Given the iterable [A, B, C] and the function f(x) I want to get the following:
[ A, B, C]
[ A, B, f(C)]
[ A, f(B), C]
[ A, f(B), f(C)]
[f(A), B, C]
[f(A), B, f(C)]
[f(A), f(B), C]
[f(A), f(B), f(C)]
Unfortunately I didn't find anything suitable in the itertools module.
>>> from itertools import product
>>> L = ["A", "B", "C"]
>>> def f(c): return c.lower()
...
>>> fL = [f(x) for x in L]
>>> for i in product(*zip(L, fL)):
... print i
...
('A', 'B', 'C')
('A', 'B', 'c')
('A', 'b', 'C')
('A', 'b', 'c')
('a', 'B', 'C')
('a', 'B', 'c')
('a', 'b', 'C')
('a', 'b', 'c')
Explanation:
Call f for each item in L to generate fL
>>> fL
['a', 'b', 'c']
Use zip to zip the two lists into pairs
>>> zip(L, fL)
[('A', 'a'), ('B', 'b'), ('C', 'c')]
Take the cartesian product of those tuples using itertools.product
product(*zip(L, fL))
is equivalent to
product(*[('A', 'a'), ('B', 'b'), ('C', 'c')])
and that is equivalent to
product(('A', 'a'), ('B', 'b'), ('C', 'c'))
looping over that product, gives exactly the result we need.
You can use itertools.combinations, like this
def f(char):
return char.lower()
iterable = ["A", "B", "C"]
indices = range(len(iterable))
from itertools import combinations
for i in range(len(iterable) + 1):
for items in combinations(indices, i):
print [f(iterable[j]) if j in items else iterable[j] for j in range(len(iterable))]
Output
['A', 'B', 'C']
['a', 'B', 'C']
['A', 'b', 'C']
['A', 'B', 'c']
['a', 'b', 'C']
['a', 'B', 'c']
['A', 'b', 'c']
['a', 'b', 'c']
import itertools
def func_combinations(f, l):
return itertools.product(*zip(l, map(f, l)))
Demo:
>>> for combo in func_combinations(str, range(3)):
... print combo
...
(0, 1, 2)
(0, 1, '2')
(0, '1', 2)
(0, '1', '2')
('0', 1, 2)
('0', 1, '2')
('0', '1', 2)
('0', '1', '2')
This function first computes f once for every element of the input. Then, it uses zip to turn the input and the list of f values into a list of input-output pairs. Finally, it uses itertools.product to produce each possible way to select either input or output.
Related
My goal is to create 3 lists.
The 1st one is the input: choose 3 from ABCD to create AAA, ABC...etc
The 2nd one is the output: change the middle letter of each input and create a new list. eg: for AAA -> ABA,ACA,ADA. So 3 times the length of the input.
The third one is the Change: I want to name each change as c_i, for example, AAA->ABA is C1.
For Input,
>>> lis = ["A","B","C","D"]
>>> import itertools as it
>>> inp = list(it.product(lis, repeat = 3))
>>> print(inp)
[('A', 'A', 'A'), ('A', 'A', 'B'), ... ('D', 'D', 'C'), ('D', 'D', 'D')]
>>> len(inp)
64
But I am stuck on how to create the output list. Any idea is appreciated!
Thanks
You can use list comprehension:
import itertools
lst = ['A', 'B', 'C', 'D']
lst_input = list(itertools.product(lst, repeat=3))
lst_output = [(tup[0], x, tup[2]) for tup in lst_input for x in lst if tup[1] is not x]
lst_change = [f'C{i}' for i in range(1, len(lst_output) + 1)]
print(len(lst_input), len(lst_output), len(lst_change))
print(lst_input[:5])
print(lst_output[:5])
print(lst_change[:5])
# 64 192 192
# [('A', 'A', 'A'), ('A', 'A', 'B'), ('A', 'A', 'C'), ('A', 'A', 'D'), ('A', 'B', 'A')]
# [('A', 'B', 'A'), ('A', 'C', 'A'), ('A', 'D', 'A'), ('A', 'B', 'B'), ('A', 'C', 'B')]
# ['C1', 'C2', 'C3', 'C4', 'C5']
For each tuple in lst_input, the middle item is replaced by all the candidate characters, but the replacement is thrown out if that replacement character is the same as the original character (if tup[1] is not x).
I have element A weighing 1, and element B weighting 2. I need to find the possible permutations of A and B that add up to a certain amount.
For example, when the desired amount is 4, what I would like to get is:
[A, A, A, A]
[B, B]
[B, A, A]
[A, B, A]
[A, A, B]
What's the best way to do something like this? I initially tried to brute-force it by using itertools.permutations and checking sums manually (very inefficient, but I wasn't sure where else to go) but it wasn't possible for bigger numbers. I'd like to know a way to do it without importing itertools or another library, if possible?
It's not permutation what you are looking for, but combination. Permutation is reshuffling the finite set of elements, without repetitions, while combination is every of n fields assuming one of m elements - which in python is denoted by itertools.computations_with_replacement. In terms of code:
import itertools
from functools import reduce
elements = {"A": 1, "B": 2, "C": 1}
sum_restriction = lambda x: sum(elements[i] for i in x)==4
max_els = 4 // min(elements.values()) + 1
res = reduce(lambda x,y:x+y,[list(filter(sum_restriction, itertools.combinations_with_replacement(elements.keys(), i))) for i in range(max_els+1)])
For my example returns:
>>> res
[('B', 'B'), ('A', 'A', 'B'), ('A', 'B', 'C'), ('B', 'C', 'C'), ('A', 'A', 'A', 'A'), ('A', 'A', 'A', 'C'), ('A', 'A', 'C', 'C'), ('A', 'C', 'C', 'C'), ('C', 'C', 'C', 'C')]
from itertools import permutations, chain
def get_permutations_count_to_n(item_dict, n, max_items=4):
""" For a given dict with items as keys and weights as values, return a set of permutations that have a combined weight of N
:param item_dict: dictionary with items as keys and their weight as value
:param n: integer that should be the combined weight of permutated items
:param max_items: the maximum number of items that may occur in a permutation """
item_list = list(items.keys()) * max_items
combs = [list(permutations(item_list, i)) for i in range(1, max_items+1)]
filtered_combs = [comb for comb in chain.from_iterable(combs) if sum(item_dict[x] for x in comb) == n]
return set(filtered_combs)
items = {'A': 1, 'B': 2}
get_permutations_count_to_n(items, n=4)
>>> {('B', 'A', 'A'), ('B', 'B'), ('A', 'A', 'A', 'A'), ('A', 'A', 'B'), ('A', 'B', 'A')}
I'm trying to solve the general problem of getting the unique combinations from a list in Python
Mathematically from https://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html I can see that the formula for the number of combinations is n!/r!(n-r)! where n is the length of the sequence and r is the number to choose.
As shown by the following python where n is 4 and r is 2:
lst = 'ABCD'
result = list(itertools.combinations(lst, len(lst)/2))
print len(result)
6
The following is a helper function to show the issue I have:
def C(lst):
l = list(itertools.combinations(sorted(lst), len(lst)/2))
s = set(l)
print 'actual', len(l), l
print 'unique', len(s), list(s)
If I run this from iPython I can call it thus:
In [41]: C('ABCD')
actual 6 [('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D')]
unique 6 [('B', 'C'), ('C', 'D'), ('A', 'D'), ('A', 'B'), ('A', 'C'), ('B', 'D')]
In [42]: C('ABAB')
actual 6 [('A', 'A'), ('A', 'B'), ('A', 'B'), ('A', 'B'), ('A', 'B'), ('B', 'B')]
unique 3 [('A', 'B'), ('A', 'A'), ('B', 'B')]
In [43]: C('ABBB')
actual 6 [('A', 'B'), ('A', 'B'), ('A', 'B'), ('B', 'B'), ('B', 'B'), ('B', 'B')]
unique 2 [('A', 'B'), ('B', 'B')]
In [44]: C('AAAA')
actual 6 [('A', 'A'), ('A', 'A'), ('A', 'A'), ('A', 'A'), ('A', 'A'), ('A', 'A')]
unique 1 [('A', 'A')]
What I want to get is the unique count as shown above but doing a combinations and then set doesn't scale.
As when the length of lst which is n gets longer it slows down as the combinations get greater and greater.
Is there a way of using math or Python tricks to to solve the issue of counting the unique combinations ?
Here's some Python code based on the generating function approach outlined in this Math Forum article. For each letter appearing in the input we create a polynomial 1 + x + x^2 + ... + x^k, where k is the number of times that the letter appears. We then multiply those polynomials together: the nth coefficient of the resulting polynomial then tells you how many combinations of length n there are.
We'll represent a polynomial simply as a list of its (integer) coefficients, with the first coefficient representing the constant term, the next coefficient representing the coefficient of x, and so on. We'll need to be able to multiply such polynomials, so here's a function for doing so:
def polymul(p, q):
"""
Multiply two polynomials, represented as lists of coefficients.
"""
r = [0]*(len(p) + len(q) - 1)
for i, c in enumerate(p):
for j, d in enumerate(q):
r[i+j] += c*d
return r
With the above in hand, the following function computes the number of combinations:
from collections import Counter
from functools import reduce
def ncombinations(it, k):
"""
Number of combinations of length *k* of the elements of *it*.
"""
counts = Counter(it).values()
prod = reduce(polymul, [[1]*(count+1) for count in counts], [1])
return prod[k] if k < len(prod) else 0
Testing this on your examples:
>>> ncombinations("abcd", 2)
6
>>> ncombinations("abab", 2)
3
>>> ncombinations("abbb", 2)
2
>>> ncombinations("aaaa", 2)
1
And on some longer examples, demonstrating that this approach is feasible even for long-ish inputs:
>>> ncombinations("abbccc", 3) # the math forum example
6
>>> ncombinations("supercalifragilisticexpialidocious", 10)
334640
>>> from itertools import combinations # double check ...
>>> len(set(combinations(sorted("supercalifragilisticexpialidocious"), 10)))
334640
>>> ncombinations("supercalifragilisticexpialidocious", 20)
1223225
>>> ncombinations("supercalifragilisticexpialidocious", 34)
1
>>> ncombinations("supercalifragilisticexpialidocious", 35)
0
>>> from string import printable
>>> ncombinations(printable, 50) # len(printable)==100
100891344545564193334812497256
>>> from math import factorial
>>> factorial(100)//factorial(50)**2 # double check the result
100891344545564193334812497256
>>> ncombinations("abc"*100, 100)
5151
>>> factorial(102)//factorial(2)//factorial(100) # double check (bars and stars)
5151
Start with a regular recursive definition of combinations() but add a test to only recurse when the lead value at that level hasn't been used before:
def uniq_comb(pool, r):
""" Return an iterator over a all distinct r-length
combinations taken from a pool of values that
may contain duplicates.
Unlike itertools.combinations(), element uniqueness
is determined by value rather than by position.
"""
if r:
seen = set()
for i, item in enumerate(pool):
if item not in seen:
seen.add(item)
for tail in uniq_comb(pool[i+1:], r-1):
yield (item,) + tail
else:
yield ()
if __name__ == '__main__':
from itertools import combinations
pool = 'ABRACADABRA'
for r in range(len(pool) + 1):
assert set(uniq_comb(pool, r)) == set(combinations(pool, r))
assert dict.fromkeys(uniq_comb(pool, r)) == dict.fromkeys(combinations(pool, r))
It seems that this is called a multiset combination. I've faced the same problem and finally came up rewriting a function from sympy (here).
Instead of passing your iterable to something like itertools.combinations(p, r), you pass collections.Counter(p).most_common() to the following function to directly retrieve distinct combinations. It's a lot faster than filtering all combinations and also memory safe!
def counter_combinations(g, n):
if sum(v for k, v in g) < n or not n:
yield []
else:
for i, (k, v) in enumerate(g):
if v >= n:
yield [k]*n
v = n - 1
for v in range(min(n, v), 0, -1):
for j in counter_combinations(g[i + 1:], n - v):
rv = [k]*v + j
if len(rv) == n:
yield rv
Here is an example:
from collections import Counter
p = Counter('abracadabra').most_common()
print(p)
c = [_ for _ in counter_combinations(p, 4)]
print(c)
print(len(c))
Output:
[('a', 5), ('b', 2), ('r', 2), ('c', 1), ('d', 1)]
[['a', 'a', 'a', 'a'], ['a', 'a', 'a', 'b'], ['a', 'a', 'a', 'r'], ['a', 'a', 'a', 'c'], ['a', 'a', 'a', 'd'], ['a', 'a', 'b', 'b'], ['a', 'a', 'b', 'r'], ['a', 'a', 'b', 'c'], ['a', 'a', 'b', 'd'], ['a', 'a', 'r', 'r'], ['a', 'a', 'r', 'c'], ['a', 'a', 'r', 'd'], ['a', 'a', 'c', 'd'], ['a', 'b', 'b', 'r'], ['a', 'b', 'b', 'c'], ['a', 'b', 'b', 'd'], ['a', 'b', 'r', 'r'], ['a', 'b', 'r', 'c'], ['a', 'b', 'r', 'd'], ['a', 'b', 'c', 'd'], ['a', 'r', 'r', 'c'], ['a', 'r', 'r', 'd'], ['a', 'r', 'c', 'd'], ['b', 'b', 'r', 'r'], ['b', 'b', 'r', 'c'], ['b', 'b', 'r', 'd'], ['b', 'b', 'c', 'd'], ['b', 'r', 'r', 'c'], ['b', 'r', 'r', 'd'], ['b', 'r', 'c', 'd'], ['r', 'r', 'c', 'd']]
31
I have a list like this:
list_input = [(a,b), (a,c), (a,d), (z,b), (z,e)]
I want to extract b, c and d when start it with "a" not with "z" and put in a list
I could not figure out how to do it, any advice?
Filter your list items on the first value, collecting the second:
[second for first, second in list_input if first == 'a']
Demo:
>>> list_input = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('z', 'b'), ('z', 'e')]
>>> [second for first, second in list_input if first == 'a']
['b', 'c', 'd']
You could also do it explicitly:
In [8]: [list_input[i][1] for i in xrange(len(list_input)) if list_input[i][0] =='a']
Out[8]: ['b', 'c', 'd']
Or;
list_input = [("a","b"), ("a","c"), ("a","d"), ("z","b"), ("z","e")]
print ([x[1] for x in list_input if x[0]=="a"])
>>>
['b', 'c', 'd']
>>>
Manipulate it with indices. You can display that specific pairs too;
print ([(x,x[1]) for x in list_input if x[0]=="a"])
output;
>>>
[(('a', 'b'), 'b'), (('a', 'c'), 'c'), (('a', 'd'), 'd')]
>>>
Hi how can i get a mapped list to print all possible combinations
say the dict mapping is = {1:[a,b],2:[c,d]......
so with the list [1,2] and the sample mapping above I would like to print out all possible combinations of the pairs a,d against c,d into a list
Have a look at the combinatoric functions in the itertools module.
If you're looking for all the pairings of ab against cd, the product function should help:
>>> d = {1: ['a','b'], 2: ['c', 'd']}
>>> for t in product(*d.values()):
print t
('a', 'c')
('a', 'd')
('b', 'c')
('b', 'd')
If you're looking all combinations of abcd taken r at a time for the various sizes of r, then tthe combinations function should get the job done:
>>> for r in range(5):
for t in combinations('abcd', r):
print t
()
('a',)
('b',)
('c',)
('d',)
('a', 'b')
('a', 'c')
('a', 'd')
('b', 'c')
('b', 'd')
('c', 'd')
('a', 'b', 'c')
('a', 'b', 'd')
('a', 'c', 'd')
('b', 'c', 'd')
('a', 'b', 'c', 'd')
from itertools import product
mapping = {1:['a','b'], 2:['c','d']}
data = [1, 2]
for combo in product(*(mapping[d] for d in data)):
print combo
results in
('a', 'c')
('a', 'd')
('b', 'c')
('b', 'd')
Edit it sounds like what you actually want is
strings = [''.join(combo) for combo in product(*(mapping[d] for d in data))]
which gives strings == ['ac', 'ad', 'bc', 'bd'].