How to delete an object via reference? - python

I'm trying to write some code to manipulate a list in something like the following manner:
>>> a = [[0,0],[0,1],[0,2]]
>>> b = a[1]
>>> b[1] = 3
>>> a
[[0,0],[0,3],[0,2]]
>>> # So far so good
>>> del b
>>> a
[[0,0],[0,3],[0,2]]
>>> # Huh.
How can I delete an item from the list using a variable pointing to that item?
EDIT:
OK so it seems this operation is impossible in Python, which seems a shame considering it parallels the pythonic way to iterate over a list. The equivalent operation in C would be very simple to do via pointers. Closing this question without assigning a right answer.

No you can't do that.
del is just unbind the var name from the instance object. If you wanna del an element in a list by index, use pop(index):
In [46]: a=range(4)
In [47]: a.pop(2)
Out[47]: 2
In [48]: a
Out[48]: [0, 1, 3]
or del a[index]:
In [50]: del a[2] #this time it deletes "3" in list "a"
In [51]: a
Out[51]: [0, 1]

Quoting from the del docs,
Deletion of a name removes the binding of that name from the local or
global namespace, depending on whether the name occurs in a global
statement in the same code block. If the name is unbound, a NameError
exception will be raised.
So, you are actually unlinking the name b from the current namespace, not removing the data from the list.
Deletion of attribute references, subscriptions and slicings is passed
to the primary object involved; deletion of a slicing is in general
equivalent to assignment of an empty slice of the right type (but even
this is determined by the sliced object).
So, you should be doing
del a[1]
This is the proper way to do delete the element.
Edit: The only foolproof way to do this would be, this
c = [0, 0]
a = [c, c, [0, 2]]
b = a[0]
for idx in xrange(len(a) - 1, -1, -1):
if a[idx] is b:
del a[idx]
print a # [[0, 2]]
Or you can keep removing the item from the list, with .remove until it raises an error, like this
try:
while True:
a.remove(b)
except ValueError, e:
pass
print a

Is this what you want?
>>> a
[[0, 0], [0, 1], [0, 2]]
>>> del b[:]
>>> a
[[0, 0], [], [0, 2]]

If you don't know the index, try following. (used is operator to test for object identity).
>>> c = [0, 0]
>>> a = [c, c, [0, 2]]
>>> b = a[0]
>>> for j in reversed([i for i, x in enumerate(a) if x is b]): # find indice.
... del a[j]
...
>>> a
[[0, 2]]

You are looking for a.remove(b).
Is the basic documentation for python lists

Related

Multivariable assignment: order_item, created = [duplicate]

I tried to use multiple assignment as show below to initialize variables, but I got confused by the behavior, I expect to reassign the values list separately, I mean b[0] and c[0] equal 0 as before.
a=b=c=[0,3,5]
a[0]=1
print(a)
print(b)
print(c)
Result is:
[1, 3, 5]
[1, 3, 5]
[1, 3, 5]
Is that correct? what should I use for multiple assignment?
what is different from this?
d=e=f=3
e=4
print('f:',f)
print('e:',e)
result:
('f:', 3)
('e:', 4)
If you're coming to Python from a language in the C/Java/etc. family, it may help you to stop thinking about a as a "variable", and start thinking of it as a "name".
a, b, and c aren't different variables with equal values; they're different names for the same identical value. Variables have types, identities, addresses, and all kinds of stuff like that.
Names don't have any of that. Values do, of course, and you can have lots of names for the same value.
If you give Notorious B.I.G. a hot dog,* Biggie Smalls and Chris Wallace have a hot dog. If you change the first element of a to 1, the first elements of b and c are 1.
If you want to know if two names are naming the same object, use the is operator:
>>> a=b=c=[0,3,5]
>>> a is b
True
You then ask:
what is different from this?
d=e=f=3
e=4
print('f:',f)
print('e:',e)
Here, you're rebinding the name e to the value 4. That doesn't affect the names d and f in any way.
In your previous version, you were assigning to a[0], not to a. So, from the point of view of a[0], you're rebinding a[0], but from the point of view of a, you're changing it in-place.
You can use the id function, which gives you some unique number representing the identity of an object, to see exactly which object is which even when is can't help:
>>> a=b=c=[0,3,5]
>>> id(a)
4473392520
>>> id(b)
4473392520
>>> id(a[0])
4297261120
>>> id(b[0])
4297261120
>>> a[0] = 1
>>> id(a)
4473392520
>>> id(b)
4473392520
>>> id(a[0])
4297261216
>>> id(b[0])
4297261216
Notice that a[0] has changed from 4297261120 to 4297261216—it's now a name for a different value. And b[0] is also now a name for that same new value. That's because a and b are still naming the same object.
Under the covers, a[0]=1 is actually calling a method on the list object. (It's equivalent to a.__setitem__(0, 1).) So, it's not really rebinding anything at all. It's like calling my_object.set_something(1). Sure, likely the object is rebinding an instance attribute in order to implement this method, but that's not what's important; what's important is that you're not assigning anything, you're just mutating the object. And it's the same with a[0]=1.
user570826 asked:
What if we have, a = b = c = 10
That's exactly the same situation as a = b = c = [1, 2, 3]: you have three names for the same value.
But in this case, the value is an int, and ints are immutable. In either case, you can rebind a to a different value (e.g., a = "Now I'm a string!"), but the won't affect the original value, which b and c will still be names for. The difference is that with a list, you can change the value [1, 2, 3] into [1, 2, 3, 4] by doing, e.g., a.append(4); since that's actually changing the value that b and c are names for, b will now b [1, 2, 3, 4]. There's no way to change the value 10 into anything else. 10 is 10 forever, just like Claudia the vampire is 5 forever (at least until she's replaced by Kirsten Dunst).
* Warning: Do not give Notorious B.I.G. a hot dog. Gangsta rap zombies should never be fed after midnight.
Cough cough
>>> a,b,c = (1,2,3)
>>> a
1
>>> b
2
>>> c
3
>>> a,b,c = ({'test':'a'},{'test':'b'},{'test':'c'})
>>> a
{'test': 'a'}
>>> b
{'test': 'b'}
>>> c
{'test': 'c'}
>>>
In python, everything is an object, also "simple" variables types (int, float, etc..).
When you changes a variable value, you actually changes it's pointer, and if you compares between two variables it's compares their pointers.
(To be clear, pointer is the address in physical computer memory where a variable is stored).
As a result, when you changes an inner variable value, you changes it's value in the memory and it's affects all the variables that point to this address.
For your example, when you do:
a = b = 5
This means that a and b points to the same address in memory that contains the value 5, but when you do:
a = 6
It's not affect b because a is now points to another memory location that contains 6 and b still points to the memory address that contains 5.
But, when you do:
a = b = [1,2,3]
a and b, again, points to the same location but the difference is that if you change the one of the list values:
a[0] = 2
It's changes the value of the memory that a is points on, but a is still points to the same address as b, and as a result, b changes as well.
Yes, that's the expected behavior. a, b and c are all set as labels for the same list. If you want three different lists, you need to assign them individually. You can either repeat the explicit list, or use one of the numerous ways to copy a list:
b = a[:] # this does a shallow copy, which is good enough for this case
import copy
c = copy.deepcopy(a) # this does a deep copy, which matters if the list contains mutable objects
Assignment statements in Python do not copy objects - they bind the name to an object, and an object can have as many labels as you set. In your first edit, changing a[0], you're updating one element of the single list that a, b, and c all refer to. In your second, changing e, you're switching e to be a label for a different object (4 instead of 3).
You can use id(name) to check if two names represent the same object:
>>> a = b = c = [0, 3, 5]
>>> print(id(a), id(b), id(c))
46268488 46268488 46268488
Lists are mutable; it means you can change the value in place without creating a new object. However, it depends on how you change the value:
>>> a[0] = 1
>>> print(id(a), id(b), id(c))
46268488 46268488 46268488
>>> print(a, b, c)
[1, 3, 5] [1, 3, 5] [1, 3, 5]
If you assign a new list to a, then its id will change, so it won't affect b and c's values:
>>> a = [1, 8, 5]
>>> print(id(a), id(b), id(c))
139423880 46268488 46268488
>>> print(a, b, c)
[1, 8, 5] [1, 3, 5] [1, 3, 5]
Integers are immutable, so you cannot change the value without creating a new object:
>>> x = y = z = 1
>>> print(id(x), id(y), id(z))
507081216 507081216 507081216
>>> x = 2
>>> print(id(x), id(y), id(z))
507081248 507081216 507081216
>>> print(x, y, z)
2 1 1
in your first example a = b = c = [1, 2, 3] you are really saying:
'a' is the same as 'b', is the same as 'c' and they are all [1, 2, 3]
If you want to set 'a' equal to 1, 'b' equal to '2' and 'c' equal to 3, try this:
a, b, c = [1, 2, 3]
print(a)
--> 1
print(b)
--> 2
print(c)
--> 3
Hope this helps!
What you need is this:
a, b, c = [0,3,5] # Unpack the list, now a, b, and c are ints
a = 1 # `a` did equal 0, not [0,3,5]
print(a)
print(b)
print(c)
Simply put, in the first case, you are assigning multiple names to a list. Only one copy of list is created in memory and all names refer to that location. So changing the list using any of the names will actually modify the list in memory.
In the second case, multiple copies of same value are created in memory. So each copy is independent of one another.
The code that does what I need could be this:
# test
aux=[[0 for n in range(3)] for i in range(4)]
print('aux:',aux)
# initialization
a,b,c,d=[[0 for n in range(3)] for i in range(4)]
# changing values
a[0]=1
d[2]=5
print('a:',a)
print('b:',b)
print('c:',c)
print('d:',d)
Result:
('aux:', [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]])
('a:', [1, 0, 0])
('b:', [0, 0, 0])
('c:', [0, 0, 0])
('d:', [0, 0, 5])
To assign multiple variables same value I prefer list
a, b, c = [10]*3#multiplying 3 because we have 3 variables
print(a, type(a), b, type(b), c, type(c))
output:
10 <class 'int'> 10 <class 'int'> 10 <class 'int'>
Initialize multiple objects:
import datetime
time1, time2, time3 = [datetime.datetime.now()]*3
print(time1)
print(time2)
print(time3)
output:
2022-02-25 11:52:59.064487
2022-02-25 11:52:59.064487
2022-02-25 11:52:59.064487
E.g: basically a = b = 10 means both a and b are pointing to 10 in the memory, you can test by id(a) and id(b) which comes out exactly equal to a is b as True.
is matches the memory location but not its value, however == matches the value.
let's suppose, you want to update the value of a from 10 to 5, since the memory location was pointing to the same memory location you will experience the value of b will also be pointing to 5 because of the initial declaration.
The conclusion is to use this only if you know the consequences otherwise simply use , separated assignment like a, b = 10, 10 and won't face the above-explained consequences on updating any of the values because of different memory locations.
The behavior is correct. However, all the variables will share the same reference. Please note the behavior below:
>>> a = b = c = [0,1,2]
>>> a
[0, 1, 2]
>>> b
[0, 1, 2]
>>> c
[0, 1, 2]
>>> a[0]=1000
>>> a
[1000, 1, 2]
>>> b
[1000, 1, 2]
>>> c
[1000, 1, 2]
So, yes, it is different in the sense that if you assign a, b and c differently on a separate line, changing one will not change the others.
Here are two codes for you to choose one:
a = b = c = [0, 3, 5]
a = [1, 3, 5]
print(a)
print(b)
print(c)
or
a = b = c = [0, 3, 5]
a = [1] + a[1:]
print(a)
print(b)
print(c)

nested append operation goes wrong?

I have two lists: a = [0], b = [[0,1]], I want to append 2 to a first, then append a to b. So b should be [[0,1], [0,2]].
Operations like this work well:
a.append(2)
b.append(a)
but when I tried to combine them:
b.append(a.append(2))
I got the results:
a = [0, 2], b = [[0, 1], None]
What's wrong here?
As answered in the comments, a.append(2) only appends 2 to the list a, but it doesn't actually return it. An append operation that doesn't modify the original list but returns a new list with the appended value can be written simply with the +-operator.
>>> a, b = [0], [[0, 1]]
>>> b.append(a + [2]) # The list that is returned to the append function is [0, 2]
>>> a
[0]
>>> b
[[0, 1], [0, 2]]
I think the comments already answered your question: the append() method modifies the list in place instead of creating a new one, and its return type is None. If you still want to do the operation in a single line, you could use an assignment expression:
a, b = [0], [[0, 1]]
b.append(a := a + [2])
print(a, b)
# [0, 2] [[0, 1], [0, 2]]
If you want to combine those you might make your own function,
def append_ret(x, value):
x.append(value)
return x
doing the operation and returning the 'appended' container.
append_ret(b, append_ret(a,1))

Python append function is not working as expected

>>> a = [1,2,3]
>>> b = []
>>> b.append(a)
>>> print(b)
[[1, 2, 3]]
>>> num = a.pop(0)
>>> a.append(num)
>>> print(a)
[2, 3, 1]
>>> b.append(a)
>>> print(b)
[[2, 3, 1], [2, 3, 1]]
>>>
Why is this happening and how to fix it? I need the list like
[[1, 2, 3], [2, 3, 1]]
Thank you.
Edit:
Also, why is this working?
>>> a = []
>>> b = []
>>> a = [1,2,3]
>>> b.append(a)
>>> a = [1,2,3,4]
>>> b.append(a)
>>> print(b)
[[1, 2, 3], [1, 2, 3, 4]]
>>>
'''
Append a copy of your list a, at least the first time. Otherwise, you've appended the same list both times.
b.append(a[:])
When you append the list a, python creates a reference to that variable inside the list b. So when you edit the list a, it is reflected again in the list b. You need to create a copy of your variable and then append it to get the desired result.
Every variable name in Python should be thought of as a reference to a piece of data. In your first listing, b contains two references to the same underlying object that is also referenced by the name a. That object gets changed in-place by the operations you’re using to rotate its members. The effect of that change is seen when you look at either of the two references to the object found in b, or indeed when you look at the reference associated with the name a.
Their identicality can be seen by using the id() function: id(a), id(b[0]) and id(b[1]) all return the same number, which is the unique identifier of the underlying list object that they all refer to. Or you can use the is operator: b[0] is b[1] evaluates to True.
By contrast, in the second listing, you reassign a—in other words, by using the assignment operator = you cause that name to become associated with a different object: in this case, a new list object that you just created with your square-bracketed literal expression. b still contains one reference to the old list, and now you append a new reference that points to this different piece of underlying data. So the two elements of b now look different from each other—and indeed they are different objects and accordingly have different id() numbers, only one of which is the same as the current id(a). b[0] is b[1] now evaluates to False
How to fix it? Reassign the name a before changing it: for example, create a copy:
a = list(a)
or:
import copy
a = copy.copy(a)
(or you could even use copy.deepcopy()—study the difference). Alternatively, rotate the members a using methods that entail reassignment rather than in-place changes—e.g.:
a = a[1:] + a[:1]
(NB immutable objects such as the tuple avoid this whole confusion —not because they behave fundamentally differently but because they lack methods that produce in-place changes and therefore force you to use reassignment strategies.)
In addition to making the copy of a by doing a[:] and assigning it to b.
You can also use collections.deque.rotate to rotate your list
from collections import deque
a = [1,2,3]
#Make a deque of copy of a
b = deque(a[:])
#Rotate the deque
b.rotate(len(a)-1)
#Create the list and print it
print([a,list(b)])
#[[1, 2, 3], [2, 3, 1]]

Saving one vector variable on to another in python

I have a script that requires to transfer values of one vector onto another.
Code looks like:
b = [1,2,3]
for i ranging from (0,2):
a[i] = b[i] #(transfer all three elements of b to a)
Doing this gets an error
- IndexError: list assignment index out of range
What am i missing ? Thanks for help.
a = b[:]
should more than suffice
the list needs to be the right size if you are referencing it by index. ie. The list a doesn't have 3 elements. I'd just create a new list with a list constructor or even easier do this
a = list(b)
I have a script that requires to transfer values of one vector onto another
I think there is some confusion here between the variable and its content:
>>> a = [10,20]
>>> b = [1,2,3]
>>> c = a
>>> a,b,c
([10, 20], [1, 2, 3], [10, 20])
This create two lists. With two variables (a and c) referencing the same one.
If you write:
>>> a = [10,20]
>>> b = [1,2,3]
>>> c = a
>>> a = b[:]
>>> a,b,c
([1, 2, 3], [1, 2, 3], [10, 20])
You actually create a third list. An bind it to the variable a. But c still hold a reference to the original list.
If you want to really alter the original list, write that instead:
>>> a = [10,20]
>>> b = [1,2,3]
>>> c = a
>>> a[:] = b[:] # "replace every item of the first list
# by every item of the second list"
>>> a,b,c
([1, 2, 3], [1, 2, 3], [1, 2, 3])

What exactly is happening when I copy and then edit this list?

I cannot figure out at all why this is happening:
A = [[1,0], [2,2]]
B = list(A)
print('start A:', A, 'start B:', B)
A[0][0] = 999
print('end A:', A, 'end B:', B)
This returns:
start A: [[1, 0], [2, 2]] start B: [[1, 0], [2, 2]]
end A: [[999, 0], [2, 2]] end B: [[999, 0], [2, 2]]
The lists A and B end up being the same, even though I explicitly copied B from A. This only happens when I do something like A[0][0] = 999; if I replace that with A[0] = 999 then A and B are different at the end.
What's the reason behind this, and is there any way to change A in this manner without affecting B?
You are creating a shallow copy of the original list, that is a new list containing new references to the same objects as the original list.
Modifying the new list object does not alter the original list. Modifying the objects in the new list does modify the objects in the old list because they are the same.
To get a completely separate list, use copy.deepcopy() to create a deep copy.
Both A and B contain the same two lists.
Your code is roughly equivalent to this:
x = [1, 0]
y = [2, 2]
A = [x, y]
B = [x, y]
The operation A[0][0] = 999 is effectively just doing x[0] = 999. That is, it doesn't modify A itself, it modifies the first element of the list x. Since both A and B have references to x, both will see the change.
A simple copy operation like you did is shallow, it only copies the items one level deep and does not recurse into nested structures. You need
>>> import copy
>>> A = [[1,0], [2,2]]
>>> B = copy.deepcopy(A)
>>> print('start A:', A, 'start B:', B)
start A: [[1, 0], [2, 2]] start B: [[1, 0], [2, 2]]
>>> A[0][0] = 999
>>> print('end A:', A, 'end B:', B)
end A: [[999, 0], [2, 2]] end B: [[1, 0], [2, 2]]
A and B are two different names for the same chunk of memory within your computer.
A and B are two separate list objects, but A[0] and B[0] are two different names for the same chunk of memory within your computer. Try the following from the interpreter:
id(B)
id(A)
id(B[0])
id(A[0])
Python code manipulates references to objects.
Assigning to a variable is just binding a name to refer to an object.
A list consists of a bunch of references to objects. list(A) finds all the objects referenced in A and makes a new list with references to all the same objects. So if A is a list of lists, list(A) makes a new list with references to the same lists that were in A. So changing any of the sub-lists will be visible from both A and the new list.
copy.deepcopy exists to help you get around this, when you need a full "deep" copy of something.
Once you learn to think about Python code as manipulating references to objects like this, you will intuitively understand when code is likely to end up referring to the same object from multiple places like this, though there will probably always be obscure cases that surprise you.

Categories

Resources