pool.join()
I am not fully understanding your question. You say you want to stop one specific process, but then, in your exception handling phase, you are calling terminate on all jobs. Not sure why you are doing that. Also, I am pretty sure using internal variables from multiprocessing.Pool is not quite safe. Having said all of that, I think your question is why this program does not finish when a time out happens. If that is the problem, then the following does the trick:
from multiprocessing import Pool
import time
import numpy as np
from threading import Timer
import thread, time, sys
def f(x):
time.sleep(x)
return x
if __name__ == '__main__':
pool = Pool(processes=4, maxtasksperchild=4)
results = [(x, pool.apply_async(f, (x,))) for x in np.random.randint(10, size=10).tolist()]
result = None
start = time.time()
while results:
try:
x, result = results.pop(0)
print result.get(timeout=5), '%d done in %f Seconds!' % (x, time.time()-start)
except Exception as e:
print str(e)
print '%d Timeout Exception! in %f' % (x, time.time()-start)
for i in reversed(range(len(pool._pool))):
p = pool._pool[i]
if p.exitcode is None:
p.terminate()
del pool._pool[i]
pool.terminate()
pool.join()
The point is you need to remove items from the pool; just calling terminate on them is not enough.
In your solution you're tampering internal variables of the pool itself. The pool is relying on 3 different threads in order to correctly operate, it is not safe to intervene in their internal variables without being really aware of what you're doing.
There's not a clean way to stop timing out processes in the standard Python Pools, but there are alternative implementations which expose such feature.
You can take a look at the following libraries:
pebble
billiard
To avoid access to the internal variables you can save multiprocessing.current_process().pid from the executing task into the shared memory. Then iterate over the multiprocessing.active_children() from the main process and kill the target pid if exists.
However, after such external termination of the workers, they are recreated, but the pool becomes nonjoinable and also requires explicit termination before the join()
I also came across this problem.
The original code and the edited version by #stacksia has the same issue:
in both cases it will kill all currently running processes when timeout is reached for just one of the processes (ie when the loop over pool._pool is done).
Find below my solution. It involves creating a .pid file for each worker process as suggested by #luart. It will work if there is a way to tag each worker process (in the code below, x does this job).
If someone has a more elegant solution (such as saving PID in memory) please share it.
#!/usr/bin/env python
from multiprocessing import Pool
import time, os
import subprocess
def f(x):
PID = os.getpid()
print 'Started:', x, 'PID=', PID
pidfile = "/tmp/PoolWorker_"+str(x)+".pid"
if os.path.isfile(pidfile):
print "%s already exists, exiting" % pidfile
sys.exit()
file(pidfile, 'w').write(str(PID))
# Do the work here
time.sleep(x*x)
# Delete the PID file
os.remove(pidfile)
return x*x
if __name__ == '__main__':
pool = Pool(processes=3, maxtasksperchild=4)
results = [(x, pool.apply_async(f, (x,))) for x in [1,2,3,4,5,6]]
pool.close()
while results:
print results
try:
x, result = results.pop(0)
start = time.time()
print result.get(timeout=3), '%d done in %f Seconds!' % (x, time.time()-start)
except Exception as e:
print str(e)
print '%d Timeout Exception! in %f' % (x, time.time()-start)
# We know which process gave us an exception: it is "x", so let's kill it!
# First, let's get the PID of that process:
pidfile = '/tmp/PoolWorker_'+str(x)+'.pid'
PID = None
if os.path.isfile(pidfile):
PID = str(open(pidfile).read())
print x, 'pidfile=',pidfile, 'PID=', PID
# Now, let's check if there is indeed such process runing:
for p in pool._pool:
print p, p.pid
if str(p.pid)==PID:
print 'Found it still running!', p, p.pid, p.is_alive(), p.exitcode
# We can also double-check how long it's been running with system 'ps' command:"
tt = str(subprocess.check_output('ps -p "'+str(p.pid)+'" o etimes=', shell=True)).strip()
print 'Run time from OS (may be way off the real time..) = ', tt
# Now, KILL the m*$#r:
p.terminate()
pool._pool.remove(p)
pool._repopulate_pool()
# Let's not forget to remove the pidfile
os.remove(pidfile)
break
pool.terminate()
pool.join()
Many people suggest pebble. It looks nice, but only available for Python 3. If someone has a way to get pebble imported for python 2.6 - would be great.
Related
I've written the following code which runs a function that simulates a stochastic simulation of a series of chemical reactions. I've written the following code:
v = range(1, 51)
def parallelfunc(*v):
gillespie_tau_leaping(start_state, LHS, stoch_rate, state_change_array)
def info(title):
print(title)
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid())
if __name__ == '__main__':
info('main line')
start = datetime.utcnow()
p = Process(target=parallelfunc, args=(v))
p.start()
p.join()
end = datetime.utcnow()
sim_time = end - start
print(f"Simualtion utc time:\n{sim_time}")
I'm using the Process method from the multiprocessing library and am trying to run gillespie_tau_leaping 50 times.
Only I'm not sure if its working. gillespie_tau_leaping prints out a number of values to the terminal, but these values are only printed out once, I'd expect them to be printed out 50 times.
I tried using the getpid etc command and this returns the following to the terminal:
main line
module name: __main__
parent process: 6188
process id: 27920
How can I tell if my code as worked and how can I get it to print the values from gillepsie_tau_leaping 50 times to the terminal?
Cheers
Your code is running just one process, the call to Process, spawns a new thread but you are doing it only once (not in a loop).
I would suggest you to use multiprocessing pools
Your code can be something like this:
from multiprocess import Pool
def parallelfunc(*args):
do_something()
def main():
# create a list of list of args for the function invocation
func_args = [['arg1call1', 'arg2call1', 'arg3call1'], ['arg1call2', 'arg2call2', 'arg3call2']]
with Pool() as p:
results = p.map(parallelfunc, func_args)
# do something with results which is a list of results
multiprocessing pool by default create the same number of processes as your CPU cores and manage the process Pool till the end of the processing taking care of all the Inter Process Communication.
This is really handy because synchronizing processes can be hard.
Hope this helps
I have long running process, that I want to keep track about in which state it currently is in. There is N processes running in same time therefore multiprocessing issue.
I pass Queue into process to report messages about state, and this Queue is then read(if not empty) in thread every couple of second.
I'm using Spider on windows as environment and later described behavior is in its console. I did not try it in different env.
from multiprocessing import Process,Queue,Lock
import time
def test(process_msg: Queue):
try:
process_msg.put('Inside process message')
# process...
return # to have exitstate = 0
except Exception as e:
process_msg.put(e)
callback_msg = Queue()
if __name__ == '__main__':
p = Process(target = test,
args = (callback_msg,))
p.start()
time.sleep(5)
print(p)
while not callback_msg.empty():
msg = callback_msg.get()
if type(msg) != Exception:
tqdm.write(str(msg))
else:
raise msg
Problem is that whatever I do with code, it never reads what is inside the Queue(also because it never puts anything in it). Only when I switch to dummy version, which runs similary to threading on only 1 CPU from multiprocessing.dummy import Process,Queue,Lock
Apparently the test function have to be in separate file.
Python concurrent.futures and ProcessPoolExecutor provide a neat interface to schedule and monitor tasks. Futures even provide a .cancel() method:
cancel(): Attempt to cancel the call. If the call is currently being executed and cannot be cancelled then the method will return False, otherwise the call will be cancelled and the method will return True.
Unfortunately in a simmilar question (concerning asyncio) the answer claims running tasks are uncancelable using this snipped of the documentation, but the docs dont say that, only if they are running AND uncancelable.
Submitting multiprocessing.Events to the processes is also not trivially possible (doing so via parameters as in multiprocess.Process returns a RuntimeError)
What am I trying to do? I would like to partition a search space and run a task for every partition. But it is enough to have ONE solution and the process is CPU intensive. So is there an actual comfortable way to accomplish this that does not offset the gains by using ProcessPool to begin with?
Example:
from concurrent.futures import ProcessPoolExecutor, FIRST_COMPLETED, wait
# function that profits from partitioned search space
def m_run(partition):
for elem in partition:
if elem == 135135515:
return elem
return False
futures = []
# used to create the partitions
steps = 100000000
with ProcessPoolExecutor(max_workers=4) as pool:
for i in range(4):
# run 4 tasks with a partition, but only *one* solution is needed
partition = range(i*steps,(i+1)*steps)
futures.append(pool.submit(m_run, partition))
done, not_done = wait(futures, return_when=FIRST_COMPLETED)
for d in done:
print(d.result())
print("---")
for d in not_done:
# will return false for Cancel and Result for all futures
print("Cancel: "+str(d.cancel()))
print("Result: "+str(d.result()))
I don't know why concurrent.futures.Future does not have a .kill() method, but you can accomplish what you want by shutting down the process pool with pool.shutdown(wait=False), and killing the remaining child processes by hand.
Create a function for killing child processes:
import signal, psutil
def kill_child_processes(parent_pid, sig=signal.SIGTERM):
try:
parent = psutil.Process(parent_pid)
except psutil.NoSuchProcess:
return
children = parent.children(recursive=True)
for process in children:
process.send_signal(sig)
Run your code until you get the first result, then kill all remaining child processes:
from concurrent.futures import ProcessPoolExecutor, FIRST_COMPLETED, wait
# function that profits from partitioned search space
def m_run(partition):
for elem in partition:
if elem == 135135515:
return elem
return False
futures = []
# used to create the partitions
steps = 100000000
pool = ProcessPoolExecutor(max_workers=4)
for i in range(4):
# run 4 tasks with a partition, but only *one* solution is needed
partition = range(i*steps,(i+1)*steps)
futures.append(pool.submit(m_run, partition))
done, not_done = wait(futures, timeout=3600, return_when=FIRST_COMPLETED)
# Shut down pool
pool.shutdown(wait=False)
# Kill remaining child processes
kill_child_processes(os.getpid())
Unfortunately, running Futures cannot be cancelled. I believe the core reason is to ensure the same API over different implementations (it's not possible to interrupt running threads or coroutines).
The Pebble library was designed to overcome this and other limitations.
from pebble import ProcessPool
def function(foo, bar=0):
return foo + bar
with ProcessPool() as pool:
future = pool.schedule(function, args=[1])
# if running, the container process will be terminated
# a new process will be started consuming the next task
future.cancel()
I found your question interesting so here's my finding.
I found the behaviour of .cancel() method is as stated in python documentation. As for your running concurrent functions, unfortunately they could not be cancelled even after they were told to do so. If my finding is correct, then I reason that Python does require a more effective .cancel() method.
Run the code below to check my finding.
from concurrent.futures import ProcessPoolExecutor, as_completed
from time import time
# function that profits from partitioned search space
def m_run(partition):
for elem in partition:
if elem == 3351355150:
return elem
break #Added to terminate loop once found
return False
start = time()
futures = []
# used to create the partitions
steps = 1000000000
with ProcessPoolExecutor(max_workers=4) as pool:
for i in range(4):
# run 4 tasks with a partition, but only *one* solution is needed
partition = range(i*steps,(i+1)*steps)
futures.append(pool.submit(m_run, partition))
### New Code: Start ###
for f in as_completed(futures):
print(f.result())
if f.result():
print('break')
break
for f in futures:
print(f, 'running?',f.running())
if f.running():
f.cancel()
print('Cancelled? ',f.cancelled())
print('New Instruction Ended at = ', time()-start )
print('Total Compute Time = ', time()-start )
Update:
It is possible to forcefully terminate the concurrent processes via bash, but the consequence is that the main python program will terminate too. If this isn't an issue with you, then try the below code.
You have to add the below codes between the last 2 print statements to see this for yourself. Note: This code works only if you aren't running any other python3 program.
import subprocess, os, signal
result = subprocess.run(['ps', '-C', 'python3', '-o', 'pid='],
stdout=subprocess.PIPE).stdout.decode('utf-8').split()
print ('result =', result)
for i in result:
print('PID = ', i)
if i != result[0]:
os.kill(int(i), signal.SIGKILL)
try:
os.kill(int(i), 0)
raise Exception("""wasn't able to kill the process
HINT:use signal.SIGKILL or signal.SIGABORT""")
except OSError as ex:
continue
I need to terminate some processes after a while, so I've used sleeping another process for the waiting. But the new process doesn't have access to global variables from the main process I guess. How could I solve it please?
Code:
import os
from subprocess import Popen, PIPE
import time
import multiprocessing
log_file = open('stdout.log', 'a')
log_file.flush()
err_file = open('stderr.log', 'a')
err_file.flush()
processes = []
def processing():
print "processing"
global processes
global log_file
global err_file
for i in range(0, 5):
p = Popen(['java', '-jar', 'C:\\Users\\two\\Documents\\test.jar'], stdout=log_file, stderr=err_file) # something long running
processes.append(p)
print len(processes) # returns 5
def waiting_service():
name = multiprocessing.current_process().name
print name, 'Starting'
global processes
print len(processes) # returns 0
time.sleep(2)
for i in range(0, 5):
processes[i].terminate()
print name, 'Exiting'
if __name__ == '__main__':
processing()
service = multiprocessing.Process(name='waiting_service', target=waiting_service)
service.start()
You should be using synchronization primitives.
Possibly you want to set an Event that's triggered after a while by the main (parent) process.
You may also want to wait for the processes to actually complete and join them (like you would a thread).
If you have many similar tasks, you can use a processing pool like multiprocessing.Pool.
Here is a small example of how it's done:
import multiprocessing
import time
kill_event = multiprocessing.Event()
def work(_id):
while not kill_event.is_set():
print "%d is doing stuff" % _id
time.sleep(1)
print "%d quit" % _id
def spawn_processes():
processes = []
# spawn 10 processes
for i in xrange(10):
# spawn process
process = multiprocessing.Process(target=work, args=(i,))
processes.append(process)
process.start()
time.sleep(1)
# kill all processes by setting the kill event
kill_event.set()
# wait for all processes to complete
for process in processes:
process.join()
print "done!"
spawn_processes()
The whole problem was in Windows' Python. Python for Windows is blocking global variables to be seen in functions. I've switched to linux and my script works OK.
Special thanks to #rchang for his comment:
When I tested it, in both cases the print statement came up with 5. Perhaps we have a version mismatch in some way? I tested it with Python 2.7.6 on Linux kernel 3.13.0 (Mint distribution).
I'm trying to complete 100 model runs on my 8-processor 64-bit Windows 7 machine. I'd like to run 7 instances of the model concurrently to decrease my total run time (approx. 9.5 min per model run). I've looked at several threads pertaining to the Multiprocessing module of Python, but am still missing something.
Using the multiprocessing module
How to spawn parallel child processes on a multi-processor system?
Python Multiprocessing queue
My Process:
I have 100 different parameter sets I'd like to run through SEAWAT/MODFLOW to compare the results. I have pre-built the model input files for each model run and stored them in their own directories. What I'd like to be able to do is have 7 models running at a time until all realizations have been completed. There needn't be communication between processes or display of results. So far I have only been able to spawn the models sequentially:
import os,subprocess
import multiprocessing as mp
ws = r'D:\Data\Users\jbellino\Project\stJohnsDeepening\model\xsec_a'
files = []
for f in os.listdir(ws + r'\fieldgen\reals'):
if f.endswith('.npy'):
files.append(f)
## def work(cmd):
## return subprocess.call(cmd, shell=False)
def run(f,def_param=ws):
real = f.split('_')[2].split('.')[0]
print 'Realization %s' % real
mf2k = r'c:\modflow\mf2k.1_19\bin\mf2k.exe '
mf2k5 = r'c:\modflow\MF2005_1_8\bin\mf2005.exe '
seawatV4 = r'c:\modflow\swt_v4_00_04\exe\swt_v4.exe '
seawatV4x64 = r'c:\modflow\swt_v4_00_04\exe\swt_v4x64.exe '
exe = seawatV4x64
swt_nam = ws + r'\reals\real%s\ss\ss.nam_swt' % real
os.system( exe + swt_nam )
if __name__ == '__main__':
p = mp.Pool(processes=mp.cpu_count()-1) #-leave 1 processor available for system and other processes
tasks = range(len(files))
results = []
for f in files:
r = p.map_async(run(f), tasks, callback=results.append)
I changed the if __name__ == 'main': to the following in hopes it would fix the lack of parallelism I feel is being imparted on the above script by the for loop. However, the model fails to even run (no Python error):
if __name__ == '__main__':
p = mp.Pool(processes=mp.cpu_count()-1) #-leave 1 processor available for system and other processes
p.map_async(run,((files[f],) for f in range(len(files))))
Any and all help is greatly appreciated!
EDIT 3/26/2012 13:31 EST
Using the "Manual Pool" method in #J.F. Sebastian's answer below I get parallel execution of my external .exe. Model realizations are called up in batches of 8 at a time, but it doesn't wait for those 8 runs to complete before calling up the next batch and so on:
from __future__ import print_function
import os,subprocess,sys
import multiprocessing as mp
from Queue import Queue
from threading import Thread
def run(f,ws):
real = f.split('_')[-1].split('.')[0]
print('Realization %s' % real)
seawatV4x64 = r'c:\modflow\swt_v4_00_04\exe\swt_v4x64.exe '
swt_nam = ws + r'\reals\real%s\ss\ss.nam_swt' % real
subprocess.check_call([seawatV4x64, swt_nam])
def worker(queue):
"""Process files from the queue."""
for args in iter(queue.get, None):
try:
run(*args)
except Exception as e: # catch exceptions to avoid exiting the
# thread prematurely
print('%r failed: %s' % (args, e,), file=sys.stderr)
def main():
# populate files
ws = r'D:\Data\Users\jbellino\Project\stJohnsDeepening\model\xsec_a'
wdir = os.path.join(ws, r'fieldgen\reals')
q = Queue()
for f in os.listdir(wdir):
if f.endswith('.npy'):
q.put_nowait((os.path.join(wdir, f), ws))
# start threads
threads = [Thread(target=worker, args=(q,)) for _ in range(8)]
for t in threads:
t.daemon = True # threads die if the program dies
t.start()
for _ in threads: q.put_nowait(None) # signal no more files
for t in threads: t.join() # wait for completion
if __name__ == '__main__':
mp.freeze_support() # optional if the program is not frozen
main()
No error traceback is available. The run() function performs its duty when called upon a single model realization file as with mutiple files. The only difference is that with multiple files, it is called len(files) times though each of the instances immediately closes and only one model run is allowed to finish at which time the script exits gracefully (exit code 0).
Adding some print statements to main() reveals some information about active thread-counts as well as thread status (note that this is a test on only 8 of the realization files to make the screenshot more manageable, theoretically all 8 files should be run concurrently, however the behavior continues where they are spawn and immediately die except one):
def main():
# populate files
ws = r'D:\Data\Users\jbellino\Project\stJohnsDeepening\model\xsec_a'
wdir = os.path.join(ws, r'fieldgen\test')
q = Queue()
for f in os.listdir(wdir):
if f.endswith('.npy'):
q.put_nowait((os.path.join(wdir, f), ws))
# start threads
threads = [Thread(target=worker, args=(q,)) for _ in range(mp.cpu_count())]
for t in threads:
t.daemon = True # threads die if the program dies
t.start()
print('Active Count a',threading.activeCount())
for _ in threads:
print(_)
q.put_nowait(None) # signal no more files
for t in threads:
print(t)
t.join() # wait for completion
print('Active Count b',threading.activeCount())
**The line which reads "D:\\Data\\Users..." is the error information thrown when I manually stop the model from running to completion. Once I stop the model running, the remaining thread status lines get reported and the script exits.
EDIT 3/26/2012 16:24 EST
SEAWAT does allow concurrent execution as I've done this in the past, spawning instances manually using iPython and launching from each model file folder. This time around, I'm launching all model runs from a single location, namely the directory where my script resides. It looks like the culprit may be in the way SEAWAT is saving some of the output. When SEAWAT is run, it immediately creates files pertaining to the model run. One of these files is not being saved to the directory in which the model realization is located, but in the top directory where the script is located. This is preventing any subsequent threads from saving the same file name in the same location (which they all want to do since these filenames are generic and non-specific to each realization). The SEAWAT windows were not staying open long enough for me to read or even see that there was an error message, I only realized this when I went back and tried to run the code using iPython which directly displays the printout from SEAWAT instead of opening a new window to run the program.
I am accepting #J.F. Sebastian's answer as it is likely that once I resolve this model-executable issue, the threading code he has provided will get me where I need to be.
FINAL CODE
Added cwd argument in subprocess.check_call to start each instance of SEAWAT in its own directory. Very key.
from __future__ import print_function
import os,subprocess,sys
import multiprocessing as mp
from Queue import Queue
from threading import Thread
import threading
def run(f,ws):
real = f.split('_')[-1].split('.')[0]
print('Realization %s' % real)
seawatV4x64 = r'c:\modflow\swt_v4_00_04\exe\swt_v4x64.exe '
cwd = ws + r'\reals\real%s\ss' % real
swt_nam = ws + r'\reals\real%s\ss\ss.nam_swt' % real
subprocess.check_call([seawatV4x64, swt_nam],cwd=cwd)
def worker(queue):
"""Process files from the queue."""
for args in iter(queue.get, None):
try:
run(*args)
except Exception as e: # catch exceptions to avoid exiting the
# thread prematurely
print('%r failed: %s' % (args, e,), file=sys.stderr)
def main():
# populate files
ws = r'D:\Data\Users\jbellino\Project\stJohnsDeepening\model\xsec_a'
wdir = os.path.join(ws, r'fieldgen\reals')
q = Queue()
for f in os.listdir(wdir):
if f.endswith('.npy'):
q.put_nowait((os.path.join(wdir, f), ws))
# start threads
threads = [Thread(target=worker, args=(q,)) for _ in range(mp.cpu_count()-1)]
for t in threads:
t.daemon = True # threads die if the program dies
t.start()
for _ in threads: q.put_nowait(None) # signal no more files
for t in threads: t.join() # wait for completion
if __name__ == '__main__':
mp.freeze_support() # optional if the program is not frozen
main()
I don't see any computations in the Python code. If you just need to execute several external programs in parallel it is sufficient to use subprocess to run the programs and threading module to maintain constant number of processes running, but the simplest code is using multiprocessing.Pool:
#!/usr/bin/env python
import os
import multiprocessing as mp
def run(filename_def_param):
filename, def_param = filename_def_param # unpack arguments
... # call external program on `filename`
def safe_run(*args, **kwargs):
"""Call run(), catch exceptions."""
try: run(*args, **kwargs)
except Exception as e:
print("error: %s run(*%r, **%r)" % (e, args, kwargs))
def main():
# populate files
ws = r'D:\Data\Users\jbellino\Project\stJohnsDeepening\model\xsec_a'
workdir = os.path.join(ws, r'fieldgen\reals')
files = ((os.path.join(workdir, f), ws)
for f in os.listdir(workdir) if f.endswith('.npy'))
# start processes
pool = mp.Pool() # use all available CPUs
pool.map(safe_run, files)
if __name__=="__main__":
mp.freeze_support() # optional if the program is not frozen
main()
If there are many files then pool.map() could be replaced by for _ in pool.imap_unordered(safe_run, files): pass.
There is also mutiprocessing.dummy.Pool that provides the same interface as multiprocessing.Pool but uses threads instead of processes that might be more appropriate in this case.
You don't need to keep some CPUs free. Just use a command that starts your executables with a low priority (on Linux it is a nice program).
ThreadPoolExecutor example
concurrent.futures.ThreadPoolExecutor would be both simple and sufficient but it requires 3rd-party dependency on Python 2.x (it is in the stdlib since Python 3.2).
#!/usr/bin/env python
import os
import concurrent.futures
def run(filename, def_param):
... # call external program on `filename`
# populate files
ws = r'D:\Data\Users\jbellino\Project\stJohnsDeepening\model\xsec_a'
wdir = os.path.join(ws, r'fieldgen\reals')
files = (os.path.join(wdir, f) for f in os.listdir(wdir) if f.endswith('.npy'))
# start threads
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
future_to_file = dict((executor.submit(run, f, ws), f) for f in files)
for future in concurrent.futures.as_completed(future_to_file):
f = future_to_file[future]
if future.exception() is not None:
print('%r generated an exception: %s' % (f, future.exception()))
# run() doesn't return anything so `future.result()` is always `None`
Or if we ignore exceptions raised by run():
from itertools import repeat
... # the same
# start threads
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
executor.map(run, files, repeat(ws))
# run() doesn't return anything so `map()` results can be ignored
subprocess + threading (manual pool) solution
#!/usr/bin/env python
from __future__ import print_function
import os
import subprocess
import sys
from Queue import Queue
from threading import Thread
def run(filename, def_param):
... # define exe, swt_nam
subprocess.check_call([exe, swt_nam]) # run external program
def worker(queue):
"""Process files from the queue."""
for args in iter(queue.get, None):
try:
run(*args)
except Exception as e: # catch exceptions to avoid exiting the
# thread prematurely
print('%r failed: %s' % (args, e,), file=sys.stderr)
# start threads
q = Queue()
threads = [Thread(target=worker, args=(q,)) for _ in range(8)]
for t in threads:
t.daemon = True # threads die if the program dies
t.start()
# populate files
ws = r'D:\Data\Users\jbellino\Project\stJohnsDeepening\model\xsec_a'
wdir = os.path.join(ws, r'fieldgen\reals')
for f in os.listdir(wdir):
if f.endswith('.npy'):
q.put_nowait((os.path.join(wdir, f), ws))
for _ in threads: q.put_nowait(None) # signal no more files
for t in threads: t.join() # wait for completion
Here is my way to maintain the minimum x number of threads in the memory. Its an combination of threading and multiprocessing modules. It may be unusual to other techniques like respected fellow members have explained above BUT may be worth considerable. For the sake of explanation, I am taking a scenario of crawling a minimum of 5 websites at a time.
so here it is:-
#importing dependencies.
from multiprocessing import Process
from threading import Thread
import threading
# Crawler function
def crawler(domain):
# define crawler technique here.
output.write(scrapeddata + "\n")
pass
Next is threadController function. This function will control the flow of threads to the main memory. It will keep activating the threads to maintain the threadNum "minimum" limit ie. 5. Also it won't exit until, all Active threads(acitveCount) are finished up.
It will maintain a minimum of threadNum(5) startProcess function threads (these threads will eventually start the Processes from the processList while joining them with a time out of 60 seconds). After staring threadController, there would be 2 threads which are not included in the above limit of 5 ie. the Main thread and the threadController thread itself. thats why threading.activeCount() != 2 has been used.
def threadController():
print "Thread count before child thread starts is:-", threading.activeCount(), len(processList)
# staring first thread. This will make the activeCount=3
Thread(target = startProcess).start()
# loop while thread List is not empty OR active threads have not finished up.
while len(processList) != 0 or threading.activeCount() != 2:
if (threading.activeCount() < (threadNum + 2) and # if count of active threads are less than the Minimum AND
len(processList) != 0): # processList is not empty
Thread(target = startProcess).start() # This line would start startThreads function as a seperate thread **
startProcess function, as a separate thread, would start Processes from the processlist. The purpose of this function (**started as a different thread) is that It would become a parent thread for Processes. So when It will join them with a timeout of 60 seconds, this would stop the startProcess thread to move ahead but this won't stop threadController to perform. So this way, threadController will work as required.
def startProcess():
pr = processList.pop(0)
pr.start()
pr.join(60.00) # joining the thread with time out of 60 seconds as a float.
if __name__ == '__main__':
# a file holding a list of domains
domains = open("Domains.txt", "r").read().split("\n")
output = open("test.txt", "a")
processList = [] # thread list
threadNum = 5 # number of thread initiated processes to be run at one time
# making process List
for r in range(0, len(domains), 1):
domain = domains[r].strip()
p = Process(target = crawler, args = (domain,))
processList.append(p) # making a list of performer threads.
# starting the threadController as a seperate thread.
mt = Thread(target = threadController)
mt.start()
mt.join() # won't let go next until threadController thread finishes.
output.close()
print "Done"
Besides maintaining a minimum number of threads in the memory, my aim was to also have something which could avoid stuck threads or processes in the memory. I did this using the time out function.
My apologies for any typing mistake.
I hope this construction would help anyone in this world.
Regards,
Vikas Gautam