SQLAlchemy is generating, but not enabling, sequences for columns in postgresql. I suspect I may be doing something wrong in engine setup.
Using an example from the SQLAlchemy tutorial (http://docs.sqlalchemy.org/en/rel_0_9/orm/tutorial.html):
#!/usr/bin/env python
from sqlalchemy import create_engine, Column, Integer, String, Sequence
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class User(Base):
__tablename__ = 'users'
id = Column(Integer, Sequence('user_id_seq'), primary_key=True)
name = Column(String(50))
fullname = Column(String(50))
password = Column(String(12))
def __repr__(self):
return "<User(name='%s', fullname='%s', password='%s')>" % (
self.name, self.fullname, self.password)
db_url = 'postgresql://localhost/serial'
engine = create_engine(db_url, echo=True)
Base.metadata.create_all(engine)
With this script, the following table is generated:
serial=# \d+ users
Table "public.users"
Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------+-----------+----------+--------------+-------------
id | integer | not null | plain | |
name | character varying(50) | | extended | |
fullname | character varying(50) | | extended | |
password | character varying(12) | | extended | |
Indexes:
"users_pkey" PRIMARY KEY, btree (id)
Has OIDs: no
However, a sequence was created:
serial=# select sequence_schema,sequence_name,data_type from information_schema.sequences ;
sequence_schema | sequence_name | data_type
-----------------+---------------+-----------
public | user_id_seq | bigint
SQLAlchemy 0.9.1, Python 2.7.5+, Postgresql 9.3.1, Ubuntu 13.10
-Reece
this is because you provided it with an explicit Sequence. The SERIAL datatype in postgresql generates its own sequence, which SQLAlchemy knows how to locate - so if you omit the Sequence, SQLAlchemy will render SERIAL, assuming the intent is that the column is auto-incrementing (which is determined by the autoincrement argument in conjunction with Integer primary_key; it defaults to True). But when Sequence is passed, SQLAlchemy sees the intent that you don't want the sequence implicitly created by SERIAL but instead the one you are specifying:
from sqlalchemy import create_engine, Column, Integer, String, Sequence
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class T1(Base):
__tablename__ = 't1'
# emits CREATE SEQUENCE + INTEGER
id = Column(Integer, Sequence('user_id_seq'), primary_key=True)
class T2(Base):
__tablename__ = 't2'
# emits SERIAL
id = Column(Integer, primary_key=True)
class T3(Base):
__tablename__ = 't3'
# emits INTEGER
id = Column(Integer, autoincrement=False, primary_key=True)
engine = create_engine("postgresql://scott:tiger#localhost/test", echo=True)
Base.metadata.create_all(engine)
output:
CREATE SEQUENCE user_id_seq
CREATE TABLE t1 (
id INTEGER NOT NULL,
PRIMARY KEY (id)
)
CREATE TABLE t2 (
id SERIAL NOT NULL,
PRIMARY KEY (id)
)
CREATE TABLE t3 (
id INTEGER NOT NULL,
PRIMARY KEY (id)
)
If you need to create the sequence explicitly for some reason, like setting a start value, and still want the same default value behavior as when using the Column(Integer, primary_key=True) notation, it can be accomplished with the following code:
#!/usr/bin/env python
from sqlalchemy import create_engine, Column, Integer, String, Sequence
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
USER_ID_SEQ = Sequence('user_id_seq') # define sequence explicitly
class User(Base):
__tablename__ = 'users'
# use sequence in column definition, and pass .next_value() as server_default
id = Column(Integer, USER_ID_SEQ, primary_key=True, server_default=USER_ID_SEQ.next_value())
name = Column(String(50))
fullname = Column(String(50))
password = Column(String(12))
def __repr__(self):
return "<User(name='%s', fullname='%s', password='%s')>" % (
self.name, self.fullname, self.password)
db_url = 'postgresql://localhost/serial'
engine = create_engine(db_url, echo=True)
Base.metadata.create_all(engine)
Reece
I also used that tutorial as a model, and just could not get it to work with any Postgres tables that already existed and had key ID columns with serial sequences to generate the new key ID values.
Like David, I found the Sequence had to be defined separately to the class. For anyone using the "db.Model" approach, here's one example.
from flask.ext.sqlalchemy import SQLAlchemy
from sqlalchemy import Sequence
db = SQLAlchemy()
pageimpression_imp_id_seq = Sequence('pageimpression_imp_id_seq')
class PageImpression(db.Model):
__tablename__ = 'pageimpression'
imp_id = db.Column(db.Integer,
pageimpression_imp_id_seq,
server_default=usersession_sessionid_seq.next_value(),primary_key=True)
logdate = db.Column(db.DateTime)
sessionid = db.Column(db.String)
path = db.Column(db.String)
referrer = db.Column(db.String)
def __init__(self, imp_id, logdate, sessionid, path, referrer):
self.imp_id = imp_id
self.logdate = logdate
self.sessionid = sessionid
self.path = path
self.referrer = referrer
def __repr__(self):
return "<PageImpression(imp_id='%s', logdate='%s',sessionid='%s', path='%s', referrer='%s')>" % (self.imp_id, self.logdate, self.sessionid, self.path, self.referrer)
def PageImpressionAdd(sessionid):
sessionid = 0 # dummy value for unit testing
current_time = datetime.now().isoformat()
if CurrentConfig.IMPRESSION_LOGGING_ON == True:
path = request.path
if request.environ.get('HTTP_REFERER') and not request.environ.get('HTTP_REFERER').isspace():
referrer = request.environ.get('HTTP_REFERER') # the string is not-empty
else:
referrer = '' # the string is empty
from website.models import PageImpression
thisPageImpression = PageImpression(None,current_time,sessionid, path, referrer)
db.session.add(thisPageImpression)
db.session.commit()
# get the values created by the Postgres table defaults
imp_id = thisPageImpression.imp_id
logdate = thisPageImpression.logdate
return current_time
You can also change Sequence without any SQL script by GUI pgAdmin as below:
select your DB -> Schemas -> public -> Sequences -> right click -> properties -> Definition -> Current value.
Related
I have the following table structure (I have simplified it as much as possible, narrowed down the child/inheriting tables [there are additional] and removed all irrelevant columns from the provided tables):
## Base is my declarative_base
class AbstractQuestion(Base):
questionTypeId: Column = Column(
Integer, ForeignKey("luQuestionTypes.id"), index=True, nullable=False
)
__mapper_args__ = {
"polymorphic_identity": 0,
"polymorphic_on": questionTypeId,
}
class MultiChoiceQuestion(AbstractQuestion):
id: Column = Column(Integer, ForeignKey(AbstractQuestion.id), primary_key=True)
__mapper_args__ = {"polymorphic_identity": 1}
class AbstractSurveyQuestion(AbstractQuestion):
id: Column = Column(Integer, ForeignKey(AbstractQuestion.id), primary_key=True)
surveyQuestionTypeId: Column = Column(
Integer, ForeignKey("luSurveyQuestionTypes.id"), index=True, nullable=False
)
__mapper_args__ = {"polymorphic_identity": 2}
class RatingQuestion(AbstractSurveyQuestion):
id: Column = Column(
Integer, ForeignKey(AbstractSurveyQuestion.id), primary_key=True
)
The challenge I'm facing is, that I'm trying to make AbstractSurveyQuestion have two types of polymorphic mappings - one as a child of AbstractQuestion with a polymorphic_identity that matches the questionTypeId, but I also need it to have a separate polymorphic_on mapper for its own child table, which is RatingQuestion.
The closest thing I could find was this question, but it doesn't seem to be aiming at exactly what I'm looking for.
I also looked at the official docs about inheritance, but again couldn't find an accurate example to what I'm trying to achieve.
Can anyone please help me with this?
Thanks!
I posted the same question on SQLAlchemy's GitHub repo. Got this answer from the maintainer:
https://github.com/sqlalchemy/sqlalchemy/discussions/8089#discussioncomment-2878725
I'll paste the contents below as well:
it sounds like you are looking for mult-level polymorphic_on. We don't support that right now without workarounds, and that's #2555 which is a feature we're unlikely to implement, or if we did it would be a long time from now.
It looks like you are using joined inheritance....so...two ways. The more SQL efficient one is to have an extra "supplemetary" column on your base table that can discriminate for AbstractSurveyQuestion...because if you query for all the AbstractQuestion objects, by default it's just going to query that one table, and needs to know from each row if that row is in fact a RatingQuestion.
the more convoluted way is to use mapper-configured with_polymorphic so that all queries for AbstractQuestion include all the tables (or a subset of tables, can be configured, but at minimum you'd need to join out to AbstractSurveyQuestion) using a LEFT OUTER JOIN (or if you really wanted to go crazy it can be a UNION ALL).
the workarounds are a little ugly since it's not very easy to get a "composed" value out of two columns in SQL, but they are contained to the base classes. Below examples work on SQLite and might need tweaking for other databases.
Here's the discriminator on base table demo, a query here looks like:
SELECT aq.id AS aq_id, aq.d1 AS aq_d1, aq.d2 AS aq_d2, CAST(aq.d1 AS VARCHAR) || ? || CAST(coalesce(aq.d2, ?) AS VARCHAR) AS _sa_polymorphic_on
FROM aq
from typing import Tuple, Optional
from sqlalchemy import cast
from sqlalchemy import Column
from sqlalchemy import create_engine
from sqlalchemy import event
from sqlalchemy import ForeignKey
from sqlalchemy import inspect
from sqlalchemy import Integer, func
from sqlalchemy import String
from sqlalchemy.orm import declarative_base
from sqlalchemy.orm import Session
Base = declarative_base()
class ident_(str):
"""describe a composed identity.
Using a string for easy conversion to a string SQL composition.
"""
_tup: Tuple[int, Optional[int]]
def __new__(cls, d1, d2=None):
self = super().__new__(cls, f"{d1}, {d2 or ''}")
self._tup = d1, d2
return self
def _as_tuple(self):
return self._tup
class AbstractQuestion(Base):
__tablename__ = "aq"
id = Column(Integer, primary_key=True)
d1 = Column(
Integer, nullable=False
) # this can be your FK to the other table etc.
d2 = Column(
Integer, nullable=True
) # this is a "supplementary" discrim column
__mapper_args__ = {
"polymorphic_identity": ident_(0),
"polymorphic_on": cast(d1, String)
+ ", "
+ cast(func.coalesce(d2, ""), String),
}
#event.listens_for(AbstractQuestion, "init", propagate=True)
def _setup_poly(target, args, kw):
"""receive new AbstractQuestion objects when they are constructed and
set polymorphic identity"""
# this is the ident_() object
ident = inspect(target).mapper.polymorphic_identity
d1, d2 = ident._as_tuple()
kw["d1"] = d1
if d2:
kw["d2"] = d2
class MultiChoiceQuestion(AbstractQuestion):
__tablename__ = "mcq"
id: Column = Column(
Integer, ForeignKey(AbstractQuestion.id), primary_key=True
)
__mapper_args__ = {"polymorphic_identity": ident_(1)}
class AbstractSurveyQuestion(AbstractQuestion):
__tablename__ = "acq"
id: Column = Column(
Integer, ForeignKey(AbstractQuestion.id), primary_key=True
)
__mapper_args__ = {"polymorphic_identity": ident_(2)}
class RatingQuestion(AbstractSurveyQuestion):
__tablename__ = "rq"
id: Column = Column(
Integer, ForeignKey(AbstractSurveyQuestion.id), primary_key=True
)
__mapper_args__ = {"polymorphic_identity": ident_(2, 1)}
e = create_engine("sqlite://", echo=True)
Base.metadata.create_all(e)
s = Session(e)
s.add(MultiChoiceQuestion())
s.add(RatingQuestion())
s.commit()
s.close()
for q in s.query(AbstractQuestion):
print(q)
then there's the one that maintains your schema fully, a query here looks like:
SELECT aq.id AS aq_id, aq.d1 AS aq_d1, CAST(aq.d1 AS VARCHAR) || ? || CAST(coalesce(acq.d2, ?) AS VARCHAR) AS _sa_polymorphic_on, acq.id AS acq_id, acq.d2 AS acq_d2
FROM aq LEFT OUTER JOIN acq ON aq.id = acq.id
from typing import Tuple, Optional
from sqlalchemy import cast
from sqlalchemy import Column
from sqlalchemy import create_engine
from sqlalchemy import event
from sqlalchemy import ForeignKey
from sqlalchemy import func
from sqlalchemy import inspect
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy.orm import declarative_base
from sqlalchemy.orm import Session
Base = declarative_base()
class ident_(str):
"""describe a composed identity.
Using a string for easy conversion to a string SQL composition.
"""
_tup: Tuple[int, Optional[int]]
def __new__(cls, d1, d2=None):
self = super().__new__(cls, f"{d1}, {d2 or ''}")
self._tup = d1, d2
return self
def _as_tuple(self):
return self._tup
class AbstractQuestion(Base):
__tablename__ = "aq"
id = Column(Integer, primary_key=True)
d1 = Column(
Integer, nullable=False
) # this can be your FK to the other table etc.
__mapper_args__ = {
"polymorphic_identity": ident_(0),
}
#event.listens_for(AbstractQuestion, "init", propagate=True)
def _setup_poly(target, args, kw):
"""receive new AbstractQuestion objects when they are constructed and
set polymorphic identity"""
# this is the ident_() object
ident = inspect(target).mapper.polymorphic_identity
d1, d2 = ident._as_tuple()
kw["d1"] = d1
if d2:
kw["d2"] = d2
class MultiChoiceQuestion(AbstractQuestion):
__tablename__ = "mcq"
id: Column = Column(
Integer, ForeignKey(AbstractQuestion.id), primary_key=True
)
__mapper_args__ = {"polymorphic_identity": ident_(1)}
class AbstractSurveyQuestion(AbstractQuestion):
__tablename__ = "acq"
id: Column = Column(
Integer, ForeignKey(AbstractQuestion.id), primary_key=True
)
d2 = Column(Integer, nullable=False)
__mapper_args__ = {
"polymorphic_identity": ident_(2),
"polymorphic_load": "inline", # adds ASQ to all AQ queries
}
# after ASQ is set up, set the discriminator on the base class
# that includes ASQ column
inspect(AbstractQuestion)._set_polymorphic_on(
cast(AbstractQuestion.d1, String)
+ ", "
+ cast(func.coalesce(AbstractSurveyQuestion.d2, ""), String)
)
class RatingQuestion(AbstractSurveyQuestion):
__tablename__ = "rq"
id: Column = Column(
Integer, ForeignKey(AbstractSurveyQuestion.id), primary_key=True
)
__mapper_args__ = {"polymorphic_identity": ident_(2, 1)}
e = create_engine("sqlite://", echo=True)
Base.metadata.create_all(e)
s = Session(e)
s.add(MultiChoiceQuestion())
s.add(RatingQuestion())
s.commit()
s.close()
for q in s.query(AbstractQuestion):
print(q)
Using SQLAlchemy with an SQLite engine, I've got a self-referential hierarchal table that describes a directory structure.
from sqlalchemy import Column, Integer, String, ForeignKey, Index
from sqlalchemy.orm import column_property, aliased, join
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class Dr(Base):
__tablename__ = 'directories'
id = Column(Integer, primary_key=True)
name = Column(String)
parent_id = Column(Integer, ForeignKey('directories.id'))
Each Dr row only knows it's own "name" and its "parent_id". I've added a recursive column_property called "path" that returns a string containing all of a Dr's ancestors from the root Dr.
root_anchor = (
select([Dr.id, Dr.name, Dr.parent_id,Dr.name.label('path')])
.where(Dr.parent_id == None).cte(recursive=True)
)
dir_alias = aliased(Dr)
cte_alias = aliased(root_anchor)
path_table = root_anchor.union_all(
select([
dir_alias.id, dir_alias.name,
dir_alias.parent_id, cte_alias.c.path + "/" + dir_alias.name
]).select_from(join(
dir_alias, cte_alias, onclause=cte_alias.c.id==dir_alias.parent_id)
))
)
Dr.path = column_property(
select([path_table.c.path]).where(path_table.c.id==Dr.id)
)
Here's an example of the output:
"""
-----------------------------
| id | name | parent_id |
-----------------------------
| 1 | root | NULL |
-----------------------------
| 2 | kid | 1 |
-----------------------------
| 3 | grandkid | 2 |
-----------------------------
"""
sqllite_engine = create_engine('sqlite:///:memory:')
Session = sessionmaker(bind=sqllite_engine)
session = Session()
instance = session.query(Dr).filter(Dr.name=='grandkid').one()
print(instance.path)
# Outputs: "root/kid/grandkid"
I'd like to be able to add an index, or a least a unique constraint, on the "path" property so that unique paths cannot exist more than once in the table. I've tried:
Index('pathindex', Directory.path, unique=True)
...with no luck. No error is raised, but SQLAlchemy doesn't seem to register the index, it just silently ignores it. It still allows adding a duplicate path, e.g.:
session.add(Dr(name='grandkid', parent_id=2))
session.commit()
As further evidence that the Index() was ignored, inspecting the "indexes" property of the table results in an empty set:
print(Dr.__table__.indexes)
#Outputs: set([])
It's essential to me that duplicate paths cannot exist in the database. I'm not sure whether what I'm trying to do with column_property is possible in SQLAlchemy, and if not I'd love to hear some suggestions on how else I can go about this.
I think unique index should suffice, in class Db
__table_args__ = (UniqueConstraint('parent_id', 'name'), )
I need to create a PostgreSQL Full Text Search index in Python with SQLAlchemy. Here's what I want in SQL:
CREATE TABLE person ( id INTEGER PRIMARY KEY, name TEXT );
CREATE INDEX person_idx ON person USING GIN (to_tsvector('simple', name));
Now how do I do the second part with SQLAlchemy when using the ORM:
class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String)
You could create index using Index in __table_args__. Also I use a function to create ts_vector to make it more tidy and reusable if more than one field is required. Something like below:
from sqlalchemy.dialects import postgresql
def create_tsvector(*args):
exp = args[0]
for e in args[1:]:
exp += ' ' + e
return func.to_tsvector('english', exp)
class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String)
__ts_vector__ = create_tsvector(
cast(func.coalesce(name, ''), postgresql.TEXT)
)
__table_args__ = (
Index(
'idx_person_fts',
__ts_vector__,
postgresql_using='gin'
)
)
Update:
A sample query using index (corrected based on comments):
people = Person.query.filter(Person.__ts_vector__.match(expressions, postgresql_regconfig='english')).all()
The answer from #sharez is really useful (especially if you need to concatenate columns in your index). For anyone looking to create a tsvector GIN index on a single column, you can simplify the original answer approach with something like:
from sqlalchemy import Column, Index, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.sql import func
Base = declarative_base()
class Example(Base):
__tablename__ = 'examples'
id = Column(Integer, primary_key=True)
textsearch = Column(String)
__table_args__ = (
Index(
'ix_examples_tsv',
func.to_tsvector('english', textsearch),
postgresql_using='gin'
),
)
Note that the comma following Index(...) in __table_args__ is not a style choice, the value of __table_args__ must be a tuple, dictionary, or None.
If you do need to create a tsvector GIN index on multiple columns, here is another way to get there using text().
from sqlalchemy import Column, Index, Integer, String, text
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.sql import func
Base = declarative_base()
def to_tsvector_ix(*columns):
s = " || ' ' || ".join(columns)
return func.to_tsvector('english', text(s))
class Example(Base):
__tablename__ = 'examples'
id = Column(Integer, primary_key=True)
atext = Column(String)
btext = Column(String)
__table_args__ = (
Index(
'ix_examples_tsv',
to_tsvector_ix('atext', 'btext'),
postgresql_using='gin'
),
)
Thanks for this question and answers.
I'd like to add a bit more in case ppl using alembic to manage versions by
using autogenerate
which creating the index seems not be detected.
We might end up writing our own alter script which look like.
"""add fts idx
Revision ID: e3ce1ce23d7a
Revises: 079c4455d54d
Create Date:
"""
# revision identifiers, used by Alembic.
revision = 'e3ce1ce23d7a'
down_revision = '079c4455d54d'
from alembic import op
import sqlalchemy as sa
def upgrade():
op.create_index('idx_content_fts', 'table_name',
[sa.text("to_tsvector('english', content)")],
postgresql_using='gin')
def downgrade():
op.drop_index('idx_content_fts')
It has been answered already by #sharez and #benvc. I needed to make it work with weights though. This is how I did it based on their answers :
from sqlalchemy import Column, func, Index, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.sql.operators import op
CONFIG = 'english'
Base = declarative_base()
def create_tsvector(*args):
field, weight = args[0]
exp = func.setweight(func.to_tsvector(CONFIG, field), weight)
for field, weight in args[1:]:
exp = op(exp, '||', func.setweight(func.to_tsvector(CONFIG, field), weight))
return exp
class Example(Base):
__tablename__ = 'example'
foo = Column(String)
bar = Column(String)
__ts_vector__ = create_tsvector(
(foo, 'A'),
(bar, 'B')
)
__table_args__ = (
Index('my_index', __ts_vector__, postgresql_using='gin'),
)
Previous answers here were helpful for pointing in the right direction.
Below, a distilled & simplified approach using ORM approach & TSVectorType helper from sqlalchemy-utils (that is quite basic and can be simply copy/pasted to avoid external dependencies if needed https://sqlalchemy-utils.readthedocs.io/en/latest/_modules/sqlalchemy_utils/types/ts_vector.html):
Defining a TSVECTOR column (TSVectorType) in your ORM model (declarative) populated automatically from the source text field(s)
import sqlalchemy as sa
from sqlalchemy_utils.types.ts_vector import TSVectorType
# ^-- https://sqlalchemy-utils.readthedocs.io/en/latest/_modules/sqlalchemy_utils/types/ts_vector.html
class MyModel(Base):
__tablename__ = 'mymodel'
id = sa.Column(sa.Integer, primary_key=True)
content = sa.Column(sa.String, nullable=False)
content_tsv = sa.Column(
TSVectorType("content", regconfig="english"),
sa.Computed("to_tsvector('english', \"content\")", persisted=True))
# ^-- equivalent for SQL:
# COLUMN content_tsv TSVECTOR GENERATED ALWAYS AS (to_tsvector('english', "content")) STORED;
__table_args__ = (
# Indexing the TSVector column
sa.Index("idx_mymodel_content_tsv", content_tsv, postgresql_using="gin"),
)
For additional details on querying using ORM, see https://stackoverflow.com/a/73999486/11750716 (there is an important difference between SQLAlchemy 1.4 and SQLAlchemy 2.0).
I'm using SQLAlchemy to query a number of similar tables, and union the results. The tables are rows of customer information, but our current database structures it so that different groups of customers are in their own tables e.g. client_group1, client_group2, client_group3:
client_group1:
| id | name | email |
| 1 | john | johnsmith#gmail.com |
| 2 | greg | gregjones#gmail.com |
Each of the other tables have identical columns. If I'm using SQLAlchemy declarative_base, I can have a class for client_group1 like the following:
def ClientGroup1(Base):
__tablename__ = 'client_group1'
__table_args__ = {u'schema': 'clients'}
id = Column(Integer, primary_key=True)
name = Column(String(32))
email = Column(String(32))
Then I can do queries such as:
session.query(ClientGroup1.name)
However, if I use union_all to combine a bunch of client tables into a viewport, such as:
query1 = session.query(ClientGroup1.name)
query2 = session.query(ClientGroup2.name)
viewport = union_all(query1, query2)
then I'm not sure how to map a viewport to an object, and instead I have to access viewport columns using:
viewport.c.name
Is there any way to map the viewport to a specific table structure? Especially considering the fact that each class points to a different __table_name__
Read Concrete Table Inheritance documentation for the idea how this can be done. The code below is a running example of how this can be done:
from sqlalchemy import create_engine, Column, String, Integer
from sqlalchemy.orm import sessionmaker, configure_mappers
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.declarative import AbstractConcreteBase
engine = create_engine('sqlite:///:memory:', echo=True)
Session = sessionmaker(bind=engine)
session = Session()
Base = declarative_base(engine)
class ClientGroupBase(AbstractConcreteBase, Base):
pass
class ClientGroup1(ClientGroupBase):
__tablename__ = 'client_group1'
# __table_args__ = {'schema': 'clients'}
__mapper_args__ = {
'polymorphic_identity': 'client_group1',
'concrete': True,
}
id = Column(Integer, primary_key=True)
name = Column(String(32))
email = Column(String(32))
class ClientGroup2(ClientGroupBase):
__tablename__ = 'client_group2'
# __table_args__ = {'schema': 'clients'}
__mapper_args__ = {
'polymorphic_identity': 'client_group2',
'concrete': True,
}
id = Column(Integer, primary_key=True)
name = Column(String(32))
email = Column(String(32))
def _test_model():
# generate classes for all tables
Base.metadata.create_all()
print('-'*80)
# configure mappers (see documentation)
configure_mappers()
print('-'*80)
# add some test data
session.add(ClientGroup1(name="name1"))
session.add(ClientGroup1(name="name1"))
session.add(ClientGroup2(name="name1"))
session.add(ClientGroup2(name="name1"))
session.commit()
print('-'*80)
# perform a query
q = session.query(ClientGroupBase).all()
for r in q:
print(r)
if __name__ == '__main__':
_test_model()
The above example has an added benefit that you can also create new objects, as well as query only some tables.
You could do it mapping an SQL VIEW to a class, but you need to specify a primary key explicitly (see Is possible to mapping view with class using mapper in SqlAlchemy?). In you case, I am afraid, this might not work because of the same PK value in multiple tables, and using a multi-column PK might not be the best idea.
I've defined the model's id field of the table like this:
id = Column(Integer(15, unsigned=True),
nullable=False,
server_default='0',
primary_key=True,
unique=True,
autoincrement=True)
and altered the database(MySQL) table accordingly but still when I create the model
and try to commit it (Im using SQLalchemy 0.7.8)
m = MyModel(values without defining the id)
session.add(m)
session.commit()
I get this error
FlushError: Instance <MyModel at 0x4566990> has a NULL identity key.
If this is an auto-generated value, check that the database table
allows generation of new primary key values, and that the mapped
Column object is configured to expect these generated values. Ensure
also that this flush() is not occurring at an inappropriate time, such
as within a load() event.
I use Postgres 13 and the type of ID is UUIT data type. I met the same issue.
I have solved it by applying server_default.
class TrafficLightController(Base):
__tablename__ = 'Tlc'
id = Column(UUID, primary_key=True, server_default='uuid_generate_v4()')
type_id = Column('type_id', UUID)
title = Column('title', String(100))
gps_x = Column('gps_x', Float)
gps_y = Column('gps_y', Float)
hardware_config = Column('hardware_config', JSONB)
lcu_id = Column('lcu_id', UUID)
signal_id = Column('signal_id', UUID)
def __init__(self, type_id, title, gps_x, gps_y, hardware_config, lcu_id, signal_id):
self.type_id = type_id
self.title = title
self.gps_x = gps_x
self.gps_y = gps_y
self.hardware_config = hardware_config
self.lcu_id = lcu_id
self.signal_id = signal_id
if __name__ == "__main__":
dbschema = 'asudd'
engine = create_engine(DB_CONNECTION_STR, connect_args={'options': '- csearch_path={}'.format(dbschema)})
Session = sessionmaker(bind=engine)
Base = declarative_base()
Base.metadata.create_all(engine)
session = Session()
tlc_obj = TrafficLightController("b0322313-0995-40ac-889c-c65702e1841e", "test DK", 35, 45, "{}", None, None)
session.add(tlc_obj)
I solved it by removing the server_default value