I am a real beginner in python and try to connect a qslider to a matplotlibwidget.
That means if I change the value of the slider the graph should change. It seems that the value changes correctly, while the graph stays the same. Can anyone tell me how to connect the change of the slider with the graph? Here is my algorithm so far:
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 04 16:48:12 2014
#author: Christoph
"""
from PyQt4 import QtGui, QtCore
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as Canvas
from matplotlib.figure import Figure
from matplotlib import rcParams
import numpy as np
import scipy.constants as const
import sys
rcParams['font.size'] = 9
class MatplotlibWidget(Canvas):
"""
MatplotlibWidget inherits PyQt4.QtGui.QWidget
and matplotlib.backend_bases.FigureCanvasBase
Options: option_name (default_value)
-------
parent (None): parent widget
title (''): figure title
xlabel (''): X-axis label
ylabel (''): Y-axis label
xlim (None): X-axis limits ([min, max])
ylim (None): Y-axis limits ([min, max])
xscale ('linear'): X-axis scale
yscale ('linear'): Y-axis scale
width (4): width in inches
height (3): height in inches
dpi (100): resolution in dpi
hold (False): if False, figure will be cleared each time plot is called
Widget attributes:
-----------------
figure: instance of matplotlib.figure.Figure
axes: figure axes
Example:
-------
self.widget = MatplotlibWidget(self, yscale='log', hold=True)
from numpy import linspace
x = linspace(-10, 10)
self.widget.axes.plot(x, x**2)
self.wdiget.axes.plot(x, x**3)
"""
def __init__(self, parent=None, title='', xlabel='', ylabel='',
xlim=None, ylim=None, xscale='linear', yscale='linear',
width=4, height=3, dpi=100, hold=False):
self.figure = Figure(figsize=(width, height), dpi=dpi)
self.axes = self.figure.add_subplot(111)
self.axes.set_title(title)
self.axes.set_xlabel(xlabel)
self.axes.set_ylabel(ylabel)
if xscale is not None:
self.axes.set_xscale(xscale)
if yscale is not None:
self.axes.set_yscale(yscale)
if xlim is not None:
self.axes.set_xlim(*xlim)
if ylim is not None:
self.axes.set_ylim(*ylim)
self.axes.hold(hold)
Canvas.__init__(self, self.figure)
self.setParent(parent)
Canvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding)
Canvas.updateGeometry(self)
def sizeHint(self):
w, h = self.get_width_height()
return QtGui.QSize(w, h)
def minimumSizeHint(self):
return QtGui.QSize(10, 10)
class ApplicationWindow(QtGui.QMainWindow):
def __init__(self):
QtGui.QMainWindow.__init__(self)
# Graphics Window
self.mpl = MatplotlibWidget(self, title='Graph',
xlabel='x',
ylabel='y',
hold=True)
self.mpl.setGeometry(0,0,1300,800)
self.setGeometry(0, 30, 1680, 800)
# Slider Resistance
title1=QtGui.QLabel(self)
title1.setText('R')
title1.move(1400,10)
self.value1=QtGui.QLabel(self)
self.value1.setText('1')
self.value1.move(1550,40)
cb=QtGui.QSlider(QtCore.Qt.Horizontal, self)
cb.setGeometry(1400,40,100,30)
cb.setMinimum(1)
cb.setMaximum(10000)
cb.valueChanged.connect(self.Rout)
self.plot(1, self.mpl.axes)
def Rout(self, position):
self.value1.setText('%i' %position)
self.plot(position, self.mpl.axes)
def plot(self, R, axes):
x=np.linspace(0,5,1001)
B=0.035
n1=0.115
H=2.06227451e-15
n2=1.37040209e-01
gamma=0.001*const.e
C=0.13
x=np.array(x)
diodetheo = H*(np.exp((const.e*x*n2)/(const.k*300))-1)
zaehler = 1+np.exp((B-C+n1*x)*const.e/(const.k*300))
nenner = 1+np.exp((B-C-n1*x)*const.e/(const.k*300))
A=8.7476434*10**(29)*gamma
D=gamma/2
klammer2 = (const.pi/2)+np.arctan((C-n1*x)/D)
y1 = A*np.log(zaehler/nenner)*klammer2
# plt.figure()
# plt.plot(x, diodetheo, 'g')
# plt.show()
indup=[]
inddown=[]
iup=[]
idown=[]
theo = (y1+diodetheo)*(10**(-12))*(100)/4
for i, Volt in enumerate(x):
xup=np.linspace(0,Volt,i+1)
last=Volt/R-xup/R
diff=np.array(last)-np.array(theo[0:i+1])
inter=np.where(np.diff(np.sign(diff)))[0]
if inter.size==0:
inter=np.array([0])
indup.append(inter[0])
inddown.append(inter[-1])
iup.append(theo[inter[0]])
idown.append(theo[inter[-1]])
up = np.array(iup)
down = np.array(idown)
down=np.flipud(down)
ytotal=np.concatenate((up, down))
xneg=np.flipud(x)
xtotal=np.concatenate((x,xneg))
#plt.figure()
#plt.plot(xtotal, ytotal, 'g')
#plt.show()
axes.plot(xtotal, ytotal, 'r')
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
win = ApplicationWindow()
win.show()
sys.exit(app.exec_())
Greetings
Christoph
OK I've made some changes to your code in order to make it works:
Change the function definition def plot(self, R, axes): for def plot(self, R):
Change the call self.plot(position, self.mpl.axes) on Rout accordingly to self.plot(position)
Change the final line axes.plot(xtotal, ytotal, 'r') on the previous plot function by:
self.mpl.axes.clear() #clear the previous plot
self.mpl.axes.plot(xtotal, ytotal, 'r') #replot
self.mpl.figure.canvas.draw() #redraw the canvas
Explanations:
First, you don't need to pass the axes to the plot function if it's already an attribute of self.mpl and is easy accessible. Second, when you make another plot you need to clear the previous one and also refresh the canvas.
Next all the code with modifications for easy use of copy-paste:
from PyQt4 import QtGui, QtCore
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as Canvas
from matplotlib.figure import Figure
from matplotlib import rcParams
import numpy as np
import scipy.constants as const
import sys
rcParams['font.size'] = 9
class MatplotlibWidget(Canvas):
"""
MatplotlibWidget inherits PyQt4.QtGui.QWidget
and matplotlib.backend_bases.FigureCanvasBase
Options: option_name (default_value)
-------
parent (None): parent widget
title (''): figure title
xlabel (''): X-axis label
ylabel (''): Y-axis label
xlim (None): X-axis limits ([min, max])
ylim (None): Y-axis limits ([min, max])
xscale ('linear'): X-axis scale
yscale ('linear'): Y-axis scale
width (4): width in inches
height (3): height in inches
dpi (100): resolution in dpi
hold (False): if False, figure will be cleared each time plot is called
Widget attributes:
-----------------
figure: instance of matplotlib.figure.Figure
axes: figure axes
Example:
-------
self.widget = MatplotlibWidget(self, yscale='log', hold=True)
from numpy import linspace
x = linspace(-10, 10)
self.widget.axes.plot(x, x**2)
self.wdiget.axes.plot(x, x**3)
"""
def __init__(self, parent=None, title='', xlabel='', ylabel='',
xlim=None, ylim=None, xscale='linear', yscale='linear',
width=4, height=3, dpi=100, hold=False):
self.figure = Figure(figsize=(width, height), dpi=dpi)
self.axes = self.figure.add_subplot(111)
self.axes.set_title(title)
self.axes.set_xlabel(xlabel)
self.axes.set_ylabel(ylabel)
if xscale is not None:
self.axes.set_xscale(xscale)
if yscale is not None:
self.axes.set_yscale(yscale)
if xlim is not None:
self.axes.set_xlim(*xlim)
if ylim is not None:
self.axes.set_ylim(*ylim)
self.axes.hold(hold)
Canvas.__init__(self, self.figure)
self.setParent(parent)
Canvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding)
Canvas.updateGeometry(self)
def sizeHint(self):
w, h = self.get_width_height()
return QtGui.QSize(w, h)
def minimumSizeHint(self):
return QtGui.QSize(10, 10)
class ApplicationWindow(QtGui.QMainWindow):
def __init__(self):
QtGui.QMainWindow.__init__(self)
# Graphics Window
self.mpl = MatplotlibWidget(self, title='Graph',
xlabel='x',
ylabel='y',
hold=True)
self.mpl.setGeometry(0,0,1300,800)
self.setGeometry(0, 30, 1680, 800)
# Slider Resistance
title1=QtGui.QLabel(self)
title1.setText('R')
title1.move(1400,10)
self.value1=QtGui.QLabel(self)
self.value1.setText('1')
self.value1.move(1550,40)
cb=QtGui.QSlider(QtCore.Qt.Horizontal, self)
cb.setGeometry(1400,40,100,30)
cb.setMinimum(1)
cb.setMaximum(10000)
cb.valueChanged.connect(self.Rout)
self.plot(1)
def Rout(self, position):
self.value1.setText('%i' %position)
self.plot(position)
def plot(self, R):
x=np.linspace(0,5,1001)
B=0.035
n1=0.115
H=2.06227451e-15
n2=1.37040209e-01
gamma=0.001*const.e
C=0.13
x=np.array(x)
diodetheo = H*(np.exp((const.e*x*n2)/(const.k*300))-1)
zaehler = 1+np.exp((B-C+n1*x)*const.e/(const.k*300))
nenner = 1+np.exp((B-C-n1*x)*const.e/(const.k*300))
A=8.7476434*10**(29)*gamma
D=gamma/2
klammer2 = (const.pi/2)+np.arctan((C-n1*x)/D)
y1 = A*np.log(zaehler/nenner)*klammer2
# plt.figure()
# plt.plot(x, diodetheo, 'g')
# plt.show()
indup=[]
inddown=[]
iup=[]
idown=[]
theo = (y1+diodetheo)*(10**(-12))*(100)/4
for i, Volt in enumerate(x):
xup=np.linspace(0,Volt,i+1)
last=Volt/R-xup/R
diff=np.array(last)-np.array(theo[0:i+1])
inter=np.where(np.diff(np.sign(diff)))[0]
if inter.size==0:
inter=np.array([0])
indup.append(inter[0])
inddown.append(inter[-1])
iup.append(theo[inter[0]])
idown.append(theo[inter[-1]])
up = np.array(iup)
down = np.array(idown)
down=np.flipud(down)
ytotal=np.concatenate((up, down))
xneg=np.flipud(x)
xtotal=np.concatenate((x,xneg))
#plt.figure()
#plt.plot(xtotal, ytotal, 'g')
#plt.show()
self.mpl.axes.clear()
self.mpl.axes.plot(xtotal, ytotal, 'r')
self.mpl.figure.canvas.draw()
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
win = ApplicationWindow()
win.show()
sys.exit(app.exec_())
Related
I am trying to remove an image from a figure and release the memory. when colorbar is not added for the image, memory can be released successfully, however, if colorbar is added, it fails. In the demo-code bellow:
click push button Add ColorBar will add a color bar for one image in the figure.
click push button remove will remove one image(and the related colorbar) from the figure.
each time i remove the image, the colorbar related is also removed, so i don't know why the memory recycle fails, I guess there must be some extra reference to the image when add a colorbar to it, which fails the memory recycle.
import numpy as np
from PyQt5 import QtWidgets
from memory_profiler import profile
import matplotlib
from matplotlib.figure import Figure
import matplotlib.cm as cm
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg
from matplotlib.axes._axes import Axes
matplotlib.use("Qt5Agg")
class MplCanvas(FigureCanvasQTAgg):
def __init__(self, parent=None, width=5, height=4, dpi=100):
self.fig = Figure(figsize=(width, height), dpi=dpi)
self.axe = self.fig.add_subplot(1, 1, 1, label='good')
super().__init__(self.fig)
class MainWindow(QtWidgets.QMainWindow):
def __init__(self):
super().__init__()
layout = QtWidgets.QVBoxLayout()
self.canvas = MplCanvas(self, width=5, height=4, dpi=100)
self.axe = self.canvas.axe
layout.addWidget(self.canvas)
self.pushButton_addColorBar = QtWidgets.QPushButton('Add ColorBar')
layout.addWidget(self.pushButton_addColorBar)
self.pushButton_remove = QtWidgets.QPushButton('remove')
layout.addWidget(self.pushButton_remove)
widget = QtWidgets.QWidget()
widget.setLayout(layout)
self.setCentralWidget(widget)
self.pushButton_remove.clicked.connect(self.removeImage)
self.pushButton_addColorBar.clicked.connect(self.createColorBar)
self.pcolormesh_test()
def pcolormesh_test(self):
"""add two images"""
delta = 0.01
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X ** 2 - Y ** 2)
Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2)
Z = (Z1 - Z2) * 2
im = self.axe.pcolormesh(X, Y, Z, cmap=cm.viridis, shading='auto')
im.set_clim(vmax=np.amax(Z), vmin=np.amin(Z))
Zx = (Z1 + Z2) * 2
imx = self.axe.pcolormesh(X, Y, Zx, cmap=cm.Blues, shading='auto')
imx.set_clim(vmax=np.amax(Zx), vmin=np.amin(Zx))
def createColorBar(self):
""" to create a color bar for an image. """
axe = self.axe
fig = axe.get_figure()
images = self.getImages(axe)
for image in images:
if not image.colorbar: # color bar doesn't exist
inset_axe = axe.inset_axes([1.0, 0, 0.05, 1], transform=axe.transAxes)
fig.colorbar(image, ax=axe, cax=inset_axe)
break # each trigger create one colorbar for one image
self.reDraw()
#profile
def removeImage(self, checked):
"""
Usage:
* each trigger remove one image
"""
images = self.getImages(self.axe)
# print(f'images={images}')
if images:
image = images[-1]
color_bar = image.colorbar
if color_bar:
color_bar.remove()
del color_bar
# remove image
image.remove()
del image
self.reDraw()
def getImages(self, axe: Axes):
"""to obtain the image list in the axe"""
images = []
images.extend(axe.images)
images.extend(axe.collections)
return images
def reDraw(self):
self.canvas.draw_idle()
self.canvas.flush_events()
if __name__ == '__main__':
import sys
app = QtWidgets.QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())
I have found the solution, and post an answer to help.
we need to add gc.collect() at the end of removeImage() method. then the memory can be reclaimed when the image is removed.
I want to display sensor data on a PyQT GUI with a matplotlib animation.
I already have a working Plot which gets updates every time I receive new sensor value from an external source with this code:
def __init__(self):
self.fig = Figure(figsize=(width, height), dpi=dpi)
self.axes = self.fig.add_subplot(111)
self.axes.grid()
self.xdata = []
self.ydata = []
self.entry_limit = 50
self.line, = self.axes.plot([0], [0], 'r')
def update_figure_with_new_value(self, xval: float, yval: float):
self.xdata.append(xval)
self.ydata.append(yval)
if len(self.xdata) > self.entry_limit:
self.xdata.pop(0)
self.ydata.pop(0)
self.line.set_data(self.xdata, self.ydata)
self.axes.relim()
self.axes.autoscale_view()
self.fig.canvas.draw()
self.fig.canvas.flush_events()
I want now to extend the plot to show another data series with the same x-axis. I tried to achieve this with the following additions to the init-code above:
self.axes2 = self.axes.twinx()
self.y2data = []
self.line2, = self.axes2.plot([0], [0], 'b')
and in the update_figure_with_new_value() function (for test purpose I just tried to add 1 to yval, I will extend the params of the function later):
self.y2data.append(yval+1)
if len(self.y2data) > self.entry_limit:
self.y2data.pop(0)
self.line2.set_data(self.xdata, self.ydata)
self.axes2.relim()
self.axes2.autoscale_view()
But instead of getting two lines in the plot which should have the exact same movement but just shifted by one I get vertical lines for the second plot axis (blue). The first axis (red) remains unchanged and is ok.
How can I use matplotlib to update multiple axis so that they display the right values?
I'm using python 3.4.0 with matplotlib 2.0.0.
Since there is no minimal example available, it's hard to tell the reason for this undesired behaviour. In principle ax.relim() and ax.autoscale_view() should do what you need.
So here is a complete example which works fine and updates both scales when being run with python 2.7, matplotlib 2.0 and PyQt4:
import numpy as np
import matplotlib.pyplot as plt
from PyQt4 import QtGui, QtCore
from matplotlib.figure import Figure
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
class Window(QtGui.QMainWindow):
def __init__(self):
QtGui.QMainWindow.__init__(self)
self.widget = QtGui.QWidget()
self.setCentralWidget(self.widget)
self.widget.setLayout(QtGui.QVBoxLayout())
self.widget.layout().setContentsMargins(0,0,0,0)
self.widget.layout().setSpacing(0)
self.fig = Figure(figsize=(5,4), dpi=100)
self.axes = self.fig.add_subplot(111)
self.axes.grid()
self.xdata = [0]
self.ydata = [0]
self.entry_limit = 50
self.line, = self.axes.plot([], [], 'r', lw=3)
self.axes2 = self.axes.twinx()
self.y2data = [0]
self.line2, = self.axes2.plot([], [], 'b')
self.canvas = FigureCanvas(self.fig)
self.canvas.draw()
self.nav = NavigationToolbar(self.canvas, self.widget)
self.widget.layout().addWidget(self.nav)
self.widget.layout().addWidget(self.canvas)
self.show()
self.ctimer = QtCore.QTimer()
self.ctimer.timeout.connect(self.update)
self.ctimer.start(150)
def update(self):
y = np.random.rand(1)
self.update_figure_with_new_value(self.xdata[-1]+1,y)
def update_figure_with_new_value(self, xval,yval):
self.xdata.append(xval)
self.ydata.append(yval)
if len(self.xdata) > self.entry_limit:
self.xdata.pop(0)
self.ydata.pop(0)
self.y2data.pop(0)
self.line.set_data(self.xdata, self.ydata)
self.axes.relim()
self.axes.autoscale_view()
self.y2data.append(yval+np.random.rand(1)*0.17)
self.line2.set_data(self.xdata, self.y2data)
self.axes2.relim()
self.axes2.autoscale_view()
self.fig.canvas.draw()
self.fig.canvas.flush_events()
if __name__ == "__main__":
qapp = QtGui.QApplication([])
a = Window()
exit(qapp.exec_())
You may want to test this and report back if it is working or not.
I am trying to move a dot to a particular location on the graph dynamically based on real-time data. I'm basically plotting the graph, emitting a signal from a worker thread which calls the 'move_dot' function. It works, however it is slow. I can only call one frame per second. I'm using the MPL widget in pythonxy. I am also using Windows. Is there a way to speed this up?
Here is the code:
from PyQt4 import QtGui
import ui_sof_test #Gui File
import sys
from matplotlib.ticker import AutoMinorLocator
class Gui(QtGui.QMainWindow, ui_sof_test.Ui_MainWindow):
def __init__(self):
super(self.__class__, self).__init__()
self.setupUi(self) # This is defined in ui_pumptest.py file automatically
self.mpl_plot(0)
self.move_dot()
cursorplot = 0
def move_dot(self, x = 100, y = 5, color = 'r'):
fig = self.mplwidget_3.figure
par = fig.add_subplot(111)
ax3 = par.twinx()
plty = fig.gca()
plty.yaxis.set_visible(False)
ax3.plot(x, y, color, marker = 'o', linewidth = 1)
fig.canvas.draw()
#ax3.cla()
def mpl_plot(self, plot_page, replot = 0): #Data stored in lists
fig = self.mplwidget_3.figure #Add a figure
#Clears Figure if data is replotted
if replot == 1:
fig.clf()
plty = fig.gca()
plty.yaxis.set_visible(False)
par0 = fig.add_subplot(111)
#Add Axes
plt = par0.twinx()
#Plot Chart
plt.hold(False)
plt.plot([0,100,200,300,400,500], [1,3,2,4,7,5], 'b', linestyle = "dashed", linewidth = 1)
#Plot Factory Power
minorLocatorx = AutoMinorLocator()
plt.xaxis.set_minor_locator(minorLocatorx)
plt.tick_params(which='both', width= 0.5)
plt.tick_params(which='major', length=7)
plt.tick_params(which='minor', length=4, color='k')
#Plot y axis minor tick marks
minorLocatory = AutoMinorLocator()
plt.yaxis.set_minor_locator(minorLocatory)
plt.tick_params(which='both', width= 0.5)
plt.tick_params(which='major', length=7)
plt.tick_params(which='minor', length=4, color='k')
plt.minorticks_on()
#Make Border of Chart White
fig.set_facecolor('white')
#Plot Grid
plt.grid(b=True, which='both', color='k', linestyle='-')
#Manually make vertical gridlines. Above line doesn't make vertical lines for some reason
for xmaj in plt.xaxis.get_majorticklocs():
plt.axvline(x=xmaj, color = 'k',ls='-')
for xmin in plt.xaxis.get_minorticklocs():
plt.axvline(x=xmin, color = 'k', ls='-')
#Set Scales
plt.yaxis.tick_left()
# Set Axes Colors
plt.tick_params(axis='y', colors='b')
# Set Chart Labels
plt.yaxis.set_label_position("left")
plt.set_xlabel(" ")
plt.set_ylabel(" " , color = 'b')
fig.canvas.draw()
self.move_dot()
def main():
app = QtGui.QApplication(sys.argv) # A new instance of QApplication
form = Gui() # We set the form to be our ExampleApp (design)
form.show() # Show the form
app.exec_() # and execute the. app
if __name__ == '__main__': # if we're running file directly and not importing it
main() # run the main function
def plot(self, fig):
ax = fig.gca()
This plot function is called, when dropping an item on a Qt MatPlotLib Widget. Finally everything will be updated by .draw(). The problem, which occurred is the following:
Calling an external function, that accomplishes plotting, ax has to be the current axis (fig/axis are not passed as argument(s). Therefore I had to add
pyplot.sca(ax)
Everything was fine. Just somehow, maybe becaus of updating to python(x,y) 2.7.5.1 (mpl is 1.3.1), I get this error Axes instance argument was not found in a figure. It's just in this case, when I want this external function (scipy dendrogram func) to draw on the predefined axis. I tried to follow it
[Dbg]>>> fig
<matplotlib.figure.Figure object at 0x0A119A90>
[Dbg]>>> fig.gca()
<matplotlib.axes.AxesSubplot object at 0x0A119CD0>
then stepping into the subroutine pyplot.sca(ax)
managers = _pylab_helpers.Gcf.get_all_fig_managers()
for m in managers:
if ax in m.canvas.figure.axes:
_pylab_helpers.Gcf.set_active(m)
m.canvas.figure.sca(ax)
return
raise ValueError("Axes instance argument was not found in a figure.")
The list seems to be empty
[Dbg]>>> managers
[]
Maybe some of you has an idea, what could be the problem, though remote diagnosis might be difficult. An alternate way of making dendrogram plot on the fig/axes I want it to, would be helpful, too.
Please also give a hint on what should be used to update a plot as to MatplotlibWidget, figure and axes have a draw method.
Edit: Tried to create a MWE. Isn't there anybody experiencing the same error or who can tell me what's the problem here?
import sys
from matplotlibwidget import MatplotlibWidget
from matplotlib import pyplot
from PyQt4.QtGui import QMainWindow, QApplication
import scipy.cluster.hierarchy as hac
import numpy as np
class ApplicationWindow(QMainWindow):
def __init__(self):
QMainWindow.__init__(self)
self.mplwidget = MatplotlibWidget(self, title='Example',
xlabel='Observation', ylabel='Distance', hold=True)
self.mplwidget.setFocus()
self.setCentralWidget(self.mplwidget)
def plotScree(self, Z, fig):
ax = fig.gca()
ax.plot(range(len(Z)), Z[::-1,2])
def plot(self, Z, fig):
ax = fig.gca()
pyplot.sca(ax)
hac.dendrogram(Z)
app = QApplication(sys.argv)
win = ApplicationWindow()
X = np.random.random(100).reshape(25, 4)
Z = hac.linkage(X)
#win.plotScree(Z, win.mplwidget.figure)
win.plot(Z, win.mplwidget.figure)
win.show()
sys.exit(app.exec_())
The implementation of matplotlibwidget in Python(x,y) appears to be broken.
I believe the file in question is this one. If you change line 67 of that file to read self.figure = pypolt.figure(figsize=(width, height), dpi=dpi) then your code will work as you want. I've included a full copy of the modified code below so you can just copy/paste that into your project and use that matplotlibwidget instead of importing the one from python(x,y)
The problem appears to be that instantiating the Figure object directly, skips over a whole load of figure manager construction, which is why that error was being raised. I suggest you file a bug report with Python(x,y) and link to this post!
Full code with modified line (see repository link above for license)
from PyQt4.QtGui import QSizePolicy
from PyQt4.QtCore import QSize
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as Canvas
from matplotlib.figure import Figure
from matplotlib import rcParams
rcParams['font.size'] = 9
from matplotlib import pyplot
class MatplotlibWidget(Canvas):
"""
MatplotlibWidget inherits PyQt4.QtGui.QWidget
and matplotlib.backend_bases.FigureCanvasBase
Options: option_name (default_value)
-------
parent (None): parent widget
title (''): figure title
xlabel (''): X-axis label
ylabel (''): Y-axis label
xlim (None): X-axis limits ([min, max])
ylim (None): Y-axis limits ([min, max])
xscale ('linear'): X-axis scale
yscale ('linear'): Y-axis scale
width (4): width in inches
height (3): height in inches
dpi (100): resolution in dpi
hold (False): if False, figure will be cleared each time plot is called
Widget attributes:
-----------------
figure: instance of matplotlib.figure.Figure
axes: figure axes
Example:
-------
self.widget = MatplotlibWidget(self, yscale='log', hold=True)
from numpy import linspace
x = linspace(-10, 10)
self.widget.axes.plot(x, x**2)
self.wdiget.axes.plot(x, x**3)
"""
def __init__(self, parent=None, title='', xlabel='', ylabel='',
xlim=None, ylim=None, xscale='linear', yscale='linear',
width=4, height=3, dpi=100, hold=False):
self.figure = pyplot.figure(figsize=(width, height), dpi=dpi)
self.axes = self.figure.add_subplot(111)
self.axes.set_title(title)
self.axes.set_xlabel(xlabel)
self.axes.set_ylabel(ylabel)
if xscale is not None:
self.axes.set_xscale(xscale)
if yscale is not None:
self.axes.set_yscale(yscale)
if xlim is not None:
self.axes.set_xlim(*xlim)
if ylim is not None:
self.axes.set_ylim(*ylim)
self.axes.hold(hold)
Canvas.__init__(self, self.figure)
self.setParent(parent)
Canvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding)
Canvas.updateGeometry(self)
def sizeHint(self):
w, h = self.get_width_height()
return QSize(w, h)
def minimumSizeHint(self):
return QSize(10, 10)
I am writing a simple digital image processing program. To do this I have embedded a mpl widget in my qt application. The user can perform some simple analysis on the image such as box car filter, FFT etc. Every thing is working fine until I would like to switch from displaying an image to displaying a plot.
If I display a plot first, the axis are fine (see bottom plot in image). But if I display an image first, followed by a plot (top plot in image), the scale compresses.
https://picasaweb.google.com/105163945296073520628/Temp <-- sorry I can't post images yet
The code is hosted here https://code.launchpad.net/~marrabld/pymi/trunk
I am using imshow() to display the image. and plot(x,y) for the plots.
This is the main update method
def updateImage(self):
self.ui.mplWidget.canvas.PlotTitle = self.plotTitle
self.ui.mplWidget.canvas.xtitle = self.xTitle
self.ui.mplWidget.canvas.ytitle = self.yTitle
#self.ui.mplWidget.canvas.ax.visible(False)
self.ui.mplWidget.canvas.format_labels()
if self.projectProperty == globals.IMAGE:
if self.lastProjectProperty == globals.PLOT:
self.myImage = imageFuncs.basic(self.imageFileName)
self.imPlot = self.ui.mplWidget.canvas.ax.imshow(self.myImage.image,cmap=matplotlib.cm.gray,origin='upper')
elif self.projectProperty == globals.PLOT:
if self.lastProjectProperty == globals.IMAGE: # we need to reload the GUI
self.ui.mplWidget.canvas.ax.hold(False)
self.ui.mplWidget.canvas.ax.plot(self.xData,self.yData)
self.ui.mplWidget.canvas.draw()
And the mpl widget I am using
#!/usr/bin/env python
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
#from matplotlib.backends.backend_qt4 import NavigationToolbar2QT as NavigationToolbar
from matplotlib.backend_bases import NavigationToolbar2
from matplotlib.figure import Figure
from matplotlib import rc
import numpy as N
class MyMplCanvas(FigureCanvas):
def __init__(self, parent=None, width = 10, height = 12, dpi = 125, sharex = None, sharey = None):
rc('text', usetex=True)
rc('font', family='sans-serif')
rc('legend',fontsize='small' )
rc('legend',shadow='true')
self.fig = Figure(figsize = (width, height), dpi=dpi, facecolor = '#FFFFFF')
self.ax = self.fig.add_subplot(111, sharex = sharex, sharey = sharey)
self.fig.subplots_adjust(left=0.15, bottom=0.15, right=0.9, top=0.9)
self.fig.add_axes(yscale='symlog')
self.xtitle=r"x-Axis"
self.ytitle=r"y-Axis"
self.PlotTitle = r"Title"
self.grid_status = True
self.xaxis_style = 'linear'
self.yaxis_style = 'linear'
#self.fig.yscale = 'log'
self.format_labels()
self.ax.hold(True)
FigureCanvas.__init__(self, self.fig)
#self.fc = FigureCanvas(self.fig)
#FigureCanvas.setSizePolicy(self,
# QSizePolicy.Expanding,
# QSizePolicy.Expanding)
FigureCanvas.updateGeometry(self)
def format_labels(self):
self.ax.set_title(self.PlotTitle)
self.ax.title.set_fontsize(5)
self.ax.set_xlabel(self.xtitle, fontsize = 4)
self.ax.set_ylabel(self.ytitle, fontsize = 4)
labels_x = self.ax.get_xticklabels()
labels_y = self.ax.get_yticklabels()
for xlabel in labels_x:
xlabel.set_fontsize(4)
for ylabel in labels_y:
ylabel.set_fontsize(4)
ylabel.set_color('b')
def sizeHint(self):
w, h = self.get_width_height()
return QSize(w, h)
def minimumSizeHint(self):
return QSize(10, 10)
def sizeHint(self):
w, h = self.get_width_height()
return QSize(w, h)
def minimumSizeHint(self):
return QSize(10, 10)
#mouseClick = pyqtProperty("QPoint",mouseClick,click)
class mplWidget(QWidget):
def __init__(self, parent = None):
QWidget.__init__(self, parent)
self.canvas = MyMplCanvas()
#self.toolbar = MyNavigationToolbar(self.canvas, self.canvas, direction = 'v')
self.hbox = QHBoxLayout()
#self.hbox.addWidget(self.toolbar)
self.hbox.addWidget(self.canvas)
self.setLayout(self.hbox)
def savePlot(self,filePath):
self.canvas.fig.savefig(filePath)
def setLegend(self,handle, label):
self.canvas.fig.legend(handle,label,'upper right')
def clearPlot(self):
self.canvas.fig.clear()
width = 10
height = 12
dpi = 125
sharex = None
sharey = None
self.canvas.fig = Figure(figsize = (width, height), dpi=dpi, facecolor = '#FFFFFF')
self.canvas.ax = self.canvas.fig.add_subplot(111, sharex = sharex, sharey = sharey)
self.canvas.fig.subplots_adjust(left=0.15, bottom=0.15, right=0.9, top=0.9)
self.canvas.fig.add_axes(yscale='symlog')
self.canvas.xtitle=r"x-Axis"
self.canvas.ytitle=r"y-Axis"
self.canvas.PlotTitle = r"Title"
self.canvas.grid_status = True
self.canvas.xaxis_style = 'linear'
self.canvas.yaxis_style = 'linear'
#self.fig.yscale = 'log'
self.canvas.format_labels()
self.canvas.ax.hold(True)
FigureCanvas.__init__(self.canvas, self.canvas.fig)
#self.fc = FigureCanvas(self.fig)
FigureCanvas.setSizePolicy(self,
QSizePolicy.Expanding,
QSizePolicy.Expanding)
FigureCanvas.updateGeometry(self)
Any Help would be greatly appreciated.
you can use aspect parameter of imshow() to adjust the ratio between the height & weight:
from pylab import *
a = np.zeros((100,10)) # height=100, weight=10
subplot(211)
imshow(a) # ratio = 10
subplot(212)
imshow(a, aspect=0.1) # ratio = 1
show()
but it will stretch the image.
or you can use xlim(), ylim() the set the range of x-y axis.
imshow(a)
xlim(-50,50)
EDIT:
imshow() will set the aspect property of axe to "equal". you need reset it before calling plot():
self.ui.mplWidget.canvas.ax.set_aspect("auto")
self.ui.mplWidget.canvas.ax.plot(self.xData,self.yData)