Iteration vs recursion when dynamic lookup table is required - python

I was wondering if iteration can be used when using a dynamic lookup table. Using recursion you can get all the necessary lookup table data from bottom to top. I can't seem to grasp how we can achieve the same using iteration, without making a stack and ending up reimplementing the recursion.
For example, take my solution to Project Euler problem #14:
table = {1:1}
def collatz(n):
if n in table:
return table[n]
elif n % 2:
x = 1 + collatz(3*n + 1)
else:
x = 1 + collatz(n/2)
table[n] = x
return x
MAXc = 0
for i in xrange(1,1000000):
temp = collatz(i)
if temp > MAXc:
MAXc = temp
result = i
print result
How could we implement the same using iteration?

An iterative algorithm which just counts the number of steps until reaching 1 is trivial. The problem is to also update the cache for all the intermediate values.
In this particular case there is an iterative algorithm which doesn't require an explicit stack. It uses two passes: the first counts the total number of steps, and the second updates the cache.
def next(n):
if n % 2 != 0:
return 3*n + 1
else:
return n/2
def collatz(n):
count = 0
i = n
while i not in table:
count += 1
i = next(i)
count += table[i]
i = n
while i not in table:
table[i] = count
count -= 1
i = next(i)
return table[n]

How about something like (built code on fly, so sorry for any typos/bugs):
def collatz_generator(n):
while n != 1:
n = n & 1 and (3 * n + 1) or n / 2
yield n
def add_sequence_to_table(n, table):
table = table or {1:1}
sequence = list(collatz_generator(n))
reversed = list(enumerate(sequence))[::1]
for len, num in reversed:
if num in table:
break
table[n] = len + 1
return table
def build_table(n):
table = add_sequence_to_table(2)
for n in xrange(3, n):
table = add_sequence_to_table(n, table)
return table
Without building table (typed on fly as wife wants me to get read):
def without_table(n):
max_l, examined_numbers = 0, set()
for x in xrange(2, n):
reversed = list(enumerated(collatz_generator(x)))[::-1]
for num, length in reversed:
if num in examined_numbers:
break
examined_numbers.add(num)
if num <= n: # I think this was a problem requirement.
max_l = max(max_l, length)
Doesn't this work?

Related

Implementing memoization within a Collatz algorithm (Python)

I am trying to perform a Collatz algorithm on the following code. It works fine when I use a range of 1-10 etc... However, if the range is for example 1-500,000 it's too slow and won't ever show me the output of the longest sequence.
numberArray = []
s=int(1)
f=int(10)
def collatz(n):
global count
if n == 1:
count += 1
numberArray.append(count)
return True
elif (n % 2) == 0:
count += 1
collatz(n/2)
else:
count += 1
collatz(3*n+1)
for i in range (s, f+1):
count = 0
ourNumber = i
collatz(i)
print(max(numberArray))
Stef means something like this, which uses a dictionary to memorise the values that have already been counted:
s = 1
f = 10000000
def collatz(n):
if n in collatz.memory:
return collatz.memory[n]
if (n % 2) == 0:
count = collatz(n//2)+1
else:
count = collatz((3*n+1)//2)+2
collatz.memory[n] = count
return count
collatz.memory = {1:0}
highest = max(collatz(i) for i in range(s, f+1))
highest_n = max(collatz.memory, key=collatz.memory.get)
print(f"collatz({highest_n}) is {highest}")
Output:
collatz(8400511) is 685
Use lru_cache decorator. Its function to memorize (cache) the returned value of function called with specific argument.
Also read how to write clean code in python
The next code solves your problem
from functools import lru_cache
number_array = []
s = 1
f = 500000
#lru_cache
def collatz(n: int):
if n == 1:
return 1
elif n % 2 == 0:
return 1 + collatz(n // 2)
else:
return 1 + collatz(3 * n + 1)
for i in range(s, f + 1):
number_array.append(collatz(i))
print(number_array)

Can't get out of While loop(Python 3.9)

I'm a new at programming, I like solving this euler questions and I know there are solutions for this problem but it's not about the problem at all actually.
So, i managed to create a working function for finding example: 33. triangular number. It works but i couldn't manage to properly desing my while loop. I wanted to make it like, it starts from first triangular checks it's divisors make list of it's divisors, checks the length of the divisors, because problem wants "What is the value of the first triangle number to have over five hundred divisors?" . But i never managed to work the while loop. Thank you for reading.
nums = [1]
triangles = [1]
divisors = []
def triangularcreator(x):
if x == 1:
return 1
n = 1
sum = 0
while n!=0:
n += 1
nums.append(n)
for i in range(len(nums)):
sum += nums[i]
triangles.append(sum)
sum = 0
if x == len(triangles):
n = 0
return triangles[-1]
counter = 1
while True:
for i in range(1, triangularcreator(counter) + 1):
if triangularcreator(counter) % i == 0:
divisors.append(i)
if len(divisors) == 500:
print(triangularcreator(counter))
break
counter +=1
divisors.clear()
You should try to change a few things, starting with calculating just once the value of triangularcreator(counter) and assigning this value to a variable that you can use in different points of your code.
Second, you create a loop which will be calculate always triangularcreator(1). At the end of each iteration you increase the value of counter+=1, but then at the beginign of the new iteration you assignt it again value 1, so it will not progress as you expect. Try this few things:
counter = 1
while True:
triangle = triangularcreator(counter)
for i in range(1, triangle + 1):
if triangle % i == 0:
divisors.append(i)
if len(divisors) == 500:
print(triangle )
break
counter +=1
Also these two arrays nums = [1], triangles = [1] should be declared and initialized inside the def triangularcreator. Otherwise you would be appending elements in each iteration
Edit: I believe it is better to give you my own answer to the problem, since you are doing some expensive operations which will make code to run for a long time. Try this solution:
import numpy as np
factor_num = 0
n = 0
def factors(n):
cnt = 0
# You dont need to iterate through all the numbers from 1 to n
# Just to the sqrt, and multiply by two.
for i in range(1,int(np.sqrt(n)+1)):
if n % i == 0:
cnt += 1
# If n is perfect square, it will exist a middle number
if (np.sqrt(n)).is_integer():
return (cnt*2)-1
else:
return (cnt*2)-1
while factor_num < 500:
# Here you generate the triangle, by summing all elements from 1 to n
triangle = sum(list(range(n)))
# Here you calculate the number of factors of the triangle
factor_num = factors(triangle)
n += 1
print(triangle)
Turns out that both of your while loop are infinite either in triangularcreatorin the other while loop:
nums = [1]
triangles = [1]
divisors = []
def triangularcreator(x):
if x == 1:
return 1
n = 1
sum = 0
while n:
n += 1
nums.append(n)
for i in range(len(nums)):
sum += nums[i]
triangles.append(sum)
sum = 0
if len(triangles) >= x:
return triangles[-1]
return triangles[-1]
counter = 1
while True:
check = triangularcreator(counter)
for i in range(1, check + 1):
if check % i == 0:
divisors.append(i)
if len(divisors) >= 500:
tr = triangularcreator(counter)
print(tr)
break
counter +=1
Solution
Disclaimer: This is not my solution but is #TamoghnaChowdhury, as it seems the most clean one in the web. I wanted to solve it my self but really run out of time today!
import math
def count_factors(num):
# One and itself are included now
count = 2
for i in range(2, int(math.sqrt(num)) + 1):
if num % i == 0:
count += 2
return count
def triangle_number(num):
return (num * (num + 1) // 2)
def divisors_of_triangle_number(num):
if num % 2 == 0:
return count_factors(num // 2) * count_factors(num + 1)
else:
return count_factors((num + 1) // 2) * count_factors(num)
def factors_greater_than_triangular_number(n):
x = n
while divisors_of_triangle_number(x) <= n:
x += 1
return triangle_number(x)
print('The answer is', factors_greater_than_triangular_number(500))

Number of ways to get sum of number(Integer Partition) using recursion or other methods

Question from codewars https://www.codewars.com/kata/52ec24228a515e620b0005ef/python
In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. If order matters, the sum becomes a composition. For example, 4 can be partitioned in five distinct ways:
4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1
Given number n, write a function exp_sum(n) that returns the total number of ways n can be partitioned.
Eg: exp_sum(4) = 5
Why does the recursion approach:
def exp_sum(n):
arr = list(range(1, n+1))
mem = {}
return rec(n, arr, mem)
def rec(n, arr, mem):
key = str(n)+ ":" + str(arr)
if key in mem:
return mem[key]
elif n < 0:
return 0
elif n == 0:
return 1
elif n > 0 and not arr:
return 0
else:
to_return = rec(n - arr[-1], arr, mem) + rec(n, arr[:-1], mem)
mem[key] = to_return
return to_return
take so much longer to run compared to this particular method (top solution of this kata)?
def exp_sum(n):
if n < 0:
return 0
dp = [1]+[0]*n
for num in range(1,n+1):
for i in range(num,n+1):
dp[i] += dp[i-num]
return dp[-1]
Even with using memoisation, the recursion approach barely managed to pass the test case at a time of about 10000ms, compared to the 1000ms taken for the above approach.
And can anyone explain how the particular method above works and the logic behind it or if it uses some particular algorithm which I can read up about?

Python given an array A of N integers, returns the smallest positive integer (greater than 0) that does not occur in A in O(n) time complexity

For example:
input: A = [ 6 4 3 -5 0 2 -7 1 ]
output: 5
Since 5 is the smallest positive integer that does not occur in the array.
I have written two solutions to that problem. The first one is good but I don't want to use any external libraries + its O(n)*log(n) complexity. The second solution "In which I need your help to optimize it" gives an error when the input is chaotic sequences length=10005 (with minus).
Solution 1:
from itertools import count, filterfalse
def minpositive(a):
return(next(filterfalse(set(a).__contains__, count(1))))
Solution 2:
def minpositive(a):
count = 0
b = list(set([i for i in a if i>0]))
if min(b, default = 0) > 1 or min(b, default = 0) == 0 :
min_val = 1
else:
min_val = min([b[i-1]+1 for i, x in enumerate(b) if x - b[i - 1] >1], default=b[-1]+1)
return min_val
Note: This was a demo test in codility, solution 1 got 100% and
solution 2 got 77 %.
Error in "solution2" was due to:
Performance tests ->
medium chaotic sequences length=10005 (with minus) got 3 expected
10000
Performance tests -> large chaotic + many -1, 1, 2, 3 (with
minus) got 5 expected 10000
Testing for the presence of a number in a set is fast in Python so you could try something like this:
def minpositive(a):
A = set(a)
ans = 1
while ans in A:
ans += 1
return ans
Fast for large arrays.
def minpositive(arr):
if 1 not in arr: # protection from error if ( max(arr) < 0 )
return 1
else:
maxArr = max(arr) # find max element in 'arr'
c1 = set(range(2, maxArr+2)) # create array from 2 to max
c2 = c1 - set(arr) # find all positive elements outside the array
return min(c2)
I have an easy solution. No need to sort.
def solution(A):
s = set(A)
m = max(A) + 2
for N in range(1, m):
if N not in s:
return N
return 1
Note: It is 100% total score (Correctness & Performance)
def minpositive(A):
"""Given an list A of N integers,
returns the smallest positive integer (greater than 0)
that does not occur in A in O(n) time complexity
Args:
A: list of integers
Returns:
integer: smallest positive integer
e.g:
A = [1,2,3]
smallest_positive_int = 4
"""
len_nrs_list = len(A)
N = set(range(1, len_nrs_list+2))
return min(N-set(A)) #gets the min value using the N integers
This solution passes the performance test with a score of 100%
def solution(A):
n = sorted(i for i in set(A) if i > 0) # Remove duplicates and negative numbers
if not n:
return 1
ln = len(n)
for i in range(1, ln + 1):
if i != n[i - 1]:
return i
return ln + 1
def solution(A):
B = set(sorted(A))
m = 1
for x in B:
if x == m:
m+=1
return m
Continuing on from Niroj Shrestha and najeeb-jebreel, added an initial portion to avoid iteration in case of a complete set. Especially important if the array is very large.
def smallest_positive_int(A):
sorted_A = sorted(A)
last_in_sorted_A = sorted_A[-1]
#check if straight continuous list
if len(sorted_A) == last_in_sorted_A:
return last_in_sorted_A + 1
else:
#incomplete list, iterate to find the smallest missing number
sol=1
for x in sorted_A:
if x == sol:
sol += 1
else:
break
return sol
A = [1,2,7,4,5,6]
print(smallest_positive_int(A))
This question doesn't really need another answer, but there is a solution that has not been proposed yet, that I believe to be faster than what's been presented so far.
As others have pointed out, we know the answer lies in the range [1, len(A)+1], inclusively. We can turn that into a set and take the minimum element in the set difference with A. That's a good O(N) solution since set operations are O(1).
However, we don't need to use a Python set to store [1, len(A)+1], because we're starting with a dense set. We can use an array instead, which will replace set hashing by list indexing and give us another O(N) solution with a lower constant.
def minpositive(a):
# the "set" of possible answer - values_found[i-1] will tell us whether i is in a
values_found = [False] * (len(a)+1)
# note any values in a in the range [1, len(a)+1] as found
for i in a:
if i > 0 and i <= len(a)+1:
values_found[i-1] = True
# extract the smallest value not found
for i, found in enumerate(values_found):
if not found:
return i+1
We know the final for loop always finds a value that was not marked, because it has one more element than a, so at least one of its cells was not set to True.
def check_min(a):
x= max(a)
if x-1 in a:
return x+1
elif x <= 0:
return 1
else:
return x-1
Correct me if i'm wrong but this works for me.
def solution(A):
clone = 1
A.sort()
for itr in range(max(A) + 2):
if itr not in A and itr >= 1:
clone = itr
break
return clone
print(solution([2,1,4,7]))
#returns 3
def solution(A):
n = 1
for i in A:
if n in A:
n = n+1
else:
return n
return n
def not_in_A(a):
a=sorted(a)
if max(a)<1:
return(1)
for i in range(0,len(a)-1):
if a[i+1]-a[i]>1:
out=a[i]+1
if out==0 or out<1:
continue
return(out)
return(max(a)+1)
mark and then find the first one that didn't find
nums = [ 6, 4, 3, -5, 0, 2, -7, 1 ]
def check_min(nums):
marks = [-1] * len(nums)
for idx, num in enumerate(nums):
if num >= 0:
marks[num] = idx
for idx, mark in enumerate(marks):
if mark == -1:
return idx
return idx + 1
I just modified the answer by #najeeb-jebreel and now the function gives an optimal solution.
def solution(A):
sorted_set = set(sorted(A))
sol = 1
for x in sorted_set:
if x == sol:
sol += 1
else:
break
return sol
I reduced the length of set before comparing
a=[1,222,3,4,24,5,6,7,8,9,10,15,2,3,3,11,-1]
#a=[1,2,3,6,3]
def sol(a_array):
a_set=set()
b_set=set()
cnt=1
for i in a_array:
#In order to get the greater performance
#Checking if element is greater than length+1
#then it can't be output( our result in solution)
if i<=len(a) and i >=1:
a_set.add(i) # Adding array element in set
b_set.add(cnt) # Adding iterator in set
cnt=cnt+1
b_set=b_set.difference(a_set)
if((len(b_set)) > 1):
return(min(b_set))
else:
return max(a_set)+1
sol(a)
def solution(A):
nw_A = sorted(set(A))
if all(i < 0 for i in nw_A):
return 1
else:
ans = 1
while ans in nw_A:
ans += 1
if ans not in nw_A:
return ans
For better performance if there is a possibility to import numpy package.
def solution(A):
import numpy as np
nw_A = np.unique(np.array(A))
if np.all((nw_A < 0)):
return 1
else:
ans = 1
while ans in nw_A:
ans += 1
if ans not in nw_A:
return ans
def solution(A):
# write your code in Python 3.6
min_num = float("inf")
set_A = set(A)
# finding the smallest number
for num in set_A:
if num < min_num:
min_num = num
# print(min_num)
#if negative make positive
if min_num < 0 or min_num == 0:
min_num = 1
# print(min_num)
# if in set add 1 until not
while min_num in set_A:
min_num += 1
return min_num
Not sure why this is not 100% in correctness. It is 100% performance
def solution(A):
arr = set(A)
N = set(range(1, 100001))
while N in arr:
N += 1
return min(N - arr)
solution([1, 2, 6, 4])
#returns 3

Use Python To Sum A Series

So I have the code
def formula(n):
while(n < 11):
answera = 15/(-4)** n
print(answera)
n = n + 1
formula(1)
How can I add the outputs in condescending order?
For example,
first_output = (the output of n = 1)
second_output = (the output of n = 1) + (the output of n = 2)
third_output = (the output of n = 1) + (the output of n = 2) + (the output of n = 3)
and so on..
you need to define the variable answera outside the while loop, so that its shope should exists outside the loop , so that when you return the value the fully updated value can be returned. Something like this.
def formula(n):
answera = 0
while(n < 11):
answera += 15/(-4)** n
print(answera)
n = n + 1
print(answera)
formula(1)
Now it should give you the right result.
def formula(n):
while(n < 11):
answera += 15/(-4)** n
print(answera)
n = n + 1
The idea is that you will need to accumlate the value of 15/(-4)**n in one of the variables.. (here the answera) and keep printing it out.
I hope this answers your question.
There's some ambiguity in your question; do you want the sum of 'answera', or the sum of 'formula'?
If 'answera', then you can just replace "print" with "yield" and call "sum":
def formula(n):
while(n < 11):
answera += 15/(-4)** n
yield answera
n = n + 1
sum(formula(2))
This makes 'formula' a generator, and "sum" will iterate that generator until it's exhausted.
If you want the sum of multiple 'formula' calls, then follow the KISS principle, and wrap your function with another function:
# assuming that 'formula' is a generator like above
def mega_formula(iterations):
total = []
for i in range(1, iterations + 1): # b/c range indexs from zero
total.append(sum(formula(i))
return sum(total)

Categories

Resources