Fitting 3D scatter data in Python - python
I'm trying to make a smooth fit to some unregular data points in 3D.
Data points for which I have z-values are not lying on a grid, however they do follow some pattern. There is a limited set of integer y values (say, 10, 14, 30, 41, etc) and for each of these I've got a set of ~100 x float values ranging from 0 to 1 in some random non-uniform way.
For my case it is important to have the fit pass through all of the initial data points (or at least to have a maximal allowance if not so).
So, given that data my first try was to use griddata from scipy.interpolate. If I use linear fit, I get a picture which I expect:
However, cubic interpolation doesn't work good for me. Firstly, it hangs forever apparently because I have many aligned points, but that can be fixed by adding some tiny random number to each of y values which I did (see this question: Alternatives to scipy.interpolate.griddata that don't hang on aligned points). But it produces result with wild oscillations:
So, the question is how can I tweak the data and / or the algorithm to deal with it? If it is not possible, which other interpolation method could I use to create a smoothed surface close to the original one and if Python has an implementation for it?
Some sample data to try it out:
x = [0.95568, 0.94055, 0.91823, 0.88796, 0.84862, 0.79112, 0.7164900000000001, 0.6240399999999999, 0.5173399999999999, 0.40369, 0.29454, 0.20756, 0.14302, 0.09365, 0.06564, 0.04701, 0.95658, 0.95192, 0.94714, 0.94223, 0.93716, 0.93034, 0.92336, 0.91618, 0.90876, 0.89963, 0.89024, 0.87918, 0.86782, 0.85608, 0.84268, 0.82767, 0.81219, 0.79511, 0.77554, 0.75548, 0.73397, 0.71104, 0.68674, 0.66057, 0.6332599999999999, 0.6045, 0.57483, 0.5442199999999999, 0.51271, 0.48081999999999997, 0.44866999999999996, 0.41712, 0.38525, 0.35475, 0.32392, 0.29431999999999997, 0.26863000000000004, 0.24311, 0.22016999999999998, 0.19732, 0.17751, 0.15778, 0.14337, 0.1293, 0.11547, 0.10378, 0.09437000000000001, 0.08304, 0.0762, 0.06959, 0.06316000000000001, 0.056870000000000004, 0.05305, 0.04938, 0.04583, 0.04239, 0.04141, 0.95758, 0.95418, 0.9507099999999999, 0.94718, 0.9424, 0.93871, 0.93379, 0.92769, 0.9226, 0.91635, 0.91001, 0.90355, 0.89695, 0.88925, 0.8814, 0.8725, 0.86346, 0.85424, 0.844, 0.83358, 0.82218, 0.81057, 0.79801, 0.78522, 0.77151, 0.75695, 0.74212, 0.7259599999999999, 0.7095400000000001, 0.6928000000000001, 0.67492, 0.65671, 0.6375500000000001, 0.61807, 0.59798, 0.57735, 0.5562, 0.5346, 0.51262, 0.49051999999999996, 0.46813, 0.44582, 0.42352, 0.40166999999999997, 0.37961, 0.35773, 0.33666, 0.31537, 0.29589, 0.27712, 0.25829, 0.24111999999999997, 0.22393000000000002, 0.2087, 0.19242, 0.1783, 0.16417, 0.15253, 0.14231, 0.13223, 0.12222999999999999, 0.11374000000000001, 0.10535, 0.09702000000000001, 0.09031, 0.08367999999999999, 0.07057999999999999, 0.0658, 0.06283, 0.0582, 0.055389999999999995, 0.05265, 0.049980000000000004, 0.047369999999999995, 0.04481, 0.95916, 0.95644, 0.95368, 0.94994, 0.94709, 0.94328, 0.93942, 0.9355100000000001, 0.93155, 0.92752, 0.92258, 0.91841, 0.91333, 0.90739, 0.89607, 0.88363, 0.86937, 0.86207, 0.85465, 0.84645, 0.8375, 0.82845, 0.81925, 0.80935, 0.79878, 0.7885800000000001, 0.7772300000000001, 0.7540800000000001, 0.7418199999999999, 0.72936, 0.71632, 0.70275, 0.68897, 0.6744300000000001, 0.6597, 0.64455, 0.6290100000000001, 0.61327, 0.58075, 0.54713, 0.52998, 0.5126999999999999, 0.47773999999999994, 0.46008999999999994, 0.44242, 0.42504, 0.4075, 0.38974000000000003, 0.37248000000000003, 0.35545, 0.33824, 0.32234, 0.30695, 0.27663000000000004, 0.26236, 0.24877, 0.2223, 0.19730999999999999, 0.18517, 0.17392, 0.15335, 0.14518, 0.13709000000000002, 0.1222, 0.11542000000000001, 0.10869000000000001, 0.09658, 0.08592000000000001, 0.07537999999999999, 0.0677, 0.060160000000000005, 0.05566, 0.04986, 0.04565, 0.04155, 0.9578, 0.9522, 0.94897, 0.94571, 0.93909, 0.93572, 0.93157, 0.92387, 0.9146, 0.90512, 0.89475, 0.88291, 0.8708, 0.8572500000000001, 0.85036, 0.84285, 0.82759, 0.81933, 0.81098, 0.8025100000000001, 0.7935, 0.77511, 0.76534, 0.75507, 0.74468, 0.73414, 0.72314, 0.7117100000000001, 0.70014, 0.6883900000000001, 0.67624, 0.66372, 0.6508499999999999, 0.63783, 0.62449, 0.61087, 0.59709, 0.58306, 0.56881, 0.5543899999999999, 0.53978, 0.52502, 0.51024, 0.49533, 0.4804, 0.46531000000000006, 0.45023, 0.43518999999999997, 0.42025, 0.40544, 0.3905, 0.37573, 0.3608, 0.34648, 0.33249, 0.31934, 0.30618, 0.29296, 0.28021999999999997, 0.268, 0.25575, 0.24408000000000002, 0.23304, 0.22129000000000001, 0.21091, 0.20052, 0.19009, 0.18043, 0.17073, 0.16276, 0.14783, 0.13495, 0.12225, 0.11645, 0.11068, 0.10494, 0.10029, 0.09568, 0.0911, 0.08655, 0.08202000000000001, 0.07867, 0.07418, 0.07089, 0.06762, 0.06116, 0.056029999999999996, 0.05414, 0.05099, 0.047330000000000004, 0.04023, 0.95692, 0.94198, 0.92747, 0.9099, 0.9, 0.88993, 0.87805, 0.86599, 0.8532299999999999, 0.83973, 0.8251, 0.80977, 0.77629, 0.75789, 0.74871, 0.71942, 0.69878, 0.67726, 0.66622, 0.65489, 0.63163, 0.61971, 0.6075999999999999, 0.57047, 0.55782, 0.54503, 0.5321199999999999, 0.48023999999999994, 0.46718000000000004, 0.45416999999999996, 0.42828, 0.40247, 0.37711, 0.35202, 0.28007, 0.25742, 0.23735, 0.18382, 0.12552, 0.11413, 0.1047, 0.09735, 0.08913, 0.08307, 0.07607, 0.05196, 0.95684, 0.95154, 0.94005, 0.92637, 0.91001, 0.88141, 0.87061, 0.82046, 0.79141, 0.75937, 0.74222, 0.7059500000000001, 0.68668, 0.66683, 0.6566000000000001, 0.6462600000000001, 0.61404, 0.60303, 0.54618, 0.48743000000000003, 0.46386000000000005, 0.45203000000000004, 0.41678000000000004, 0.30339, 0.26345999999999997, 0.21106, 0.18027, 0.14079, 0.12022000000000001, 0.09763, 0.06905, 0.04882]
y = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187]
z = [0.22435679999999997, 0.2142728, 0.2057014, 0.1968387, 0.1865643, 0.1796222, 0.17312629999999998, 0.16746, 0.16087820000000003, 0.15840410000000002, 0.1555075, 0.15833699999999998, 0.162905, 0.1655981, 0.1740023, 0.1830651, 0.3173607, 0.3141693, 0.3103343, 0.3059325, 0.3010236, 0.29817009999999994, 0.2945795, 0.2903363, 0.2855052, 0.28205630000000004, 0.27788779999999996, 0.2747509, 0.27082059999999997, 0.2661676, 0.26225640000000006, 0.2589043, 0.254695, 0.25088649999999996, 0.2484922, 0.24507220000000002, 0.24173200000000003, 0.23839229999999997, 0.23498379999999996, 0.2323808, 0.2295386, 0.227307, 0.22472129999999998, 0.22174899999999997, 0.21921300000000002, 0.2179324, 0.21616149999999998, 0.2156397, 0.2137493, 0.2131757, 0.21121109999999998, 0.2097163, 0.21087199999999998, 0.210788, 0.2116495, 0.21128049999999998, 0.21214299999999997, 0.211811, 0.2146356, 0.2166123, 0.2176525, 0.21949929999999998, 0.2224562, 0.22256820000000002, 0.22624740000000002, 0.2294154, 0.23202870000000003, 0.2340288, 0.23844570000000004, 0.24255429999999997, 0.2463399, 0.2497837, 0.256654, 0.3265555, 0.3239183, 0.32090609999999997, 0.3175562, 0.3160885, 0.3120466, 0.30971770000000004, 0.3087986, 0.30556690000000003, 0.303637, 0.30122990000000005, 0.2983908, 0.295156, 0.2928952, 0.2901738, 0.2882425, 0.28581090000000003, 0.2829183, 0.2806566, 0.2779074, 0.2756775, 0.2729446, 0.27064109999999997, 0.2678258, 0.2653658, 0.26320079999999996, 0.260491, 0.2587889, 0.25649970000000005, 0.2536468, 0.2516623, 0.2490801, 0.2472737, 0.2448443, 0.24246020000000004, 0.2400991, 0.2377411, 0.2360094, 0.2336024, 0.23242979999999996, 0.2305617, 0.22927460000000002, 0.2279277, 0.22717960000000004, 0.22572289999999998, 0.2242105, 0.2233436, 0.22174970000000002, 0.22159279999999998, 0.22150509999999998, 0.22073520000000002, 0.2208658, 0.2203379, 0.22086889999999998, 0.21986309999999998, 0.2200442, 0.2195909, 0.22059220000000002, 0.2221877, 0.2233259, 0.22397229999999999, 0.22539499999999998, 0.22638089999999997, 0.2268911, 0.2284279, 0.22957579999999997, 0.23055279999999997, 0.232251, 0.2356695, 0.23681100000000002, 0.23983890000000002, 0.24270160000000002, 0.2453939, 0.2479096, 0.250241, 0.3320691, 0.32972009999999996, 0.327113, 0.32625570000000004, 0.3231124, 0.3215746, 0.3196973, 0.3175134, 0.3150502, 0.31233059999999996, 0.3107871, 0.3075553, 0.3054195, 0.3042283, 0.299627, 0.2949814, 0.2911661, 0.28878190000000004, 0.286107, 0.2840244, 0.2824596, 0.2805393, 0.2782853, 0.276471, 0.2750419, 0.2725318, 0.2710885, 0.26709390000000005, 0.2652112, 0.262967, 0.260981, 0.25922399999999995, 0.2570881, 0.25572670000000003, 0.2539644, 0.25236420000000004, 0.2509092, 0.24904690000000002, 0.24570100000000003, 0.2422638, 0.2409471, 0.2397154, 0.2369755, 0.23546060000000002, 0.2340183, 0.2331739, 0.2318828, 0.2301334, 0.22899679999999997, 0.2279498, 0.2264395, 0.2261656, 0.22604139999999998, 0.22510679999999997, 0.2249176, 0.22495259999999997, 0.22446420000000003, 0.22370749999999998, 0.2230614, 0.2227643, 0.22260990000000003, 0.22373089999999998, 0.22456220000000002, 0.2262969, 0.22724429999999998, 0.22791370000000002, 0.22953600000000002, 0.23131880000000002, 0.23203249999999997, 0.2346393, 0.23642559999999999, 0.24096170000000003, 0.2431212, 0.24664070000000002, 0.2496571, 0.33568990000000004, 0.3323899, 0.3312173, 0.3297465, 0.3260212, 0.3238114, 0.3227546, 0.31851399999999996, 0.3157475, 0.31193000000000004, 0.3081958, 0.30537109999999995, 0.3015, 0.2983052, 0.29632179999999997, 0.2948481, 0.29110759999999997, 0.2895523, 0.2877298, 0.2856533, 0.28396409999999994, 0.2798044, 0.27794009999999997, 0.2763865, 0.2745558, 0.2724577, 0.270638, 0.2690729, 0.2672236, 0.2650978, 0.2632022, 0.261519, 0.2600321, 0.2582472, 0.256644, 0.25521020000000005, 0.2534704, 0.2518887, 0.2504563, 0.24871, 0.24710429999999997, 0.24563320000000002, 0.2447436, 0.243529, 0.24243969999999998, 0.24102220000000002, 0.2397272, 0.23855549999999998, 0.2375092, 0.23659229999999998, 0.235341, 0.23422110000000002, 0.23275860000000004, 0.23191660000000003, 0.23123139999999998, 0.2312197, 0.2308987, 0.2302589, 0.22982170000000002, 0.22960830000000002, 0.2290843, 0.22880830000000002, 0.228809, 0.22791129999999998, 0.2279124, 0.2276229, 0.2270263, 0.2267863, 0.2262448, 0.22684320000000002, 0.2280863, 0.2300344, 0.2311638, 0.23185279999999997, 0.2323363, 0.23260229999999996, 0.23365740000000002, 0.2345442, 0.2352545, 0.23577889999999999, 0.23610570000000003, 0.23744459999999998, 0.237389, 0.2384175, 0.23930059999999997, 0.2405984, 0.24279650000000003, 0.24451889999999998, 0.24447689999999997, 0.24740340000000002, 0.2521253, 0.3245058, 0.3180594, 0.3126934, 0.3080352, 0.3057295, 0.3025071, 0.3008695, 0.2982377, 0.2954341, 0.2924375, 0.28985259999999996, 0.28697940000000005, 0.2814263, 0.2791592, 0.2774252, 0.2728833, 0.2698403, 0.26680290000000007, 0.2651647, 0.2637353, 0.2610313, 0.2597459, 0.25863800000000003, 0.2546754, 0.25341060000000004, 0.2518993, 0.2505452, 0.247048, 0.2460449, 0.24519210000000002, 0.24353870000000002, 0.24168850000000003, 0.2400663, 0.23827089999999998, 0.23288040000000002, 0.231019, 0.2306532, 0.2300663, 0.2283889, 0.22863720000000004, 0.22986700000000002, 0.2323381, 0.23337829999999998, 0.23591220000000002, 0.23694320000000002, 0.24616210000000002, 0.3323315, 0.33019509999999996, 0.3247211, 0.31962840000000003, 0.315317, 0.30788730000000003, 0.3053588, 0.29530209999999996, 0.2897451, 0.2842533, 0.2815665, 0.2757268, 0.27296190000000004, 0.2698501, 0.2684138, 0.2667857, 0.2630827, 0.26183429999999996, 0.2552114, 0.25014339999999996, 0.2485022, 0.2475529, 0.24493779999999998, 0.2358408, 0.2340855, 0.2329842, 0.2322835, 0.2317147, 0.2329453, 0.23787809999999998, 0.24544570000000004, 0.25218320000000005]
Related
Multi-threading program in python, only one sub-threads work and program didnot quit normally even though I use join()
I created ten threads to process item in a global list but I do not why only the first worker do this work and also, the main thread finished before sub-threads finished, even though I had used the thread.join(). here is the code, I think the problem may because I use while loop in myThread.run . but I do not know how to tell these threads keep working before the global list is empty. # coding=utf-8 import threading import numpy as np dfs = ['units' + str(i).zfill(5) for i in range(250)] units = dfs.copy() k = [str(i).zfill(5) for i in range(500, 21800000)] units.extend(k) np.random.shuffle(units) marker = [] def working_fun(df, unit): global marker if unit in df: threadlock.acquire() marker.append(int(unit[5:])) class myThread(threading.Thread): def __init__(self, name): threading.Thread.__init__(self) self.name = name self.work_load = [] def run(self): global dfs print("start thread" + self.name) while True: threadlock.acquire() if units != []: unit = units.pop() else: unit = None threadlock.release() if unit is not None: self.work_load.append(unit) working_fun(dfs, unit) else: print('------', self.name, '--finish---', len(self.work_load), '--------') break threadlock = threading.RLock() thds = [] for i in range(10): thd = myThread(name='thd' + str(i)) thds.append(thd) for thd in thds: thd.start() thd.join() print('output:', marker)
Try it this way: import numpy import multiprocessing # Same as before dfs = ['units' + str(i).zfill(5) for i in range(250)] units = dfs.copy() k = [str(i).zfill(5) for i in range(500, 21800000)] units.extend(k) numpy.random.shuffle(units) # Almost the same as before def working_fun(inp): df, unit = inp if unit in df: return int(unit[5:]) # This is needed for multiprocessing/threading if __name__ == "__main__": # Create a pool of workers (10 in this case) with multiprocessing.Pool(10) as pool: # Map some (global) iterable on the pool of workers result = pool.map(working_fun, [(dfs, unit) for unit in units]) # Show the results (note that the function returns None if the unit is not in df) print([r for r in result if r is not None]) Output: $ python test.py [1, 75, 139, 24, 101, 72, 156, 55, 58, 235, 14, 123, 177, 112, 168, 178, 173, 162, 104, 226, 230, 205, 69, 100, 246, 18, 117, 149, 37, 214, 206, 26, 136, 87, 144, 79, 50, 222, 7, 133, 36, 41, 30, 163, 103, 187, 6, 225, 15, 223, 234, 138, 126, 19, 64, 224, 39, 145, 130, 42, 11, 221, 128, 213, 204, 2, 45, 220, 242, 109, 59, 238, 232, 68, 152, 107, 148, 83, 197, 241, 118, 32, 90, 99, 22, 119, 0, 67, 48, 181, 71, 193, 95, 29, 113, 40, 134, 218, 141, 27, 121, 8, 207, 110, 60, 237, 47, 94, 73, 157, 184, 78, 159, 49, 202, 239, 124, 215, 127, 209, 62, 4, 52, 82, 74, 9, 199, 158, 188, 3, 61, 180, 57, 219, 245, 38, 16, 190, 12, 17, 175, 46, 196, 125, 194, 76, 129, 161, 81, 93, 137, 155, 174, 54, 35, 25, 115, 140, 216, 23, 21, 233, 77, 33, 92, 208, 120, 86, 165, 70, 135, 28, 91, 66, 85, 169, 203, 211, 114, 154, 122, 217, 247, 31, 147, 96, 142, 191, 10, 183, 80, 179, 189, 56, 105, 160, 228, 185, 132, 5, 53, 106, 13, 210, 182, 89, 192, 153, 170, 111, 65, 212, 186, 151, 200, 248, 229, 102, 240, 198, 176, 43, 131, 166, 236, 231, 116, 172, 146, 88, 44, 98, 227, 20, 34, 164, 108, 171, 244, 243, 195, 150, 249, 97, 167, 51, 201, 84, 63, 143]
OpenCV format knnMatch Descriptors
I am using OpenCV 2.4.9 Python knnMatch where the query descriptors come directly from detectAndCompute and are formatted correctly, but the train descriptors will come from a list I made in a different program. When I get the descriptors from my other program, they look like: [array([ 14, 21, 234, 147, 215, 115, 190, 215, 94, 231, 31, 34, 200, 124, 127, 104, 255, 123, 179, 147, 180, 240, 61, 226, 111, 95, 159, 131, 151, 127, 253, 231], dtype=uint8), array([162, 150, 101, 219, 117, 151, 173, 113, 93, 29, 81, 23, 232, 13, 60, 133, 221, 2, 147, 165, 242, 188, 120, 221, 39, 26, 154, 194, 87, 140, 245, 252], dtype=uint8)] That would be 2 descriptors. How can I format these so I do not get the "OpenCV Error: Unsupported format or combination of formats" error when matching these descriptors with those coming straight out of detectAndCompute? I have tried using np.asarray(list, np.float32) to no avail. If I do: [[d for d in des] for des in list] with list as the train descriptors then the two lists will LOOK the same but I get the same error!
list = [[d for d in des] for des in list] list = np.asarray(list, np.uint8) for d in list: for x in d: x = x.astype(np.uint8)
Importing/accessing dictionaries as class variables in Python 3
I have a dictionary from an imported module assigned to a class variable. I try to print the variable straight from the instance, it gives me the whole dictionary (good). But when I try to get a value from a key in said dictionary, I receive a name error. Here's my main code: import list_module class Calculator(object): tile_chart = list_module.tile_sizes def __init__(self, dims_string): self.dims_string = dims_string self.grout_choice_input = input('Input grout thickness.\n>') self.grout_choice = self.grout_choice_input.strip('\"') def main(self): if self.dims_string in tile_chart: self.my_tile_size = tile_chart.get('dims_string') self.grout_line_index = self.grout_lines.index(self.grout_choice) return self.my_tile_size[self.grout_line_index] else: print("not configured yet") calculator_instance = Calculator(table_str) print(Calculator.tile_chart) print(calculator_instance.tile_chart) calculator_instance.main() Here's the code I'm importing, called list_module.py : tile_sizes = { '1x1' : [90,45,29,22,14,10,7,5], '2x2' : [186,93,61,45,29,22,17,10], '3x3' : [284,142,93,69,45,33,26,15], '4.25x4.25' : [404,202,134,99,65,48,38,25], '4x8' : [254,127,84,63,42,31,25,15], '6x6x1/4' : [570,285,190,142,93,69,55,35], '6x6x1/2' : [286,143,95,71,47,35,28,15], '8x8' : [510,255,169,126,84,62,50,30], '12x12' : [766,383,253,191,126,94,75,45], '13x13' : [830,415,275,207,137,102,82,50], '16x16' : [1020,510,340,255,169,126,101,60], '18x18' : [1150,575,383,288,191,142,114,70], '20x20' : [1280,640,452,320,212,159,126,75], '24x24' : [1536,768,510,383,255,191,152,95] } grout_lines = ["1/16","1/8","3/16","1/4","3/8","1/8","5/8","1"] Here's the printout: {'1x1': [90, 45, 29, 22, 14, 10, 7, 5], '2x2': [186, 93, 61, 45, 29, 22, 17, 10], '3x3': [284, 142, 93, 69, 45, 33, 26, 15], '4.25x4.25': [404, 202, 134, 99, 65, 48, 38, 25], '4x8': [254, 127, 84, 63, 42, 31, 25, 15], '6x6x1/4': [570, 285, 190, 142, 93, 69, 55, 35], '6x6x1/2': [286, 143, 95, 71, 47, 35, 28, 15], '8x8': [510, 255, 169, 126, 84, 62, 50, 30], '12x12': [766, 383, 253, 191, 126, 94, 75, 45], '13x13': [830, 415, 275, 207, 137, 102, 82, 50], '16x16': [1020, 510, 340, 255, 169, 126, 101, 60], '18x18': [1150, 575, 383, 288, 191, 142, 114, 70], '20x20': [1280, 640, 452, 320, 212, 159, 126, 75], '24x24': [1536, 768, 510, 383, 255, 191, 152, 95]} {'1x1': [90, 45, 29, 22, 14, 10, 7, 5], '2x2': [186, 93, 61, 45, 29, 22, 17, 10], '3x3': [284, 142, 93, 69, 45, 33, 26, 15], '4.25x4.25': [404, 202, 134, 99, 65, 48, 38, 25], '4x8': [254, 127, 84, 63, 42, 31, 25, 15], '6x6x1/4': [570, 285, 190, 142, 93, 69, 55, 35], '6x6x1/2': [286, 143, 95, 71, 47, 35, 28, 15], '8x8': [510, 255, 169, 126, 84, 62, 50, 30], '12x12': [766, 383, 253, 191, 126, 94, 75, 45], '13x13': [830, 415, 275, 207, 137, 102, 82, 50], '16x16': [1020, 510, 340, 255, 169, 126, 101, 60], '18x18': [1150, 575, 383, 288, 191, 142, 114, 70], '20x20': [1280, 640, 452, 320, 212, 159, 126, 75], '24x24': [1536, 768, 510, 383, 255, 191, 152, 95]} Traceback (most recent call last): File "ultracolor_calc_oop.py", line 68, in <module> calculator_instance.main() File "ultracolor_calc_oop.py", line 53, in main if self.dims_string in tile_chart: NameError: name 'tile_chart' is not defined As you can see, the dictionary tile_chart is printing perfectly when called on a class and instance level. Maybe I have a fundamental misunderstanding on what constitutes 'definition', but to me, printability implies that it's defined. Yet as soon as I run main(), I get a name error saying that it's not defined. Any guidance?
Change your method references within main() from tile_chart to self.tile_chart. You have defined the variable at class rather than method level. Therefore, to call the variable you have to refer to self.
Use self.tile_chart instead of tile_chart in your main function. All the object elements will be referenced using self. import list_module class Calculator(object): tile_chart = list_module.tile_sizes def __init__(self, dims_string): self.dims_string = dims_string self.grout_choice_input = input('Input grout thickness.\n>') self.grout_choice = self.grout_choice_input.strip('\"') def main(self): if self.dims_string in self.tile_chart: self.my_tile_size = self.tile_chart.get('dims_string') self.grout_line_index = self.grout_lines.index(self.grout_choice) return self.my_tile_size[self.grout_line_index] else: print("not configured yet") calculator_instance = Calculator(table_str) print(Calculator.tile_chart) print(calculator_instance.tile_chart) calculator_instance.main()
You have defined the variable at class rather than method level. Therefore, to call the variable you have to refer to self Yes, that works on reads, because you access via the instance, which hasn't an attribute by that name, so the search goes up to the class, which has the attribute. And works also with in-place writes (writing into the inside of some compound var such as dict or list). But not when assigning a new object to the name. That is, be aware that you can change the class variable in-place, using the self qualifier, but if you assign another object to the class variable, using the self qualifier, that will create a new instance variable by that name, disconnected from the class variable. If that is a true class variable, shared by all instances, use Calculator.tile_chart, not self.tile_chart, to be on the safe side for reads and writes.
How to subscript out binary leading 0b in a list
so I've got binary literals but I need to remove the leading '0b's in each one. How do I go about subscripting them out? Here is my current code: en = [132, 201, 141, 74, 140, 94, 141, 140, 141, 15, 31, 164, 90, 229, 201, 141, 78, 114, 241, 217, 141, 217, 140, 180, 141, 164, 51, 141, 188, 221, 31, 164, 241, 177, 141, 140, 51, 217, 141, 201, 229, 152, 141, 78, 241, 114, 78, 102, 94, 141, 74, 152, 31, 152, 141, 94, 201, 31, 164, 102, 164, 51, 90, 141, 201, 229, 164, 31, 201, 152, 152, 51, 115] key = 84 #STEP 1 - 1ST XOR WITH KEY for i in range(0, len(en)): en[i] = en[i] ^ key en[i] = bin(en[i]) if len(en[i]) < 10: en[i] = '{:#010b}'.format(int(en[i],2)) print(en) print(' ') #STEP 2 - USE SBOX SUB ON EACH BLOCK NIBBLE for i in range(0, len(en)): en[i] = list(en[i]) print(en)
Simply remove the # character from the format specifier, because "for integers, when binary, octal, or hexadecimal output is used, this option adds the prefix respective '0b', '0o', or '0x' to the output value" (source). Example: In [3]: '{:08b}'.format(1) Out[3]: '00000001' By the way, it's not necessary to perform that many conversions. You can shorten the first loop: for i in range(len(en)): en[i] = '{:08b}'.format(en[i] ^ key)
Translate Matlab code to Python
I have a problem with this algorithm: function crc16 = crc16eval(D) % CRC16EVAL CRC-CCITT check with the polynomial: x^16+x^12+x^5+1 D = uint16(D); crchi = 255; crclo = 255; t = '00102030405060708191a1b1c1d1e1f112023222524272629383b3a3d3c3f3e32434041464744454a5b58595e5f5c5d53626160676665646b7a79787f7e7d7c74858687808182838c9d9e9f98999a9b95a4a7a6a1a0a3a2adbcbfbeb9b8bbbab6c7c4c5c2c3c0c1cedfdcdddadbd8d9d7e6e5e4e3e2e1e0effefdfcfbfaf9f8f9181b1a1d1c1f1e110003020504070608393a3b3c3d3e3f30212223242526272b5a59585f5e5d5c53424140474645444a7b78797e7f7c7d72636061666764656d9c9f9e99989b9a95848786818083828cbdbebfb8b9babbb4a5a6a7a0a1a2a3afdedddcdbdad9d8d7c6c5c4c3c2c1c0cefffcfdfafbf8f9f6e7e4e5e2e3e0e1e'; crc16htab = hex2dec(reshape(t,2,length(t)/2)'); t = '0021426384a5c6e708294a6b8cadceef31107352b594f7d639187b5abd9cffde62432001e6c7a4856a4b2809eecfac8d53721130d7f695b45b7a1938dffe9dbcc4e586a740610223cced8eaf48690a2bf5d4b79671503312fddcbf9e79583b1aa687e4c522036041ae8feccd2a0b684997b6d5f4133251709fbeddfc1b3a597888a9caeb0c2d4e6f80a1c2e304254667b998fbda3d1c7f5eb190f3d235147756eacba8896e4f2c0de2c3a08166472405dbfa99b85f7e1d3cd3f291b0577615344c6d0e2fc8e98aab44650627c0e182a37d5c3f1ef9d8bb9a75543716f1d0b3922e0f6c4daa8be8c926076445a283e0c11f3e5d7c9bbad9f81736557493b2d1f0'; crc16ltab = hex2dec(reshape(t,2,length(t)/2)'); for k = 1:length(D) ix = double(bitxor(crchi,D(k)))+1; crchi = bitxor(crclo,crc16htab(ix)); crclo = crc16ltab(ix); end crc16 = crchi*256+crclo; end I need translate that code to Python, and I have done the next: def crc16eval(D): crchi = 255 crclo = 255 t = '00102030405060708191a1b1c1d1e1f112023222524272629383b3a3d3c3f3e32434041464744454a5b58595e5f5c5d53626160676665646b7a79787f7e7d7c74858687808182838c9d9e9f98999a9b95a4a7a6a1a0a3a2adbcbfbeb9b8bbbab6c7c4c5c2c3c0c1cedfdcdddadbd8d9d7e6e5e4e3e2e1e0effefdfcfbfaf9f8f9181b1a1d1c1f1e110003020504070608393a3b3c3d3e3f30212223242526272b5a59585f5e5d5c53424140474645444a7b78797e7f7c7d72636061666764656d9c9f9e99989b9a95848786818083828cbdbebfb8b9babbb4a5a6a7a0a1a2a3afdedddcdbdad9d8d7c6c5c4c3c2c1c0cefffcfdfafbf8f9f6e7e4e5e2e3e0e1e' # crc16htab = hex2dec(reshape(t,2,length(t)/2)'); tarray = [int(n, 16) for n in t] # Recorro el string t, y por cada caracter creo un nuevo entero en el array crc16htab = reshape(tarray, (2, (len(t)/2) )).transpose() #print crc16htab t = '0021426384a5c6e708294a6b8cadceef31107352b594f7d639187b5abd9cffde62432001e6c7a4856a4b2809eecfac8d53721130d7f695b45b7a1938dffe9dbcc4e586a740610223cced8eaf48690a2bf5d4b79671503312fddcbf9e79583b1aa687e4c522036041ae8feccd2a0b684997b6d5f4133251709fbeddfc1b3a597888a9caeb0c2d4e6f80a1c2e304254667b998fbda3d1c7f5eb190f3d235147756eacba8896e4f2c0de2c3a08166472405dbfa99b85f7e1d3cd3f291b0577615344c6d0e2fc8e98aab44650627c0e182a37d5c3f1ef9d8bb9a75543716f1d0b3922e0f6c4daa8be8c926076445a283e0c11f3e5d7c9bbad9f81736557493b2d1f0' # crc16ltab = hex2dec(reshape(t,2,length(t)/2)'); tarray = [int(n, 16) for n in t] # Recorro el string t, y por cada caracter creo un nuevo entero en el array crc16ltab = reshape(tarray, (2, (len(t)/2))).transpose() #print crc16ltab for k in range(len(D)): ix = crchi ^ D[k] crchi = crclo ^ crc16htab[ix] crclo = crc16ltab[ix] return crchi*256+crclo My problem is the next: When I execute de Python code, It's take a loooong time to calculate de xor, I think the the problem is that crclo = crc16ltab[ix] is a matrix and that's take a long time to calculate. Which is the problem? The pseudo-code of this algorithm is the next: The algorithm for the CRC-CCITT is below described. Note that all operations are on bytes. A = new byte B = temp byte CRCHI = High byte (most significant) of the 16-bit CRC CRCLO = Low byte (least significant) of the 16-bit CRC START: FOR A = FIRST_BYTE TO LAST_BYTE IN BLOCK DO: A = A XOR CRCHI CRCHI = A SHIFT A RIGHT FOUR TIMES (ZERO FILL) A = A XOR CRCHI {IJKLMNOP} CRCHI = CRCLO { swap CRCHI, CRCLO } CRCLO = A ROTATE A LEFT 4 TIMES {MNOPIJKL} B=A { temp save } ROTATE A LEFT ONCE {NOPIJKLM} A = A AND $1F {000IJLLM} CRCHI = A XOR CRCHI A = B AND $F0 {MNOP0000} CRCHI = A XOR CRCHI { CRCHI complete } ROTATE B LEFT ONCE {NOP0000M} B = B AND $ E0 {NOP00000} CRCLO = B XOR CRCLO { CRCLO complete } DOEND; FINISH. My question is: Why my python code take long time to execute? What is wrong? The problem I think is in for k in range(len(D)): ix = crchi ^ D[k] crchi = crclo ^ crc16htab[ix] crclo = crc16ltab[ix] Thanks a lot!
I recommend a read of Ross Williams, A painless guide to CRC algorigthms which will teach you everything you ever wanted to know about CRC's and how to calculate them quickly. Here is a conversion of the CCITT CRC algorithm used in the linux kernel. It may or may not be the same as what you are calculating as (if you read the above) you'll realise that there are quite a lot of knobs to twiddle when calculating CRCs. # This mysterious table is just the CRC of each possible byte. It can be # computed using the standard bit-at-a-time methods. The polynomial can # be seen in entry 128, 0x8408. This corresponds to x^0 + x^5 + x^12. # Add the implicit x^16, and you have the standard CRC-CCITT. # From linux kernel lib/crc-ccitt.c _crc_table = ( 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 ) def update_crc(data, crc, table=_crc_table): """ Add a byte to the crc calculation """ return (crc >> 8) ^ table[(crc ^ data) & 0xff] def calculate_crc(data, crc=0xFFFF, table=_crc_table): """ Calculates the CRC for the data string passed in """ for c in data: crc = update_crc(ord(c), crc, table) return crc print "%04X" % calculate_crc("Hello")
If you need to calculate CRC16 only (just result, not code), you could use PyCRC or CRC-16.
This was the final solution, too late to post here maybe... But I think that maybe It's useful for someone. # CRC16EVAL CRC-CCITT check with the polynomial: x^16+x^12+x^5+1 def crc16eval(D): crchi = 255 crclo = 255 crc16htab = [0, 16, 32, 48, 64, 80, 96, 112, 129, 145, 161, 177, 193, 209, 225, 241, 18, 2, 50, 34, 82, 66, 114, 98, 147, 131, 179, 163, 211, 195, 243, 227, 36, 52, 4, 20, 100, 116, 68, 84, 165, 181, 133, 149, 229, 245, 197, 213, 54, 38, 22, 6, 118, 102, 86, 70, 183, 167, 151, 135, 247, 231, 215, 199, 72, 88, 104, 120, 8, 24, 40, 56, 201, 217, 233, 249, 137, 153, 169, 185, 90, 74, 122, 106, 26, 10, 58, 42, 219, 203, 251, 235, 155, 139, 187, 171, 108, 124, 76, 92, 44, 60, 12, 28, 237, 253, 205, 221, 173, 189, 141, 157, 126, 110, 94, 78, 62, 46, 30, 14, 255, 239, 223, 207, 191, 175, 159, 143, 145, 129, 177, 161, 209, 193, 241, 225, 16, 0, 48, 32, 80, 64, 112, 96, 131, 147, 163, 179, 195, 211, 227, 243, 2, 18, 34, 50, 66, 82, 98, 114, 181, 165, 149, 133, 245, 229, 213, 197, 52, 36, 20, 4, 116, 100, 84, 68, 167, 183, 135, 151, 231, 247, 199, 215, 38, 54, 6, 22, 102, 118, 70, 86, 217, 201, 249, 233, 153, 137, 185, 169, 88, 72, 120, 104, 24, 8, 56, 40, 203, 219, 235, 251, 139, 155, 171, 187, 74, 90, 106, 122, 10, 26, 42, 58, 253, 237, 221, 205, 189, 173, 157, 141, 124, 108, 92, 76, 60, 44, 28, 12, 239, 255, 207, 223, 175, 191, 143, 159, 110, 126, 78, 94, 46, 62, 14, 30] crc16ltab = [0, 33, 66, 99, 132, 165, 198, 231, 8, 41, 74, 107, 140, 173, 206, 239, 49, 16, 115, 82, 181, 148, 247, 214, 57, 24, 123, 90, 189, 156, 255, 222, 98, 67, 32, 1, 230, 199, 164, 133, 106, 75, 40, 9, 238, 207, 172, 141, 83, 114, 17, 48, 215, 246, 149, 180, 91, 122, 25, 56, 223, 254, 157, 188, 196, 229, 134, 167, 64, 97, 2, 35, 204, 237, 142, 175, 72, 105, 10, 43, 245, 212, 183, 150, 113, 80, 51, 18, 253, 220, 191, 158, 121, 88, 59, 26, 166, 135, 228, 197, 34, 3, 96, 65, 174, 143, 236, 205, 42, 11, 104, 73, 151, 182, 213, 244, 19, 50, 81, 112, 159, 190, 221, 252, 27, 58, 89, 120, 136, 169, 202, 235, 12, 45, 78, 111, 128, 161, 194, 227, 4, 37, 70, 103, 185, 152, 251, 218, 61, 28, 127, 94, 177, 144, 243, 210, 53, 20, 119, 86, 234, 203, 168, 137, 110, 79, 44, 13, 226, 195, 160, 129, 102, 71, 36, 5, 219, 250, 153, 184, 95, 126, 29, 60, 211, 242, 145, 176, 87, 118, 21, 52, 76, 109, 14, 47, 200, 233, 138, 171, 68, 101, 6, 39, 192, 225, 130, 163, 125, 92, 63, 30, 249, 216, 187, 154, 117, 84, 55, 22, 241, 208, 179, 146, 46, 15, 108, 77, 170, 139, 232, 201, 38, 7, 100, 69, 162, 131, 224, 193, 31, 62, 93, 124, 155, 186, 217, 248, 23, 54, 85, 116, 147, 178, 209, 240] for k in range(len(D)): ix = crchi ^ D[k] crchi = crclo ^ crc16htab[ix] crclo = crc16ltab[ix] return crchi*256+crclo Antonio.